Stable Locating-Dominating Sets in Graphs
DOI:
https://doi.org/10.29020/nybg.ejpam.v14i3.3998Keywords:
locating, stable, domination, join, coronaAbstract
A set S ⊆ V(G) of a (simple) undirected graph G is a locating-dominating set of G if for each v ∈ V(G) \ S, there exists w ∈ S such tha vw ∈ E(G) and NG(x) ∩ S= NG(y)∩S for any distinct vertices x and y in V(G) \ S. S is a stable locating-dominating set of G if it is a locating-dominating set of G and S \ {v} is a locating-dominating set of G for each v ∈ S. The minimum cardinality of a stable locating-dominating set of G, denoted by γsl(G), is called the stable locating-domination number of G. In this paper, we investigate this concept and the corresponding parameter for some graphs. Further, we introduce other related concepts and use them to characterize the stable locating-dominating sets in some graphs.Downloads
Published
2021-08-05
Issue
Section
Nonlinear Analysis
License
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.
How to Cite
Stable Locating-Dominating Sets in Graphs. (2021). European Journal of Pure and Applied Mathematics, 14(3), 638-649. https://doi.org/10.29020/nybg.ejpam.v14i3.3998