EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 14, No. 4, 2021, 1237-1248
ISSN 1307-5543 - ejpam.com
Published by New York Business Global

Chatterjee and Extension of Chatterjee Fixed Point Theorems on Operators on Hilbert C*-Modules

Rashwan. A. Rashwan ${ }^{1, *}$, Howida Adel AlFran ${ }^{2}$, Asmaa Fangary ${ }^{3}$, Saleh Omran ${ }^{3}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Assuit University, Assuit, Egypt
${ }^{2}$ Department of Mathematics, Al-Leith University College, Umm Al Qura University, Kingdom of Saudi Arabia
${ }^{3}$ Department of Mathematics, Faculty of Science, South Valley University, Qena, Egypt

Abstract

In this paper we consider some fixed point theorem (such as Chatterjee and extension of Chatterjee) in operators of Hilbert C^{*}-modules, based on a definition of valued operator Hilbert C*-modules normed space. Also We give some examples to clear our definitions.

2020 Mathematics Subject Classifications: 47H10, 46L05, 46L08
Key Words and Phrases: Fixed Point Theorems, C^{*}-algebra, Operators on Hilbert C^{*}-modules

1. Introduction

Hilbert C^{*}-modules consider a mathematical objects where generalize the notion of a Hilbert space by allowing the inner product to take values in a (commutative, unital) C^{*}-algebra rather than in the field of complex numbers. Hilbert C^{*}-modules were first introduced in 1953 by Kaplansky [5]. Later, the theory was developed independently by Paschke [12] and Rieffel [16] where the research on Hilbert C^{*}-modules began in the 70's in the work of the induced representations of C^{*}-algebras by M. A. Rieffel [16] also Kasparov [6] introduced the definition of $K K$-theory by using Hilbert C^{*}-modules

C*-algebra is a main subject in the functional analysis and the operator theory which play fundamental role in noncommutative geometry and theoretical physics, especially the quantum mechanics

Ma and et al. [20], introduced the concept of C^{*}-algebra-valued metric spaces. The main idea consists in using the set of all positive elements of a unital C^{*}-algebra instead

[^0]of the set of real numbers. They presented some fixed point results for mapping under contractive or expansive conditions in these spaces. Later, Ma and et al. [21], introduced the concept of C^{*}-algebra-valued b-metric spaces and proved some fixed point theorems such as Banach and Kannan type fixed point theorems.For other results on C^{*}-algebravalued b-metric spaces and C^{*}-algebra-valued-metric spaces, see $[4,13,15,18,22]$.
An element $x \in \mathbb{A}$ is a positive element, denote it by $x \succeq 0$, if $x \in \mathbb{A}_{h}$ and $\sigma(x) \subset[0,+\infty]$, where $\sigma(x)$ is the spectrum of x and $\mathbb{A}_{h}=\left\{x \in \mathbb{A}: x^{*}=x\right\}$. Using positive elements, one can define a partial ordering \preceq on \mathbb{A}_{h} as follows: $x \preceq y$ if and only if $y-x \succeq 0$. From now on, by \mathbb{A}_{+}we denote the set $\{x \in \mathbb{A}: x \succeq 0\}$ and $|x|=\left(x^{*} x\right)^{\frac{1}{2}}$.

2. Preliminaries

In this section, we begin with some basic notations and definition C^{*}-algebra and fixed point theory that will be very important and useful in the sequal.

Definition 1. [9] A Banach *-algebra is a *-algebra \mathbb{A} together with a complete submultiplicative norm such that $\|a b\| \leq\|a\|\|b\| \quad$ (for all $\quad a, b \in \mathbb{A}$). A C^{*} algebra is a Banach *-algebra such that $\left\|a^{*} a\right\|=\|a\|^{2} \quad$ (for all $\quad a \in \mathbb{A}$).
Definition 2. [9] An element $a \in \mathbb{A}$ is positive element, if $a=a^{*}$ and $\sigma(a) \subseteq \mathbb{R}^{+}$, where $\sigma(a)$ is the spectrum of a, we denote \mathbb{A}_{+}the set of all positive element in \mathbb{A}.

Definition 3. $[\mathbf{8}, \mathbf{1 9}]$ A pre-Hilbert C^{*}-module \mathcal{E} over a C^{*}-algebra \mathbb{A}, is a right \mathbb{A}-module together with an \mathbb{A}-valued inner product $\langle,\rangle:. \mathcal{E} \times \mathcal{E} \longrightarrow \mathbb{A}$ satisfying the conditions:
(1) $\langle x, x\rangle \succeq 0$ for all $x \in \mathcal{E}$;
(2) $\langle x, x\rangle=0$ if and only if $x=0$;
(3) $\langle x, \alpha y+\beta z\rangle=\alpha<x, y\rangle+\beta<x, z>$ for all $x, y, z \in \mathcal{E}, \alpha, \beta \in \mathbb{C}$;
(4) $\langle x, y a\rangle=<x, y>a$ for all $x, y \in \mathcal{E}, a \in \mathbb{A}$;
(5) $\langle x, y\rangle^{*}=\langle y, x\rangle$ for all $x, y \in \mathcal{E}$.

Definition 4. [8] The norm of an element $e \in \mathcal{E}$ is defined as

$$
\|x\|_{\mathcal{E}}:=\sqrt{\|<x, x\rangle \|_{\mathbb{R}}} \text {, where }\|\cdot\|_{\mathbb{R}} \text { is the } \mathbb{R} \text {-valued norm. }
$$

If a pre-Hilbert \mathbb{A}-module is complete with respect to its norm,it is said to be a Hilbert \mathbb{A} -module.

Example 1. Every C^{*}-algebra \mathbb{A} is a Hilbert \mathbb{A}-module over itself when equipped with the \mathbb{A}-valued inner product given simply by

$$
<a, b>=a^{*} b,(a, b \in \mathbb{A}) .
$$

Definition 5. [19] Let \mathcal{E} be a Hilbert \mathbb{A}-module. A map $T: \mathcal{E} \longrightarrow \mathcal{E}$ is said to be adjointable if there exists a map $T^{*}: \mathcal{E} \longrightarrow \mathcal{E}$ satisfying

$$
<x, T y>=<T^{*} x, y>
$$

for all $x, y \in \mathcal{E}$.
Definition 6. [3] An element $T \in l(\mathcal{E})$ is positive if for every $x \in \mathcal{E}$ we have $<T x, x>_{\mathbb{A}} \succeq$ 0 and we write it by $T \succeq 0$ and we denote the set $l(\mathcal{E})_{+}=\{T \in \mathcal{E} ; T \succeq 0\}$, we define a partial ordering relation on $l(\mathcal{E})_{+}$as

$$
\text { if } T_{1}, T_{2} \in l(\mathcal{E}), T_{1} \preceq_{l(\mathcal{E})} T_{2} \text { if and only if } T_{2}-T_{1} \in l(\mathcal{E})_{+}
$$

Definition 7. [3] $l(\mathcal{E})=\{T: \mathcal{E} \longrightarrow \mathcal{E}\}$ is the set of all adjiontable linear operators with $\|T\|=\sup \left\{\|T x\|_{\mathcal{E}} ;\|x\|_{\mathcal{E}} \leq 1\right\}$ is a C^{*}-algebra.

3. Main Results

Definition 8. Let $l(\mathcal{E})_{+}$be a subset of $l(\mathcal{E}) . l(\mathcal{E})_{+}$is called Cone of $l(\mathcal{E})$ if and only if :
(1) $l(\mathcal{E})_{+} \cap\left(-l(\mathcal{E})_{+}\right)=\left\{0_{l(\mathcal{E})}\right\},\left(0_{l(\mathcal{E})}\right.$ is the zero vector);
(2) $l(\mathcal{E})_{+}$is closed in $l(\mathcal{E})$;
(3) $T a+S b \in l(\mathcal{E})_{+} ; a T+b S \in l(\mathcal{E})_{+} a, b \in A, T \lambda+S \beta \in l(\mathcal{E})_{+}: \lambda, \beta \in \mathbb{C}$;
(4) $l(\mathcal{E})_{+} \cdot l(\mathcal{E})_{+} \subseteq l(\mathcal{E})_{+}$.

Definition 9. An $l(\mathcal{E})$-valued metric on a set X is a function $d_{l(\mathcal{E})}: X \times X \longrightarrow l(\mathcal{E})$ such that for all x, y and z in X the following conditions are hold:
(1) $d_{l(\mathcal{E})}(x, y) \succeq 0$;
(2) $d_{l(\mathcal{E})}(x, y)=0$ if and only if $x=y$;
(3) $d_{l(\mathcal{E})}(x, y)=d_{l(\mathcal{E})}(y, x)$;
(4) $d_{l(\mathcal{E})}(x, y) \preceq d_{l(\mathcal{E})}(x, z)+d_{l(\mathcal{E})}(z, y)$.

Then the triple $\left(X, l(\mathcal{E}), d_{l(\mathcal{E})}\right)$ is called an $l(\mathcal{E})$-valued metric space.
Definition 10. [20] Let X be a nonempty set. Suppose the mapping $d: X \times X \longrightarrow \mathbb{A}$ satisfies:
(1) $0_{\mathbb{A}} \preceq d(x, y)$ for all $x, y \in X$ and $d(x, y)=0_{\mathbb{A}}$ if and only if $x=y$.
(2) $d(x, y)=d(y, x)$ for all $x, y \in X$.
(3) $d(x, y) \preceq d(x, z)+d(z, y)$ for all $x, y, z \in X$.

Then d is called a C^{*}-algebra-valued metric on X and (X, \mathbb{A}, d) is a C^{*}-algebra-valued metric space.

Definition 11. Let $\left(X, l(\mathcal{E}), d_{l(\mathcal{E})}\right)$ be an $l(\mathcal{E})$-valued metric spacs. Suppose that $x_{n} \subset X$ and $x \in X$ If for any $\varepsilon_{l(\mathcal{E})} \succ 0_{l(\mathcal{E})}$ (where $0_{l(\mathcal{E})}$ is the zero element in $l(\mathcal{E})$) there exists $N \in \mathbb{N}$ such that for all $n>N$, $d_{l(\mathcal{E})}\left(x_{n}, x\right) \preceq \varepsilon_{l(\mathcal{E})}$, then $\left\{x_{n}\right\}$ is said to be converge with respect to $l(\mathcal{E})$, and $\left\{x_{n}\right\}$ converges to x and x is the limit of $\left\{x_{n}\right\}$. We denote it by $\lim _{n \longrightarrow+\infty}\left\{x_{n}\right\}=x$.
If for any $\varepsilon_{l(\mathcal{E})} \succ 0_{l(\mathcal{E})}$ there exists $N \in \mathbb{N}$ such that for all $n, m>N, d\left(x_{n}, x_{m}\right) \preceq \varepsilon_{l(\mathcal{E})}$, then $\left\{x_{n}\right\}$ is said to be a Cauchy with respect to $l(\mathcal{E})$.
We say $\left(X, l(\mathcal{E}), d_{l(\mathcal{E})}\right)$ is a complete $l(\mathcal{E})$-valued metric spacs if every Cauchy sequence with respect to $l(\mathcal{E})$ is convergent.

Lemma 1. A sequence $x_{n} \subset X$ is convergence if $\left\|x_{n}\right\| \longrightarrow 0 \quad$ forall $n>N$ such that $N \in \mathbb{N}$.

Example 2. Let $X=\mathbb{A}^{\oplus n}, \mathcal{E}=\mathbb{A}^{\oplus n}$ and $l(\mathcal{E})=\left\{T: \mathbb{A}^{\oplus n} \longrightarrow \mathbb{A}^{\oplus n}: T\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\right.$ $\left.\left(T a_{1}, T a_{2}, \ldots, T a_{n}\right)\right\}$. Define

$$
d\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right),\left(b_{1}, b_{2}, \ldots, b_{n}\right)\right)=\left(\left\|T a_{1}-T b_{1}\right\|_{\mathbb{R}},\left\|T a_{2}-T b_{2}\right\|_{\mathbb{R}}, \ldots,\left\|T a_{n}-T b_{n}\right\|_{\mathbb{R}}\right) I_{\mathbb{A}}
$$

where $\left(a_{1}, a_{2}, \ldots, a_{n}\right),\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in \mathbb{A}^{\oplus n}$ and $I_{\mathbb{A}}$ is the identity element of \mathbb{A}. It is easy to verify that $d_{l(\mathcal{E})}$ is an $l(\mathcal{E})$-valued metric space and $\left(X, \mathbb{A}^{\oplus n}, d_{l(\mathcal{E})}\right)$ is a complete $l(\mathcal{E})$ -valued metric space, since \mathbb{A} is complete.

Definition 12. let $(X, l(\mathcal{E}))$ is an $l(\mathcal{E})$-metric space, we define the open ball on X

$$
B_{l(\mathcal{E})}\left(a, \epsilon_{l(\mathcal{E})}\right)=\left\{x \in X ;\|x-a\| \prec \epsilon_{l(\mathcal{E})}\right\}
$$

Definition 13. Suppose that $\left(X, d_{l(\mathcal{E})}\right)$ is $l(\mathcal{E})$-metric space, let $x \in X$ then a neighhborhood of x is any set containing $B_{l(\mathcal{E})}\left(x, \epsilon_{l(\mathcal{E})}\right)$ for some $\epsilon_{l(\mathcal{E})} \succ 0_{l(\mathcal{E})}$.

Definition 14. Suppose that $\left(X, d_{l(\mathcal{E})}\right)$ is $l(\mathcal{E})$-metric space, a subset $U \subset X$ is open if for every $x \in U$ there exist an open ball $B_{l(\mathcal{E})}\left(a, \epsilon_{l(\mathcal{E})}\right)$ such that $x \in B_{l(\mathcal{E})}\left(x, \epsilon_{l(\mathcal{E})}\right) \subset U$.

Motivaied by the idea in $[7],[\mathbf{1 7}],[\mathbf{9}]$, we give the following definations.
Definition 15. Let X be vector space, if the function $\|\cdot\|_{l(\mathcal{E})}: X \longrightarrow l(\mathcal{E})$ has the following properties:
(1) $\|x\|_{l(\mathcal{E})} \succeq 0$ i.e $\|x\|_{l(\mathcal{E})}$ is a positive operator, $\|x\|_{l(\mathcal{E})}=0$ if and only if $x=0$;
(2) $\|\lambda x\|_{l(\mathcal{E})}=|\lambda|\|x\|_{l(\mathcal{E})} ; \lambda \in \mathbb{C}$;
(3) $\|x+y\|_{l(\mathcal{E})} \preceq\|x\|_{l(\mathcal{E})}+\|y\|_{l(\mathcal{E})}$.

Then $\|\cdot\|$ is said to be $l(\mathcal{E})$-valued norm defined on X, and $(X,\|\|$.$) is said to be l(\mathcal{E})$-valued normed $l(\mathcal{E})$ space.
Also we will set the relation between $l(\mathcal{E})$-valued metric space and $l(\mathcal{E})$-valued normed space as follow $\quad d_{l(\mathcal{E})}(x, y)=\|x-y\|_{l(\mathcal{E})}$.

Definition 16. Let X be a vector space over a field $(F=\mathbb{C}, \mathbb{R})$ we say that X is a right $l(\mathcal{E})$-vector space if satisfy:
(1) $(x+y) T=x T+y T$;
(3) $x\left(T_{1}+T_{2}\right)=x T_{1}+x T_{2}$;
(3) $(x S) T=x(S T)$.

Where $x, y \in X$ and $S, T \in l(\mathcal{E})$.
Lemma 3.2 Let X be a right $l(\mathcal{E})$-vector space then,

$$
\|x T\|_{l(\mathcal{E})} \preceq\|x\|\|T\|_{l(\mathcal{E})} .
$$

Proof. $\|x T\|^{2}=\sup _{\|x\|=1}\{<x T, x T>, x \in \mathcal{E}\} \leq\|x\|\|T\|_{l(\mathcal{E})}$.
Definition 17. Let \mathbb{A} be C^{*}-algebra, and $l(\mathcal{E})$ be an $l(\mathcal{E})$-normed spac. We say that $l(\mathcal{E})$ is right \mathbb{A}-module if the mapping is right module multiplication $(a, T) \longmapsto x a$ of $\mathbb{A} \times l(\mathcal{E}) \longrightarrow$ $l(\mathcal{E})$ such that the following axioms are satisfied:
(1) For each fixed $a \in \mathbb{A}$ the $\operatorname{map}(a, T) \longrightarrow T a$ is linear on $l(\mathcal{E}): T \in l(\mathcal{E})$;
(2) For each fixed $T \in l(\mathcal{E})$ the $\operatorname{map}(a, T) \longrightarrow T a$ is linear on \mathbb{A};
(3) For all $a_{1}, a_{2} \in \mathbb{A}$ and all $T \in l(\mathcal{E})$ we have that $\left(T a_{1}\right) a_{2}=T\left(a_{1} a_{2}\right)$.

Example 3. If we define the norm $\|x\|_{l(\mathcal{E})}=\|x\| I_{l(\mathcal{E})}$ (where $I_{l(\mathcal{E})}$ is the identity operator of $l(\mathcal{E})$) then we have that $l(\mathcal{E})$ with this norm is $l(\mathcal{E})$-norm.

Lemma 2. If T is positive if and only if T^{*} is positive.
Proof. Let $*: \mathbb{A} \longrightarrow \mathbb{A}$ is $*$-homomorphism.
if T^{*} is positive implies $<T^{*} x, x>\succeq 0$ implies $<x, T x>\succeq 0$ implies $<x, T x>^{*} \succeq 0$ implies $<T x, x>\succeq 0$ implies T is positive.
\Longleftarrow if T is positive implies $<T x, x>\succeq 0$ implies $<x, T^{*} x>\succeq 0$ implies $<x, T^{*} x>^{*} \succeq 0$ implies $<T^{*} x, x>\succeq 0$ implies $T^{*} \succeq 0$ implies T^{*} is positive.

Lemma 3. If S is positive operator then for any operator T implies $T^{*} S T$ is positive operator.

Proof. Since $S \succeq 0$, we can write $S=R^{*} R$, for any $R \in\left(l_{\mathcal{E}}\right)$ implies $T^{*}\left(R^{*} R\right) T=$ $\left(T^{*} R^{*}\right)(R T)=(R T)^{*}(R T) \succeq 0$

Definition 18. A sequence $\left\{x_{n}\right\}$ in X is said to be convergent if for every $\epsilon>0$, there is a natural number N such that for $n>N$ we have

$$
\left.\left\|x_{n}-x\right\| \preceq_{l(\mathcal{E})} \epsilon I_{l(\mathcal{E})} \text { (where } I_{l(\mathcal{E})} \text { the identity operator of } l(\mathcal{E})\right) \text {. }
$$

Definition 19. A sequence $\left\{x_{n}\right\}$ in X is said to be a Cuachy sequence if for every $\epsilon>0$, there is a natural number N such that for $n, m>N$ we have

$$
\left\|x_{n}-x_{m}\right\| \preceq_{l \mathcal{E})} \epsilon I_{l(\mathcal{E})} .
$$

Lemma 4. A sequence $\left\{x_{n}\right\}$ in X is convergence in X if $\left\|x_{n}\right\|_{\mathbb{R}} \longrightarrow 0$ at $n \longrightarrow+\infty$.
Proof. Since in $\left.l_{(} \mathcal{E}\right)$ - valued metric spacs. We say that a sequance $x_{n} \subset X$ converges to $x \in X$ If for any $\varepsilon_{l(\mathcal{E})} \succ 0_{l(\mathcal{E})}$ (where $0_{l(\mathcal{E})}$ is the zero element in $\left.l(\mathcal{E})\right)$ there exists $N \in \mathbb{N}$ such that for all $n>N, d_{l(\mathcal{E})}\left(x_{n}, x\right) \preceq \varepsilon_{l(\mathcal{E})}$, then this implies $\left\|d_{l(\mathcal{E})}\left(x_{n}, x\right)\right\|_{\mathbb{R}}<\mathcal{E}, \quad \mathcal{E} \in \mathbb{R}$.

Lemma 5. $[\mathbf{2}, \mathbf{9}]$ Suppose that \mathbb{A} is a unital C^{*}-algebra with a unit I :
(1) for any $x \in \mathbb{A}_{+}$we have $x \preceq I$ if and only if $\|x\| \leq 1$;
(2) If $a \in \mathbb{A}_{+}$with $\|a\|<\frac{1}{2}$, then $I-a$ is invertable and $\left\|a(I-a)^{-1}\right\|<1$;
(3) suppose that $a, b \in \mathbb{A}$ with $a, b \succeq 0$ and $a b=b a$, then $a b \succeq 0$.
(4) by \mathbb{A} we denote the set $\{a \in \mathbb{A}: a b=b a$ forall $b \in \mathbb{A}\}$ Let $a \in \mathbb{A}$, if $b, c \in \mathbb{A}$ with $b \succeq c \succeq 0$

$$
(I-a)^{-1} b \succeq(I-a)^{-1} c .
$$

Definition 20. Let $\left(X, l(\mathcal{E}),\|\cdot\|_{l(\mathcal{E})}\right)$ be an $l(\mathcal{E})$ normed space. We call a mapping T : $X \longrightarrow X$ is $l(\mathcal{E})$ contractive mapping on X if there exists an $M \in l(\mathcal{E})$ with $\|M\|_{l(\mathcal{E})} \leq 1$ such that

$$
\|T x-T y\|_{l(\mathcal{E})} \preceq M^{*}\|x-y\|_{l(\mathcal{E})} M \text { forall } \quad x, y \in X .
$$

Definition 21. An $l(\mathcal{E})$ - Banach space is a complete $l(\mathcal{E})$-normed space $\left(X,\|\cdot\|_{l(\mathcal{E})}\right)$.
Many results on fixed point theorems have been extended from metric spaces to C^{*}-algebra valued metric spaces with different contraction conditions (see for example [20],[9],[10],[11],[14])

Theorem 1. (Chatterjee Type theorem [1]) Let $\left(X, l(\mathcal{E}),\|\cdot\|_{l(\mathcal{E})}\right)$ be an $l(\mathcal{E})$ complete normed space and $T: X \longrightarrow X$ be a self mapping satisfy the following contraction condition

$$
\|T x-T y\|_{l(\varepsilon)} \preceq \frac{M}{2}\left[\quad\|T x-y\|_{l(\varepsilon)}+\|T y-x\|_{l(\varepsilon)}\right],
$$

where $M \in(l(\mathcal{E}))_{+}$with $\|M\|_{l(\mathcal{E})}<1$, Then T has a unique fixed point.
Proof. Let $x_{0} \in X$ be arbitrary point and construct a sequence $\left\{x_{n}\right\}_{n=0}^{+\infty} \subseteq X$ by the way: $x_{1}=T x_{0}, x_{2}=T x_{1}, \ldots ., x_{n+1}=T x_{n}$

$$
\begin{aligned}
\left\|x_{n+1}-x_{n}\right\|_{l(\mathcal{E})} & =\left\|T x_{n}-T x_{n-1}\right\|_{l(\mathcal{)}} \\
& \preceq \frac{M}{2}\left[\left\|T x_{n}-x_{n-1}\right\|_{l(\mathcal{E})}+\left\|T x_{n-1}-x_{n}\right\|_{l(\mathcal{E})} \quad\right] \\
& =\frac{M}{2}\left[\left\|x_{n+1}-x_{n-1}\right\|_{l(\varepsilon)}+\left\|x_{n}-x_{n}\right\|_{l(\mathcal{E})} \quad\right] \\
& \preceq \frac{M}{2}\left[\left\|x_{n+1}-x_{n}\right\|_{l(\mathcal{E})}+\left\|x_{n}-x_{n-1}\right\|_{l(\mathcal{E})} \quad\right] \\
& \preceq \frac{M}{2}\left\|x_{n+1}-x_{n}\right\|_{l(\varepsilon)}+\frac{M}{2}\left\|x_{n}-x_{n-1}\right\|_{l(\mathcal{E})} .
\end{aligned}
$$

Thus,
$\left(I_{l(\mathcal{E})}-\frac{M}{2}\right)\left\|x_{n+1}-x_{n}\right\|_{l(\mathcal{E})} \preceq \frac{M}{2}\left\|x_{n}-x_{n-1}\right\|_{l(\mathcal{E})}$.
Since $M \in(l(\mathcal{E}))_{+}$with $\left\|\frac{M}{2}\right\|_{l(\mathcal{E})} \preceq \frac{1}{2}$, one have $\left(I_{l(\mathcal{E})}-\frac{M}{2}\right)^{-1} \in(l(\mathcal{E}))_{+}$, and furthermore $\frac{M}{2}\left(I_{l(\mathcal{E})}-\frac{M}{2}\right)^{-1} \in(l(\mathcal{E}))_{+}$with $\left\|\frac{M}{2}\left(I_{l(\mathcal{E})}-\frac{M}{2}\right)^{-1}\right\|_{l(\mathcal{E})} \leq 1$. Therefore,

$$
\begin{aligned}
\left\|x_{n+1}-x_{n}\right\|_{l(\mathcal{E})} & \preceq\left(\frac{\frac{M}{2}}{I_{l(\mathcal{E}}-\frac{M}{2}}\right)\left\|x_{n}-x_{n-1}\right\|_{l(\mathcal{E})} \\
& \preceq\left(\frac{\frac{M}{2}}{I_{l(\mathcal{E})}-\frac{M}{2}}\right)^{2}\left\|x_{n-1}-x_{n-2}\right\|_{l(\mathcal{E})} \\
& \vdots \\
& \preceq\left(\frac{\frac{M}{2}}{I_{l(\mathcal{E})}-\frac{M}{2}}\right)^{n}\left\|x_{1}-x_{0}\right\|_{l(\mathcal{E})} .
\end{aligned}
$$

Let $t=\frac{M}{2}\left(I_{l(\mathcal{E})}-\frac{M}{2}\right)^{-1}, B=\left\|x_{1}-x_{0}\right\|_{l(\mathcal{E})}$.
Implies $\left\|x_{n+1}-x_{n}\right\|_{l(\varepsilon)} \preceq t^{n} B$
For $n+1>m$

$$
\begin{gathered}
\left\|x_{n+1}-x_{m}\right\|_{l(\mathcal{E})} \preceq\left\|x_{n+1}-x_{n}\right\|_{l(\mathcal{E})}+\left\|x_{n}-x_{n-1}\right\|_{l(\mathcal{E})}+\cdots+\left\|x_{m+1}-x_{m}\right\|_{l(\mathcal{E})} \\
\preceq t^{n} B+t^{n-1} B+\cdots+t^{m} B \\
\preceq\left(t^{n}+t^{n-1}+\cdots+t^{m}\right) B \\
=\sum_{k=m}^{n} t^{k} B \\
=\sum_{k=m}^{n} t^{\frac{k}{2}} t^{\frac{k}{2}} B^{\frac{1}{2}} B^{\frac{1}{2}} \\
=\sum_{k=m}^{n} B^{\frac{1}{2}} t^{\frac{k}{2}} t^{\frac{k}{2}} B^{\frac{1}{2}} \\
=\sum_{k=m}^{n}\left(t^{\frac{k}{2}} B^{\frac{1}{2}}\right)^{*}\left(t^{\frac{k}{2}} B^{\frac{1}{2}}\right) \\
=\sum_{k=m}^{n}\left|t^{\frac{k}{2}} B^{\frac{1}{2}}\right|^{2}
\end{gathered}
$$

$$
\begin{aligned}
& \preceq\left\|\sum_{k=m}^{n}\left|t^{\frac{k}{2}} B^{\frac{1}{2}}\right|^{2}\right\|_{l(\mathcal{E})} I_{l(\mathcal{E})} \\
& \preceq \sum_{k=m}^{n}\left\|B^{\frac{1}{2}}\right\|_{l \mathcal{E})}^{2}\left\|t^{\frac{k}{2}}\right\|_{l(\mathcal{E})}^{2} I_{l(\mathcal{E})} \\
& =\|B\|_{l(\mathcal{E})} \sum_{k=m}^{n}\|t\|_{l \mathcal{E})}^{k} I_{l(\mathcal{E})} \\
& \preceq\|B\|_{l \mathcal{E})} \frac{\|t\|_{1(\mathcal{E})}^{m}}{1-\|t\|_{l(\mathcal{E})}^{n}} I_{l(\mathcal{E})} \longrightarrow 0_{l(\mathcal{E})}(m \longrightarrow+\infty),
\end{aligned}
$$

where $I_{l(\mathcal{E})}$ the unite element in $l(\mathcal{E})$, Therefore $\left\{x_{n}\right\}$ is a Cauchy sequence with respect to $l(\mathcal{E})$. By the completeness of $\left(X, l(\mathcal{E}),\|\cdot\|_{l(\mathcal{E})}\right)$, there exists an $x \in X$ such that $\lim _{n \rightarrow+\infty} x_{n}=\lim _{n \rightarrow+\infty} T x_{n-1}=x$.
Since

$$
\begin{aligned}
& \|T x-x\|_{l(\mathcal{E})} \preceq\left\|T x-T x_{n}\right\|_{l(\mathcal{E})}+\left\|T x_{n}-x\right\|_{l(\mathcal{E})} \\
& \preceq \frac{M}{2}\left(\left\|T x-x_{n}\right\|_{l(\mathcal{E})}+\left\|T x_{n}-x\right\|_{l \mathcal{E})}\right)+\left\|T x_{n}-x\right\|_{l(\mathcal{E})} \\
& \preceq \frac{M}{2}\left(\|T x-x\|_{l \mathcal{E})}+\left\|x-x_{n}\right\|_{l(\mathcal{E})}+\left\|T x_{n}-x\right\|_{l(\mathcal{E})}\right) \\
& \quad \quad+\left\|T x_{n}-x\right\|_{l(\mathcal{E})} \\
& =\frac{M}{2}\|T x-x\|_{l \mathcal{E})}+\frac{M}{2}\left\|x-x_{n}\right\|_{l(\mathcal{E})}+\frac{M}{2}\left\|T x_{n}-x\right\|_{l \mathcal{E})} \\
& \quad+\left\|T x_{n}-x\right\|_{l \mathcal{E})} .
\end{aligned}
$$

Implies $\|T x-x\|_{l(\mathcal{E})} \preceq \frac{\frac{M}{2}}{I_{l(\mathcal{E})}-\frac{M}{2}}\left\|T x_{n}-x\right\|_{l(\mathcal{E})}+\frac{\frac{M}{2}}{I_{l(\mathcal{E})}-\frac{M}{2}}\left\|x-x_{n}\right\|_{l(\mathcal{E})}+\frac{1}{I_{l(\mathcal{E})}-\frac{M}{2}}\left\|T x_{n}-x\right\|_{l(\mathcal{E})}$ $\|T x-x\|_{l(\mathcal{E})} \preceq \frac{\frac{M}{2}}{I_{l(\mathcal{E})}^{-\frac{M}{2}}}\left\|x_{n+1}-x\right\|_{l(\mathcal{E})}+\frac{1}{I_{l(\mathcal{E})}^{-\frac{M}{2}}}\left\|x_{n+1}-x\right\|_{l(\mathcal{E})} \longrightarrow 0(n \longrightarrow+\infty)$
Implies $\|T x-x\|_{l(\mathcal{E})}=0$ implies $T x=x$.
To prove the uniquness suppose that $y(\neq x)$ is another fixed point of T , then

$$
\begin{aligned}
0 & \preceq x-y\left\|_{l(\mathcal{E})}=\right\| T x-T y \|_{l \mathcal{E})} \\
& \preceq \frac{M}{2}\left(\|T x-y\|_{l(\mathcal{E})}+\|T y-x\|_{l(\mathcal{E})}\right)
\end{aligned}
$$

Implies $\|x-y\|_{l(\mathcal{E})} \preceq \frac{\frac{M}{2}}{I_{l(\mathcal{E})}-\frac{M}{2}}\|x-y\|_{l(\mathcal{E})}$
Implies $\left\|\|x-y\|_{l(\mathcal{E})}\right\|_{l(\mathcal{E})} \preceq\left\|\frac{\frac{M}{2}}{I_{l(\mathcal{E})}^{-\frac{M}{2}}}\right\|_{l(\mathcal{E})}\| \| x-y\left\|_{l(\mathcal{E})}\right\|_{l(\mathcal{E})} \prec\| \| x-y\left\|_{l(\mathcal{E})}\right\|_{l(\mathcal{E})}$
This means that
$\|x-y\|_{l(\mathcal{E})}=0$ implies $x=y$.
Therefore the fixed point is unique.

Theorem 2. (Extension of Chatterjee Type Theorem) Let $\left(X, l(\mathcal{E}),\|\cdot\|_{l \mathcal{E})}\right)$ be an $l(\mathcal{E})$ complete normed space and $T: X \longrightarrow X$ be a self mapping satisfy the following contraction condition

$$
\|T x-T y\|_{l \mathcal{E})} \preceq \frac{M}{3}\left[\quad\|x-y\|_{l(\mathcal{E})}+\|T x-y\|_{l(\mathcal{E})}+\|T y-x\|_{l \mathcal{E})}\right],
$$

where $M \in(l(\mathcal{E}))_{+}$with $\|M\|_{l(\mathcal{E})}<\frac{3}{4}$, Then T has a unique fixed point.
Proof. Le $x_{0} \in X$ be arbitrary point and construct a sequence $\left\{x_{n}\right\}_{n=0}^{+\infty} \subseteq X$ by the way: $x_{1}=T x_{0}, x_{2}=T x_{1}, \ldots ., x_{n+1}=T x_{n}$.

$$
\begin{aligned}
\| x_{n+1} & -x_{n}\left\|_{l(\mathcal{E})}=\right\| T x_{n}-T x_{n-1} \|_{l(\mathcal{E})} \\
& \preceq \frac{M}{3}\left[\left\|x_{n}-x_{n-1}\right\|_{l \mathcal{E})}+\left\|T x_{n}-x_{n-1}\right\|_{l(\mathcal{E})}+\left\|T x_{n-1}-x_{n}\right\|_{l(\mathcal{E})}\right] \\
& =\frac{M}{3}\left[\left\|x_{n}-x_{n-1}\right\|_{l(\mathcal{E})}+\left\|x_{n+1}-x_{n-1}\right\|_{l \mathcal{E})}+\left\|x_{n}-x_{n}\right\|_{l \mathcal{E})}\right] \\
& \preceq \frac{M}{3}\left[\left\|x_{n}-x_{n-1}\right\|_{l(\mathcal{E})}+\left\|x_{n+1}-x_{n}\right\|_{l(\mathcal{E})}+\left\|x_{n}-x_{n-1}\right\|_{l(\mathcal{E})}\right] \\
& =\frac{M}{3}\left[\quad 2\left\|x_{n}-x_{n-1}\right\|_{l(\mathcal{E})}+\left\|x_{n+1}-x_{n}\right\|_{l(\mathcal{E})} \quad\right] \\
& =\frac{2 M}{3} \quad\left\|x_{n}-x_{n-1}\right\|_{l(\mathcal{E})}+\frac{M}{3}\left\|x_{n+1}-x_{n}\right\|_{l \mathcal{E})} .
\end{aligned}
$$

Thus,
$\left(I_{l(\mathcal{E})}-\frac{M}{3}\right)\left\|x_{n+1}-x_{n}\right\|_{l(\mathcal{E})} \preceq \frac{2 M}{3}\left\|x_{n}-x_{n-1}\right\|_{l \mathcal{E})}$.
Since $M \in(l(\mathcal{E}))_{+}$with $\left\|\frac{M}{3}\right\|_{l(\mathcal{E})} \leq \frac{1}{4}$, one have $\left(I_{l(\mathcal{E})}-\frac{M}{3}\right)^{-1} \in(l(\mathcal{E}))_{+}$, and furthermore $\frac{M}{3}\left(I-\frac{M}{3}\right)^{-1} \in(l(\mathcal{E}))_{+}$with $\left\|\frac{M}{3}\left(I_{l(\mathcal{E})}-\frac{M}{3}\right)^{-1}\right\|_{l(\mathcal{E})} \leq \frac{1}{2}$, we have that $\| 2\left(\frac{M}{3}\left(I_{l(\mathcal{E})}-\right.\right.$ $\left.\left.\frac{M}{3}\right)^{-1}\right) \|_{l(\mathcal{E})} \leq 1$. Therefore,

$$
\begin{gathered}
\left\|x_{n+1}-x_{n}\right\|_{l(\mathcal{E})} \preceq 2\left(\frac{\frac{M}{3}}{I_{l(\mathcal{E})}-\frac{M}{3}}\right)\left\|x_{n}-x_{n-1}\right\|_{l(\mathcal{E})}=t\left\|x_{n}-x_{n-1}\right\|_{l(\mathcal{E})} \\
\preceq t^{2}\left\|x_{n-1}-x_{n-2}\right\|_{l(\mathcal{E})} \\
\vdots \\
\preceq t^{n}\left\|x_{1}-x_{0}\right\|_{l(\mathcal{E})},
\end{gathered}
$$

where $t=2\left(\frac{M}{3}\left(I_{l(\mathcal{E})}-\frac{M}{3}\right)^{-1}\right)$.
For $n+1>m$.
R. A. Rashwan et al. / Eur. J. Pure Appl. Math, 14 (4) (2021), 1237-1248

$$
\left.\begin{array}{rl}
\left\|x_{n+1}-x_{m}\right\|_{l(\mathcal{E})} & \preceq
\end{array}\left\|x_{n+1}-x_{n}\right\|_{l(\mathcal{E})}+\left\|x_{n}-x_{n-1}\right\|_{l(\mathcal{E})}+\cdots+\left\|x_{m+1}-x_{m}\right\|_{l(\mathcal{E})}\right)
$$

Let $B=\left\|x_{1}-x_{0}\right\|_{l(\mathcal{E})}$

$$
\begin{aligned}
& \Rightarrow\left\|x_{n+1}-x_{m}\right\|_{l(\mathcal{E})}=\sum_{k=m}^{n} t^{k} B \\
&=\sum_{k=m}^{n} t^{\frac{k}{2}} t^{\frac{k}{2}} B^{\frac{1}{2}} B^{\frac{1}{2}} \\
&=\sum_{k=m}^{n} B^{\frac{1}{2}} t^{\frac{k}{2}} t^{\frac{k}{2}} B^{\frac{1}{2}} \\
&=\sum_{k=m}^{n}\left(t^{\frac{k}{2}} B^{\frac{1}{2}}\right)^{*}\left(t^{\frac{k}{2}} B^{\frac{1}{2}}\right) \\
&=\sum_{k=m}^{n}\left|t^{\frac{k}{2}} B^{\frac{1}{2}}\right|^{2} \\
& \preceq\left\|\sum_{k=m}^{n}\left|t^{\frac{k}{2}} B^{\frac{1}{2}}\right|^{2}\right\|_{l(\mathcal{E})} I_{l(\mathcal{E})} \\
& \preceq \sum_{k=m}^{n}\left\|B^{\frac{1}{2}}\right\|_{l(\mathcal{E})}^{2}\left\|t^{\frac{k}{2}}\right\|_{l \mathcal{E})}^{2} I_{l(\mathcal{E})} \\
&=\|B\|_{l \mathcal{E})} \sum_{k=m}^{n}\|t\|_{l(\mathcal{E})}^{k} I_{l(\mathcal{E})} \\
& \preceq\|B\|_{l(\mathcal{E})}\|t\|\left\|_{l \mathcal{E})}^{m}\right\| \|_{l(\mathcal{E})}^{m} I_{l(\mathcal{E})} \longrightarrow 0_{l(\mathcal{E})}(m \longrightarrow+\infty),
\end{aligned}
$$

where $I_{l(\mathcal{E})}$ the unite element in $l(\mathcal{E})$, Therefore $\left\{x_{n}\right\}$ is a Cauchy sequence with respect to $l(\mathcal{E})$. By the completeness of $\left(X, l(\mathcal{E}),\|\cdot\|_{l(\mathcal{E})}\right)$, there exists an $x \in X$ such that $\lim _{n \longrightarrow+\infty} x_{n}=\lim _{n \longrightarrow+\infty} T x_{n-1}=x$.
Since

$$
\begin{aligned}
& \| T x-x\left\|_{l(\mathcal{E})} \preceq\right\| T x-T x_{n}\left\|_{l(\mathcal{E})}+\right\| T x_{n}-x \|_{l(\mathcal{E})} \\
& \preceq \frac{M}{3}\left(\left\|x-x_{n}\right\|_{l \mathcal{E})}+\left\|T x-x_{n}\right\|_{l(\mathcal{E})}+\left\|T x_{n}-x\right\|_{l(\mathcal{E})}\right)+\left\|T x_{n}-x\right\|_{l(\mathcal{E})} \\
& \preceq \frac{M}{3}\left(\left\|x-x_{n}\right\|_{l(\mathcal{E})}+\left\|T x-x_{n}\right\|_{l(\mathcal{E})}+\left\|x_{n+1}-x\right\|_{l(\mathcal{E})}\right)+\left\|T x_{n}-x\right\|_{l \mathcal{E})} .
\end{aligned}
$$

Implies $\|T x-x\|_{l(\mathcal{E})} \preceq \frac{\frac{M}{3}}{I_{l(\mathcal{E})}^{-\frac{M}{3}}}\left(2\left\|x-x_{n}\right\|_{l(\mathcal{E})}+\left\|x_{n+1}-x\right\|_{l(\mathcal{E})}\right)+\frac{1}{I_{l(\mathcal{E})}-\frac{M}{3}}\left\|x_{n+1}-x\right\|_{l(\mathcal{E})} \longrightarrow$ $0($ at $\quad n \longrightarrow+\infty)$.

Then this implies that $T x=x$ i.e., x is fixed point of T.
To prove the uniquencess suppose that $y(\neq x)$ is another fixed point of T , then

$$
0 \leq\|x-y\|_{l(\mathcal{E})}=\|T x-T y\|_{l(\mathcal{E})}
$$

$$
\begin{aligned}
& \preceq \frac{M}{3}\left(\|x-y\|_{l(\mathcal{E})}+\|T x-y\|_{l(\mathcal{E})}+\|T y-x\|_{l \mathcal{E})}\right) \\
& \preceq M\|x-y\|_{l(\mathcal{E})},
\end{aligned}
$$

Implies $0 \leq\| \| x-y\| \|_{l(\mathcal{E})} \leq\|M\| x-y\| \|_{l(\mathcal{E})}<\| \| x-y\| \|_{l(\mathcal{E})}$
This is contradiction implies $x=y$.
Therefore the fixed point is unique.

4. Conclusions

In this paper, we introduced the notions of metric space valued-operator of Hilbert C^{*}-module. We define some contraction mapping and prove some fixed point theorems (such as Chatterjee and extension of Chatterjee) for a self mappings T on the Banach space $l(\mathcal{E})$.

References

[1] Chatterjee, SK. Fixed-point theorems. C. R. Acad. Bulgare Sci. 25, 727-730 (1972).
[2] Douglas, RG. Banach Algebra Techniques in Operator Theory. Springer, Berlin (1998).
[3] Gilbert helmberg. Introduction to spectral theory in Hilbert space. Technological University Eindhoven
[4] Kadelburg et al, Z . Remarks on the paper "Fixed point theorems for cyclic contractions in C*-algebra-valued b-metric spaces. Adv. Oper. Theory. no. 1, 93-104,1 (2016).
[5] Kaplansky, I. Modules over operator algebras. Amer J. Math., 75, 839-858, (1953).
[6] Kasparov, G.G. Hilbert C^{*}-modules. Theorems of Stinespring and Voiculescu, J. Operator Theory 4, 133-150,(1980).
[7] Karapınar, E. Fixed point theorems in cone Banach spaces. Fixed Point Theory Appl. 2009 Article ID 609281, 9 pages, 2009, doi:10.1155/2009/609281
[8] Lance, E. C. Hilbert C^{*}-Modules. A Toolkit for Operator Algebraists. Cambridge, England: Cambridge University Press, 1995.
[9] Murphy, G. J. C^{*}-algebras and operator theory. Academic Press, 1990.
[10] Mustafa, R. Omran, S. Ngoc, Qn. Fixed point theory using ψ contractive mapping In C^{*}-Algebra valued b-metric space. Mathematics , 9, 92,(2021).
[11] $\ddot{O}_{z e r}, \ddot{O}$. Omran, S. Common fixed point In C^{*}-Algebra b-valued metric space. AIP Conference Proceedings 1773 (1) 050005(2016).
[12] Paschke, W. L. Inner product modules over B^{*}-algebras. Trans Amer. Math. Soc. 182 , 443-468,(1973).
[13] Priyobarta et al, N. Fixed point theorems on parametric A-metric space, American Journal of Applied Mathematics and Statistics, Vol.6, No. 1, 1-5, 2018.
[14] Qiaoling, X. Lining, J. Zhenhua, Ma. Common fixed point theorems in C^{*}-algebravalued metric spaces[J]. Journal of Hubei Normal University(Natural Science), 2015.
[15] Radenović et al,S. Coupled fixed point theorems in C*-algebra-valued b-metric spaces. Scientific publications of the state University of Novi Pazar, Ser. A: Appl. Math. Inform. and Mech. vol. 9,81-90,1 (2017).
[16] Rieffel, M. A. Induced representations of C^{*}-algebras. Adv in Math.,13(2), 176257,(1974).
[17] Turkoglu, D. Abuloha, M. and Abdeljawad, T. Some theorems and examples of cone Banach spaces. J. Comput. Anal. Appl. 12 4, 739-753, (2010).
[18] Vesna Todorčević, Harmonic Quasiconformmal Mappings and Hyperbolic Type Metrics, Springer Nature Switzerland AG 2019.
[19] Wegge-Olsen, N. E. K-Theory and C^{*}-Algebras. A Friendly Approach. Oxford, England: Oxford University Press, 1993.
[20] Zhenhua, Ma. Lining, J. Hongkai, S. C*-Algebras-valued metric spaces and related fixed point theorems. Fixed Point Theory Appl. 2014, 206 (2014).
[21] Zhenhua, Ma. Lining, J. C^{*}-Algebras-valued b-metric spaces and related fixed point theorems. Fixed Point Theory Appl.1,1-12, (2015).
[22] Zoran Kadelburg, Stojan Radenović, Critical remarks on some recent fixed points results in C*-algebra-valued metric spaces, Fixed Point Theory Appl. (2016) 2016:53.

[^0]: *Corresponding author.
 DOI: https://doi.org/10.29020/nybg.ejpam.v14i4.4071
 Email addresses: rashwan10@gmail.com (R. A. Rashwan), hafran@uqu.edu.sa (H. Adel AlFran), Asmaa.fangary44@yahoo.com (A. Fangary),salehomran@yahoo.com (S. Omran)

