On 2-Resolving Sets in the Join and Corona of Graphs
DOI:
https://doi.org/10.29020/nybg.ejpam.v14i3.3977Keywords:
resolving set, 2-resolving set, 2-metric dimension, 2-metric basesAbstract
Let G be a connected graph. An ordered set of vertices {v1, ..., vl} is a 2-resolving set in G if, for any distinct vertices u, w ∈ V (G), the lists of distances (dG(u, v1), ..., dG(u, vl)) and (dG(w, v1), ..., dG(w, vl)) differ in at least 2 positions. If G has a 2-resolving set, we denote the least size of a 2-resolving set by dim2(G), the 2-metric dimension of G. A 2-resolving set of size dim2(G) is called a 2-metric basis for G. This study deals with the concept of 2-resolving set of a graph. It characterizes the 2-resolving set in the join and corona of graphs and determine the
exact values of the 2-metric dimension of these graphs.
Downloads
Published
How to Cite
Issue
Section
License
Upon acceptance of an article by the journal, the author(s) accept(s) the transfer of copyright of the article to European Journal of Pure and Applied Mathematics.
European Journal of Pure and Applied Mathematics will be Copyright Holder.