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A note on the definite integral of the Lerch function
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Abstract. In this manuscript, the authors derive a formula for the double Laplace transform
expressed in terms of the Lerch Transcendent. The log term mixes the variables so that the
integral is not separable except for special values of k. The method of proof follows the method
used by us to evaluate single integrals. This transform is then used to derive definite integrals in
terms of fundamental constants, elementary and special functions. A summary of the results is
produced in the form of a table of definite integrals for easy referencing by readers. The majority
of the results in the work are new.
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1. Significance Statement

Definite integrals of special functions occur in a wide range of applications. Such ap-
plications of these integrals are prominent in diffusion theory [8], transportation problems
[8], the study of the radiative equilibrium of stellar atmospheres [6] and the evaluation of
exchange integrals in quantum mechanics [7]. This paper is an effort to give a tabulation
of an integral for a particular special function not present in current literature. The special
function researched in this work is the Lerch function.

In 1887 Mathias Lerch [9] produced his famous manuscript on the Lerch function.
Lerch’s function has been extensively in studied in [3–5, 9, 10, 13]. The Lerch function
generalizes the Hurwitz zeta function, the polylogarithms, and many interesting and im-
portant special functions. Definite integrals of special functions such as Hurwitz zeta and
Polylogarithm have been studied in the works of Kurokawa et al and Reynolds and Stauf-
fer [8, 14]. Relations between the Hurwitz-Lerch zeta functions and Appel functions as
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well as Humbert hypergeometric functions of two variables are found in the work of [2].

In this work our goal is to expand upon the current literature of definite integrals
of special functions by providing a formal derivation of the definite integral of the Lerch
function and express this integral in terms of the Lerch function. It is our hope that
researches will find this new integral formula useful for current and future research work
where applicable. Consequently, any new result on the Lerch function is important because
of its many applications in applied and pure mathematics.

2. Introduction

In the present work, the authors used their contour integral method and applied it to
the Lerch function to derive a definite integral and expressed its closed form in terms of a
special function. This derived integral formula was then used to provide formal derivations
in terms of special functions and fundamental constants. The Lerch function being a
special function has the fundamental property of analytic continuation, which enables
us to widen the range of evaluation for the parameters involved in our definite integral.
The Lerch function is a special function that generalizes the Hurwitz zeta function, the
polylogarithms, and so many interesting and important special functions.

The definite integral derived in this manuscript is given by

∫ +∞

0
xa−1 logk

(
b

x

)
Φ(−cx, n, a)dx

=
eiπak!c−a(−2iπ)k+n+1Φ

(
e2iaπ,−k − n,−−i log(b)−i log(c)−π2π

)
(k + n)!

(1)

where the parameters k, b and a are general complex numbers and 0 < Re(a) < 1, c ∈
R+, n ∈ Z−. This work is important because the authors were unable to find similar
derivations in the current literature along with the many applications the Lerch function
has in applied and pure mathematics. The derivation of the definite integral follows the
method used by us in [15] which involves Cauchy’s integral formula. The generalized
Cauchy’s integral formula is given by

yk

k!
=

1

2πi

∫
C

ewy

wk+1
dw. (2)

where C is in general an open contour in the complex plane where the bilinear concomitant
[15]. This method involves using a form of equation (2) then multiply both sides by a
function, then take a definite integral of both sides. This yields a definite integral in terms
of a contour integral. A second contour integral is derived by multiplying equation (2) by
a function and performing some substitutions so that the contour integrals are the same.
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3. Definite integral of the contour integral

We use the method in [15]. The variable of integration in the contour integral is
t = w − a. The cut and contour are in the second quadrant of the complex z-plane. The
cut approaches the origin from the interior of the second quadrant and the contour goes
round the origin with zero radius and is on opposite sides of the cut. Using equation (2)
we replace y by 1/x+ log(b) then multiply by xa−1Φ(−cx, n, a). Next we take the infinite
integral over x ∈ [0,+∞) to get

1

k!

∫ +∞

0
xa−1 logk

(
b

x

)
Φ(−cx, n, a)dx

=
1

2πi

∫ +∞

0

∫
C
bww−k−1xa−w−1Φ(−cx, n, a)dwdx

=
1

2πi

∫
C

∫ +∞

0
bww−k−1xa−w−1Φ(−cx, n, a)dxdw

=
1

2πi

∫
C
πbwcw−a csc(π(a− w))w−k−n−1dw (3)

where −1 < Re(a − w) < 0. Using equation (9.550) we multiply both sides by xb−1 and
integrate over x ∈ [0,+∞) and using equation (3.194.4) in [17]. We are able to switch
the order of integration over z, x and y using Fubini’s theorem since the integrand is of
bounded measure over the space C × [0,+∞).

4. The Lerch function

We use (9.550) and (9.556) in [17] where Φ(z, s, v) is the Lerch function which is a
generalization of the Hurwitz zeta ζ(s, v) and Polylogarithm functions Lin(z). The Lerch
function has a series representation given by

Φ(z, s, v) =

+∞∑
n=0

(v + n)−szn (4)

where |z| < 1, v 6= 0,−1, .. and is continued analytically by its integral representation
given by

Φ(z, s, v) =
1

Γ(s)

∫ +∞

0

ts−1e−vt

1− ze−t
dt =

1

Γ(s)

∫ +∞

0

ts−1e−(v−1)t

et − z
dt (5)

where Re(v) > 0, or |z| ≤ 1, z 6= 1, Re(s) > 0, or z = 1, Re(s) > 1.

5. Infinite sum of the contour integral

In this section we will again use Cauchy’s integral formula (2) and take the infinite
sum to derive equivalent sum representations for the contour integrals. We proceed using
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equation (2) and replace y by log(b) + log(c) + iπt(2y + 1) and multiply both sides by
−2iπc−ae2iπay+iπa and set t = −1 and replace k by k + n simplifying to get

− 2iπc−aeiπa(2y+1)(−i)k+n(i log(b) + i log(c) + 2πy + π)k+n

(k + n)!

= − 1

2πi

∫
C

2iπbwcw−aeiπ(2y+1)(a−w)w−k−n−1dw (6)

Next take the infinite over y ∈ [0,+∞) and simplify using the Lerch function to get

eiπac−a(−2iπ)k+n+1Φ
(
e2iaπ,−k − n,−−i log(b)−i log(c)−π2π

)
(k + n)!

= − 1

2πi

+∞∑
y=0

∫
C

2iπbwcw−aeiπ(2y+1)(a−w)w−k−n−1dw

= − 1

2πi

∫
C

+∞∑
y=0

2iπbwcw−aeiπ(2y+1)(a−w)w−k−n−1dw

=
1

2πi

∫
C
πbwcw−a csc(π(a− w))w−k−n−1dw (7)

from (1.232.3) in [17] and Im(a− w) > 0 for convergence of the sum.

6. Definite integral in terms of the Lerch function

In this section we derive the definite integral involving the Lerch and logarithmic
functions expressed in terms of the Lerch function.

Theorem 1. For k, b ∈ C, 0 < Re(a) < 1, n ∈ Z−, c ∈ Z,∫ +∞

0
xa−1 logk

(
b

x

)
Φ(−cx, n, a)dx

=
eiπak!c−a(−2iπ)k+n+1Φ

(
e2iaπ,−k − n,−−i log(b)−i log(c)−π2π

)
(k + n)!

(8)

Proof. Since the right-hand sides of equations (3) and (7) are the same we can equate
the left-hand sides to yield the stated result.

Theorem 2. b ∈ C, Re(k) < −2, 0 < Re(a) < 1, c ∈ Z−∫ +∞

0
xa−1Φ(−cx, 1, a) logk

(
b

x

)
dx
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=
eiπa(−2iπ)k+2k!c−aΦ

(
e2iaπ,−k − 1,−−i log(b)−i log(c)−π2π

)
(k + 1)!

(9)

Proof. Use equation (8) set n = −1 and simplify.

7. Definite integrals in terms of the Hurwitz zeta function when a = 1/2
and a = 1

Theorem 3. For k, b, c ∈ C, n ∈ Z−

∫ +∞

0

logk
(
b
x

)
Lin(−cx)

x
dx =

k!(−2iπ)k+n+1ζ
(
−k − n,−−i log(b)−i log(c)−π2π

)
(k + n)!

(10)

Proof. Use equation (8) and set a = 1 and simplify using equations (64:12:1) and
(64:12:2) in [11].

Proposition 1. For b, c ∈ C, Re(k) < 0∫ +∞

0

tanh−1(cx) logk
(
b
x

)
x

dx

=
(−i)k2k+1πk+2

(
ζ
(
−k − 1, i log(b)+i log(c)+π2π

)
− ζ

(
−k − 1, i log(b)+i log(−c)+π2π

))
k + 1

(11)

Proof. Use equation (10) set n = 1, simplify the factorial and form a second equation
by replacing c by −c and taking their difference and simplify.

Proposition 2. For α, β ∈ C∫ +∞

0

tanh−1(αx)

x(β + log(x))2
dx

=
1

2

(
ψ(0)

(
− i(β − log(α))

2π

)
− ψ(0)

(
−iβ + i log(α) + π

2π

))
(12)

Proof. Use equation (11) set k = −2, b = e−iβ, c = α and simplify using equation
(64:4:1) in [11]. Note the singularity at x = 1/α.

Proposition 3. ∫ +∞

0

tanh−1(x)

x(log(x) + iπ)2
dx = − log(2) (13)

Proof. Use equation (12) and set β = πi, α = 1 and simplify in terms of Euler’s
constant, γ using equation (6.3.16) in [1].
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Theorem 4. For k, b, c ∈ C

∫ +∞

0

logk
(
b
x

) (
tan−1

(√
d
√
x
)
− tan−1 (

√
c
√
x)
)

x
dx

= −
(−4i)k+1πk+2ζ

(
−k − 1, i log(b)+i log(c)+π4π

)
k + 1

+
(−4i)k+1πk+2ζ

(
−k − 1, i log(b)+i log(c)+3π

4π

)
k + 1

+
(−4i)k+1πk+2ζ

(
−k − 1, i log(b)+i log(d)+π4π

)
k + 1

−
(−4i)k+1πk+2ζ

(
−k − 1, i log(b)+i log(d)+3π

4π

)
k + 1

(14)

Proof. Use equation (8) and set a = 1/2, n = −1 then take the first partial derivative
with respect to k then set k = 1 and simplify using entry (4) in Table below (64:12:7) in
[11].

Proposition 4. For d, c ∈ C,∫ +∞

0

tan−1(dx)− tan−1(cx)

x
dx =

1

2
π log

(
d

c

)
(15)

Proof. Use equation (9) set a = 1/2 and simplify using entry (4) in table below (64:12:7)
in [11]. Next form a second equation by replacing c by d and take their difference, and
setting k = 0 and simplify the integral where d is replaced by d2, c is replaced by c2 and
replacing x by x2 where dx = 2xdx. This is a particular case of the well-known Frullani
integrals in section (2.5) in [16].

Proposition 5. For b, d, c ∈ C,

∫ +∞

0

log
(
b
x

) (
tan−1

(√
d
√
x
)
− tan−1 (

√
c
√
x)
)

x
dx = −1

4
π log

( c
d

)
log
(
b2cd

)
(16)

Proof. Use equation (9) set a = 1/2 and simplify using entry (4) in table below (64:12:7)
in [11]. Next form a second equation by replacing c by d and take their difference, and
setting k = 1 and simplify the integral where d is replaced by d2, c is replaced by c2 and
replacing x by x2 where dx = 2xdx.

Proposition 6. For b, d, c ∈ C,
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∫ +∞

0

log2
(
b
x

) (
tan−1

(√
d
√
x
)
− tan−1 (

√
c
√
x)
)

x
dx

= −1

2
π log(b) log2(c)− 1

2
π log2(b) log(c) +

1

2
π log(b) log2(d)

+
1

2
π log2(b) log(d)− 1

6
π log3(c)− 1

2
π3 log(c) +

1

6
π log3(d)

+
1

2
π3 log(d) (17)

Proof. Use equation (9) set a = 1/2 and simplify using entry (4) in table below (64:12:7)
in [11]. Next form a second equation by replacing c by d and take their difference, and
setting k = 2 and simplify the integral by setting d = d2, c = c2 and replacing x by x2

where dx = 2xdx.

Proposition 7. Using equation (14) and setting k = 1/2, b = −i, c = 1, d = −1 simplify-
ing to get

∫ +∞

0
−

√
log
(
− i
x

) (
tan−1 (

√
x)− i tanh−1 (

√
x)
)

x
dx

= −16

3
4
√
−1π5/2

(
ζ

(
−3

2
,
1

8

)
− ζ

(
−3

2
,
3

8

)
− ζ

(
−3

2
,
5

8

)
+ ζ

(
−3

2
,
7

8

))
(18)

Theorem 5. For k, b, c ∈ C∫ +∞

0

(cx− 1) logk
(
b
x

)
√
x(cx+ 1)2

dx

=
ie−

1
2
iπkk(4π)k

(
ζ
(

1− k, i log(b)+i log(c)+3π
4π

)
− ζ

(
1− k, i log(b)+i log(c)+π4π

))
√
c

(19)

Proof. Use equation (8) and set a = 1/2, n = −1 then take the first partial derivative
with respect to k then set k = 1 and simplify using entry (4) in Table below (64:12:7) in
[11].

Proposition 8. Using equation (19) setting k = −1, b = 1, c = 1 and simplifying in terms
of Catalan’s constant, C using equations (25.11.35) and (25.11.40) in [12] to get∫ +∞

0

1− x√
x(x+ 1)2 log(x)

dx = −4C

π
(20)

Proposition 9. Using equation (19) setting k = −1/2, b = −i, c = 1 and simplifying to
get ∫ +∞

0

x− 1
√
x(x+ 1)2

√
log
(
− i
x

)dx =
(−1)3/4

(
ζ
(
3
2 ,

3
8

)
− ζ

(
3
2 ,

7
8

))
4
√
π

(21)



R. Reynolds, A. Stauffer / Eur. J. Pure Appl. Math, 14 (3) (2021), 788-802 795

Proposition 10. Using equation (19) setting k = 1/2, b = −i, c = 1 and simplifying to
get ∫ +∞

0

(x− 1)
√

log
(
− i
x

)
√
x(x+ 1)2

dx = 4
√
−1
√
π

(
ζ

(
1

2
,
7

8

)
− ζ

(
1

2
,
3

8

))
(22)

8. Definite integrals in terms of the Lerch function when n ∈ Z−

Proposition 11. For k, b ∈ C∫ +∞

0

((x− 6)x+ 1) logk
(
b
x

)
4
√
x(x+ 1)3

dx

= 22k−3e−
1
2
iπk(k − 1)kπk−1

(
ζ

(
2− k, i log(b)

4π
+

3

4

)
− ζ

(
2− k, i log(b) + π

4π

))
(23)

Proof. Use equation (8) and set a = 1/2, n = −2, c = 1 then simplify using entry (4)
in Table below (64:12:7) in [11].

Proposition 12. Using equation (23) and setting k = −1, b = −i and simplifying we get∫ +∞

0

(x− 6)x+ 1
√
x(x+ 1)3

(
4 log2(x) + π2

)dx =
ζ
(
3, 78
)
− ζ

(
3, 38
)

8π3
(24)

Theorem 6.∫ +∞

0

((x− 6)x+ 1) log
(
− log(x) + iπ

2

)
√
x(x+ 1)3

dx =
ψ(1)

(
3
8

)
− ψ(1)

(
7
8

)
2π

(25)

Proof. Use equation (23) take the first partial derivative with respect to k then set
k = 0, b = −i and simplify.

Proposition 13. For k, b, c ∈ C∫ +∞

0

(cx− 1) logk
(
b
x

)
(cx+ 1)3

dx =
ie−

1
2
iπk(k − 1)k(2π)k−1ζ

(
2− k, i log(b)+i log(c)+π2π

)
c

(26)

Proof. Use equation (8) and set a = 1, n = −2 then simplify using entry (4) in Table
below (64:12:7) in [11].

Proposition 14. Using equation (26) and setting k = −1, b = −i, c = 1, rationalizing the
denominator and simplify we get∫ +∞

0

(x− 1) log(x)

(x+ 1)3
(
4 log2(x) + π2

)dx =
ζ
(
3, 34
)

8π2
(27)

and ∫ +∞

0

x− 1

(x+ 1)3
(
4 log2(x) + π2

)dx = 0 (28)
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Theorem 7. For k, b, c ∈ C∫ +∞

0

(cx(cx− 4) + 1) log
(
log
(
b
x

))
logk

(
b
x

)
(cx+ 1)4

dx

= −
i2k−3e−

1
2
ikππk−1ζ

(
3− k, i log(b)+i log(c)+π2π

)
k3

c

−
e−

1
2
ikπ(2π)k−2ζ ′

(
3− k, i log(b)+i log(c)+π2π

)
k3

c

+
e−

1
2
ikπ(2π)k−2ζ

(
3− k, i log(b)+i log(c)+π2π

)
log(2π)k3

c

+
3e−

1
2
ikπ(2π)k−2ζ

(
3− k, i log(b)+i log(c)+π2π

)
k2

c

+
3i2k−3e−

1
2
ikππk−1ζ

(
3− k, i log(b)+i log(c)+π2π

)
k2

c

+
2k−1e−

1
2
ikππk−2ζ ′

(
3− k, i log(b)+i log(c)+π2π

)
k2

c

+
e−

1
2
ikπ(2π)k−2ζ ′

(
3− k, i log(b)+i log(c)+π2π

)
k2

c

−
3e−

1
2
ikπ(2π)k−2ζ

(
3− k, i log(b)+i log(c)+π2π

)
log(2π)k2

c

−
3 2k−1e−

1
2
ikππk−2ζ

(
3− k, i log(b)+i log(c)+π2π

)
k

c

−
i2k−2e−

1
2
ikππk−1ζ

(
3− k, i log(b)+i log(c)+π2π

)
k

c

−
2k−1e−

1
2
ikππk−2ζ ′

(
3− k, i log(b)+i log(c)+π2π

)
k

c

+
2k−1e−

1
2
ikππk−2ζ

(
3− k, i log(b)+i log(c)+π2π

)
log(2π)k

c

+
2k−1e−

1
2
ikππk−2ζ

(
3− k, i log(b)+i log(c)+π2π

)
c

(29)

Proof. Use equation (8) and set a = 1, n = −3 then simplify using entry (4) in Table
below (64:12:7) in [11]. Then we take the first partial derivative with respect to k and set
k = 0, b = 1, c = 1 and simplify.
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Proposition 15. Using equation (29) and setting k = −1, b = −i, c = 1 and simplifying
we get ∫ +∞

0

((x− 4)x+ 1) log
(
log
(
1
x

))
(x+ 1)4

dx =
7ζ(3)

2π2
(30)

Note there exists a singularity at x = 1.

Proposition 16. For k, b, c ∈ C∫ +∞

0

(cx− 1)(cx(cx− 10) + 1) logk
(
b
x

)
(cx+ 1)5

dx

= −
ie−

1
2
iπk(k − 3)(k − 2)(k − 1)k(2π)k−3Φ

(
1, 4− k, i log(b)+i log(c)+π2π

)
c

(31)

Proof. Use equation (8) and set a = 1, n = −4 then simplify using entry (4) in Table
below (64:12:7) in [11].

Theorem 8. ∫ +∞

0

(x− 1)((x− 10)x+ 1) log
(
1
x

)
log
(
log
(
1
x

))
(x+ 1)5

dx = −7ζ(3)

2π2
(32)

Proof. Use equation (31) setting a = 1 and simplify, next take the first partial deriva-
tive with respect to k and set k = 1, b = 1, c = 1 and simplify using equation (64:12:1)
and entry (2) in table below (64:7) in [11].

Proposition 17. For k ∈ C∫ +∞

0

(x− 1)((x− 22)x+ 1) logk
(
1
x

)
8
√
x(x+ 1)4

dx

= i22k−5e−
1
2
iπk(k − 2)(k − 1)kπk−2

(
ζ

(
3− k, 1

4

)
− ζ

(
3− k, 3

4

))
(33)

Proof. Use equation (8) and set a = 1, n = −4 then simplify using entry (4) in Table
below (64:12:7) in [11].

Theorem 9. ∫ +∞

0

(x− 1)((x− 22)x+ 1) log
(
1
x

)
log
(
log
(
1
x

))
8
√
x(x+ 1)4

dx = −2C

π
(34)

Proof. Use equation (33) and take the first partial derivative with respect to k and set
k = 1, b = 1 and simplify using equation (64:7:1) in [11] and equation (16) in [2].



R. Reynolds, A. Stauffer / Eur. J. Pure Appl. Math, 14 (3) (2021), 788-802 798

9. Definite integral of the Lerch function in terms of the Lerch
transformation

In this section we will apply the Lerch transformation derived by Oberhettinger in [10]
and apply it to our definite integral of the Lerch function and evaluate a few examples.

Theorem 10. For k, b, a ∈ C, n ∈ Z−, c ∈ R+,

e−iπaca(−2iπ)−k−n−1(k + n)!

k!

∫ +∞

0
xa−1 logk

(
b

x

)
Φ(−cx, n, a)dx

= iba−1ca−1(2π)−k−n−1e−
1
2
iπ(2a+k+n)Γ(k + n+ 1)Φ

(
− 1

bc
, k + n+ 1, 1− a

)
− iba+1ca+1(2π)−k−n−1eiπ(k+n)−

1
2
iπ(2a+k+n)Γ(k + n+ 1)Φ(−bc, k + n+ 1, a+ 1)

+ baca(2π)−k−n−1(−ia)−k−n−1e
1
2
iπ(k+n)− 1

2
iπ(2a+k+n)Γ(k + n+ 1) (35)

Proof. Use equation (12) in [10] and simplify.

Proposition 18. Using equation (35) setting n = 0, c = 1, b = −i, a = 1/3, k = 1/2 and
simplify to get

∫ +∞

0

(−1)5/12
√

log
(
− i
x

)
√

2π3/2x2/3(2x+ 2)
dx =

(
1
8 + i

8

) (
Φ
(
−i, 32 ,

2
3

)
+ iΦ

(
i, 32 ,

4
3

)
+ 3
√

3
)

π
(36)

Proposition 19. Using equation (35) setting n = −1, c = 1/2, b = −i, a = 1/4, k = −1/2
and simplify to get

∫ +∞

0

4
√

2
√
π(2− 3x)

x3/4(x+ 2)2
√

log
(
− i
x

)dx
=
√
−1 + iπ

(
Φ

(
i

2
,−1

2
,
5

4

)
− i
(

1 + 4Φ

(
−2i,−1

2
,
3

4

)))
(37)

Theorem 11.∫ +∞

0

(3x− 2) log
(
− i
x

)
log
(
log
(
− i
x

))
x3/4(x+ 2)2

dx

= −(−1)3/8Φ′
(
i

2
, 1,

5

4

)
− 4(−1)3/8Φ′

(
−2i, 1,

3

4

)
+ 8(−1)7/8 2F1

(
1

4
, 1;

5

4
;
i

2

)
− 8(−1)7/8γ 2F1

(
1

4
, 1;

5

4
;
i

2

)
− 16

3
(−1)3/8 2F1

(
3

4
, 1;

7

4
;−2i

)
+

16

3
(−1)3/8γ 2F1

(
3

4
, 1;

7

4
;−2i

)
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+
16

3
(−1)7/8π 2F1

(
3

4
, 1;

7

4
;−2i

)
+ 8(−1)7/8 log(4) (38)

Proof. Use equation (35) set n = −1, c = 1/2, b = −i, a = 1/4 then take the first
partial derivative with respect to k and set k = 0 and simplify.

Proposition 20. Using equation (35) setting n = −2, c = 1, b = −i, a = 1/2, k = 1/2 and
simplify to get

∫ +∞

0

((x− 6)x+ 1)
√

log
(
− i
x

)
√
x(x+ 1)3

dx

= (1− i)
√
π

(√
2Φ

(
−i,−1

2
dx =

1

2

)
+ i
√

2Φ

(
i,−1

2
,
3

2

)
+ 1

)
(39)

Proposition 21. Using equation (35) setting n = −3, c = 1/2, b = −i, a = 1/3, k = −1/2
and simplify to get

∫ +∞

0

x(x(4x− 93) + 120)− 4

x2/3(x+ 2)4
√

log
(
− i
x

) dx
=

1

8
(−1)5/6

√
π

(
27iΦ

(
i

2
,−5

2
,
4

3

)
+ 2

(√
3 + 54Φ

(
−2i,−5

2
,
2

3

)))
(40)

Proposition 22. Using equation (35) setting n = −1, c = 1, b = −i, a = 1/2, k = 3/2 and
simplify to get

∫ +∞

0

(x− 1) log
3
2

(
− i
x

)
√
x(x+ 1)2

dx

=

(
−3

4
+

3i

4

)√
π

(√
2Φ

(
−i, 3

2
,
1

2

)
+ i
√

2Φ

(
i,

3

2
,
3

2

)
+ 4

)
(41)

10. Table of integrals

The examples displayed in this Table correspond to equations (12), (13), (15), (16),
(20), (21), (22), (26), (27), (30), (32), and (34).
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Table 1: Table of definite integrals

f(x)
∫ +∞
0 f(x)dx

tanh−1(αx)
x(β+log(x))2

1
2

(
ψ(0)

(
− i(β−log(α))

2π

)
− ψ(0)

(
−iβ+i log(α)+π

2π

))
tanh−1(x)

x(log(x)+iπ)2
− log(2)

tan−1(dx)−tan−1(cx)
x

1
2π log

(
d
c

)
log( bx)(tan−1(

√
d
√
x)−tan−1(

√
c
√
x))

x −1
4π log

(
c
d

)
log
(
b2cd

)
1−x√

x(x+1)2 log(x)
−4C

π

x−1
√
x(x+1)2

√
log(− i

x)

(−1)3/4(ζ( 3
2
, 3
8)−ζ( 3

2
, 7
8))

4
√
π

(x−1)
√

log(− i
x)

√
x(x+1)2

4
√
−1
√
π
(
ζ
(
1
2 ,

7
8

)
− ζ

(
1
2 ,

3
8

))
(cx−1) logk( bx)

(cx+1)3

ie−
1
2 iπk(k−1)k(2π)k−1ζ

(
2−k, i log(b)+i log(c)+π

2π

)
c

(x−1) log(x)
(x+1)3(4 log2(x)+π2)

ζ(3, 34)
8π2

((x−4)x+1) log(log( 1
x))

(x+1)4
7ζ(3)
2π2

(x−1)((x−10)x+1) log( 1
x) log(log( 1

x))
(x+1)5

−7ζ(3)
2π2

(x−1)((x−22)x+1) log( 1
x) log(log( 1

x))
8
√
x(x+1)4

−2C
π

((x−6)x+1) log(− log(x)+ iπ
2 )√

x(x+1)3
ψ(1)( 3

8)−ψ(1)( 7
8)

2π
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11. Discussion

In this work the authors used their contour integral method and derived a definite
integral using the Lerch function in terms of the Lerch function which has not been given
before. A definite integral representation involving the Lerch function was also derived
for the Lerch transformation. A table of integrals was produced for easy reading by
interested readers. We will be using our contour integral method to derive other integrals
in our future work.
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