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Abstract. Winter urban traffic issues and performance present critical problems in large cities and
metropolitan areas. In urban areas, there is a critical need for efficient methods for snow removal
while considering the impact on the transportation infrastructure of a city. Several proposals and
approaches on modeling snow removal that heuristically deals with finding solutions to this wide-
open problem have been studied and published in recent years. In this paper, we developed a
new mathematical model that uses the Just-In-Time (JIT) method to optimize a transportation
problem. The paper’s main objective is to design a model for establishing efficient truck routes
for snow removal by optimizing cost and time, which implicitly minimizes the impact on a city’s
transportation infrastructure. We applied the network flow problem for snow removal to minimize
time and cost of cleaning urban streets just in time. We ran several simulations of the models
using the MATLAB®.
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1. Introduction

The Just-In-Time (JIT) inventory system is known as an asset management tool. It gives
companies an inventory strategy that may be used to increase efficiency and decrease waste
by receiving goods only as needed in the production process. This model requires that
all demanded goods be transported to their destinations on schedule at zero or minimum
destination storage and transportation cost [7]. The Bai-Gan JIT model was extended to
tackle transportation problems in 2011 [6].
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This paper develops a new mathematical model based on the Bai-Gan Just-In-Time
method to optimize the snow removal transportation problem. The model is designed
to establish efficient truck routes by optimizing budget and time. The network flow prob-
lem, introduced in [10], is applied for snow removal to minimize the street clearing cost
just in time. We ran several simulations of the proposed models to obtain the optimal
solutions using MATLAB®. The outcome of the models introduced in our paper provides
alternative plans of action to be used by urban city planners for better performance. The
introduced models can be applied to rural areas with constraints modifications that satisfy
the nature of snow removal in these areas.

Cities with heavy snowfall in the United States have long suffered from large financial
losses due to closing businesses during a heavy snowstorm. On May 4, 2015, the American
Association of the States Highway and Transportation Officials said 23 states reported
combined spending of more than one billion dollars on winter maintenance operations and
eight million work hours plowing and treating state roads from October 2014, to March
2015 [8]. An important key outcome for winter traffic maintenance is the effectiveness and
efficiency of snow removal from public roadways since everyday life activities of the popu-
lation in snowy winter cities depends on it ([2], [4], [5]). A vast body of literature exists on
transportation asset management; several research papers that develop asset management
systems for snow removal have been published, such as [5] and references therein. These
research papers developed systems that provide efficient snow plowing routes and optimize
snow removal resources and assets allocations [3], but there seems to be little literature
on using JIT model to tackle this problem.

The research implemented in [2] covers how route assignments can improve the efficiency
of snow removal problem. It deals with the problem of designing efficient routes for salting
and plowing trucks during snow emergencies. The problem is formulated as a mathemati-
cal optimization problem and is classified as a capacitated rural postman problem, which is
an arc routing problem. Several heuristic algorithms and their combinations are proposed
to solve the real-world vehicle routing problems for snow emergencies in Calvert County
in Maryland.

The researchers in [3] developed an intelligent asset management system for snow removal
in collaboration with Black Hawk County, IA, the city of Columbia, MO, and the Iowa
Department of Transportation. They used Geographic Information Systems (GIS) and
Artificial Intelligence (AI) techniques to implement a web-based Winter Maintenance De-
cision Support System (WMDSS). WMDSS uses the Hungarian Algorithm and heuristic
based algorithms to evaluate different procedures for managing snow removal assets op-
timally; it provides expert advice to assist in complex decision making, such as routing,
optimal resource allocation, and monitoring live weather information.

Maryland Department of Transportation State Highway Administration
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(SHA) Rules and Regulations • According to SHA policy [9], SHA and Contract

Forces are jointly responsible for minimizing the impact on our environment and min-
imizing winter operation costs. • Winter operations strategies consist of the following:
(a) Anti-Icing: is a proactive winter strategy of preventing snow or ice from bonding to

the pavement. It involves a timely application of pre-watered salt or liquid chemicals
on highways, usually before the start of a storm. (b) Deicing: is a traditional reactive

winter maintenance strategy of breaking the snow/ice and pavement bond once formed.
It requires large amounts of salt to work through the snowpack and break its bond to
the pavement. It results in higher safety costs due to delays in achieving bare pavement.
Deicing also leads to more damages to the environment and highway system. (c) Plowing:

is an active winter strategy for clearing away snow from highways, railroad tracks, etc.. •

There are four different call-out phases:
(1) (0-1 inch forecast or < 0.1 inches of freezing precipitation) includes only SHA

Trucks.
(2) (1-2 inch forecast or 0.1 − 0.2 inches of freezing precipitation) includes Phase 1

trucks and hired spreader trucks to supplement SHA workforces on designated routes
with no assigned SHA Trucks.

(3) ( 2-4 inch forecast or > 0.2 inches of freezing precipitation) includes Phase 2 trucks
and hired spreader trucks to supplement the SHA workforces during heavier snowfalls.

(4) ( > 4−inch forecast or significant freezing precipitation) includes all phase 3 trucks
and hired push trucks to supplement SHA workforces on designated routes as roadway
condition warrant.

• Roadways and surfaces:
(1) Two-lane roadways: is one 12 foot wide lane traveling in each direction. The

standard plow angled correctly will clear 8 to 9 feet per pass. Four passes are needed to
clear the entire road.

(2) Multi-lane Highways: is multi-lanes traveling in both directions. Road width de-
termines the number of plow trucks needed.

• Types of Plows:
(1) One way reversible plow ( manual adjust)
(2) One way reversible plow (hydraulic adjust)
(3) One way non-reversible plow
(4) wing plow
(5) V- plow: it plows in both direction at the same time.
• Plowing options:
(1) Two-way road single Truck: it plows lane in one direction and drops salt behind

the truck. After plowing in one direction, it turns at the end of the route, plows the lane
in the opposite direction, and drops salt on both lanes.
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(2) Two-way road two trucks:

(3) Multi-vehicle plowing: First truck clears 8 feet of the left traffic lane, leaving 4 feet for
the second truck. Second truck overlaps one foot clearing 4 feet of the first lane and 3 feet
of the second lane, leaving 9 feet for the third truck. Third truck overlaps 1 foot clearing
7 feet of the second lane, leaving 2 feet for fourth truck. Fourth truck overlaps 1 foot
clearing 2 feet of the second lane 5 feet of shoulder. One more truck would be required if
the third lane was present.

2. Preliminaries

2.1. Bai-Gan JIT Transportation Model

In this section JIT is referred to as Bai-Gan JIT, which describes both a mathematical
model and an algorithm published in 2011 [6]. Let m, k, n ∈ N , where N is the set of
natural numbers, be given. Let A1, A2, ..., Am be resources or manufactures, G1, G2, ..., Gk

be commodities, and ail be the production of Gl produced by Ai, 1 ≤ i ≤ m, 1 ≤ l ≤ k.
Let B1, B2, ..., Bn be marketing destinations that demand those commodities and let bjl
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be the amount of Gl requested by the destination Bj , 1 ≤ j ≤ n, 1 ≤ l ≤ k. Suppose
that tij is the time needed for shipping goods from Ai to Bj and cijl is the corresponding
unit transportation cost for the commodity Gl. Suppose tj is the demanding time for all
requested commodities to be shipped to Bj . Let xijl be the quantity of the commodity Gl

shipping from Ai to Bj . The philosophy of JIT is represented by the conditions:

(tij − tj)xijl = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ l ≤ k. (1)

Then, the JIT-transportation problem is defined as the following multi-objective program-
ming problem:

min z =

m∑
i=1

n∑
j=1

k∑
l=1

cijlxijl,

s.t. (tij − tj)xijl = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ l ≤ k.
n∑

j=1

xijl ≤ ail, (i = 1, 2, ..., m), (l = 1, 2, ..., k)

m∑
i=1

xijl = bjl, (j = 1, 2, ..., n), (l = 1, 2, ..., k)

xijl ≥ 0, (1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ l ≤ k)

The time deviation and functions were introduced as follows;
Let dij = max{tij − tj , 0}, define

F (x) = max{dij : xijl = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ l ≤ k}, (2)

and

f(x) =
k∑

l=1

m∑
i=1

n∑
j=1

cijlxijl, (3)

where x = (xijl) ∈ R(mnk). Then the JIT-transportation problem can be expressed as

min z = ω1p1 + ω2p2 (4)

such that

F (x) + n1 − p1 = 0

f(x) + n2 − p2 = 0

n∑
j=1

xijl = ail, 1 ≤ i ≤ m, 1 ≤ l ≤ k
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m∑
i=1

xijl = bil, 1 ≤ j ≤ n, 1 ≤ l ≤ k

xijl ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ l ≤ k
ns ≥ 0, ps ≥ 0, s = 1, 2, negative resp. positive deviational variable

with nkpk = 0, k = 1, 2, ωk : given priority factor

A. Definitions

(a) Let x ∈ D be given, where D is the set of feasible solutions (4). If F (x) = 0,
then x is called a JIT solution to (4); if F (x) ̸= 0, then x is called a deviation
solution of this JIT-transportation problem.

(b) Let m, n, k ∈ N be given. Let

dij = max{tij − tj , 0}, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

For λ ≥ 0, we define

B(λ) = {(i, j, l)|dij ≤ λ, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ l ≤ k}.

(c) The B(λ)− transportation problem of the JIT-transportation problem (4) is

min g(λ, x) =
∑

(i, j, l)∈B(λ)

cijlxijl +M
∑

(i, j, l)/∈B(λ)

xijl

s.t. x ∈ D where M is a sufficiently large positive number.

B. Emergency Transportation Problem

When a catastrophic event such as an earthquake or a snowstorm has already oc-
curred, the primary consideration of the emergency management officials is to assign
or to ship certain critical supplies, equipment, or personnel to specific locations as
soon as possible. Another consideration is to minimize the transportation cost. We
call such a transportation problem the emergency transportation problem.

The transportation problem for emergency management is usually treated as multi-
objective programming or goal programming problem.
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C. Goal Programming

min fk =
m∑
i=1

n∑
j=1

ckijxij , (k = 1, 2, ..., w)

s.t.

n∑
j=1

xij = ai, (i = 1, 2, ..., m)

m∑
i=1

xijl = bj , (j = 1, 2, ..., n)

xij ≥ 0, (1 ≤ i ≤ m, 1 ≤ j ≤ n)

where fk is the kth objective function which represents one of the considerations
mentioned above, ckij is the cost of transporting certain commodity from the ith

origin to the jth destination under the consideration of the kth target function, and
xij is the quantity of certain commodity being shipped from the ith origin to the jth

destination.

2.2. Graph-Theoretic Modeling

2.2.1. Network Flow Problem

In graph theory, a flow network (also known as a transportation network) is a directed
graph where each edge has a capacity and receives a flow. The amount of flow cannot
exceed the edge’s capacity. Often in operations research a directed graph is called a
network, the vertices are called nodes and the edges are called arcs. A flow must satisfy
the restriction; that is the amount of flow into a node equals the amount of flow out of it,
unless it is a source, which has only outgoing flow, or a sink, which has only incoming flow.
A network can be used to model traffic in a computer network, circulation with demands,
fluids in pipes, currents in an electrical circuit, or anything similar in which something
travels through a network of nodes [21].
Let.
A network is a graph G = (V,E), where V is a set of vertices and E is a set of V ′s edges
- a subset of V × V - together with a non-negative function c: V × V → R∞, called the
capacity function. Without loss of generality, we may assume that if (u, v) ∈ E, then
(v, u) is also a member of E, since if (v, u) ̸∈ E, then we may add (v, u) to E and then set
c(v, u) = 0.

If two nodes in G are distinguished, the node source s and the node sink t, then
(G, c, s, t) is called a flow network[21].

A bipartite graph (or bigraph) is a graph whose vertices can be divided into two disjoint
and independent sets U and V , such that every edge connects a vertex in U to one in V .
Vertex sets U and V are usually called the parts of the graph[21].
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Minimum cost maximum flow

For a network G = (V,E), the cost of a flow f is defined as:

c(f) =
∑

e∈E f(e).c(e)

A minimum cost maximum flow of a network G = (V, E) is a maximum flow with the
smallest possible cost[21].

3. Developing the JIT Snow Removal Model

Since the snow removal is a multi-objective optimization problem, we will formulate a
mathematical model based on multi-objective linear programming or goal programming
to minimize the objective variables. The process is as follow:

(i) Identify the decision variables in the problem.

(ii) Identify and formulate the objectives and constraints.

(iii) Solve the problem for each of the objectives identified in step (ii) to determine the
optimal value of each objective.

(iv) Restate the objectives as goals using the optimal objective values identified in step
(iii) as the target values.

(v) Define a deviational variable for the difference between service time and the due
time. It could be either positive (measuring how much a given solution fails to meet
the due time goal) or negative (measuring how much it overachieves the goal).

(vi) For the variable identified in step (v), assign a weight to the function and create
a constraint that requires the value of the weighted deviational variable to be less
than a defined Max point (defined in section 3.3).

(vii) Find a solution that satisfies the constraints and comes closest to meeting the goals.

(viii) Inspect the solution to the problem. If the solution cannot be implemented on the
ground or is not approved by authorities, adjust the weights in step (vi) and return
to step (vii).

The Snow Removal model has five main components to be considered:

• Transporting single commodity or more (for example: snow, sand).

• Having multi-origin and multi-destination.

• Minimizing the transportation cost.
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• Minimizing the time deviation.

• Several moving methods.

We divide the snow removal model into three sub-models based on the development of
snow:

(a) The first stage is spreading sands and salt brine on the streets before the start of
the snowfall (Anti-Icing).

(b) The second stage is spreading sands and salt brine on the streets after the snow
(De-icing).

(c) The third stage is snow plowing.
(d) The fourth stage (possible in case of a heavy snowstorm) is to use trucks to move

heavy snow to some designated locations that we call dumping stations.

Mathematical models for those four cases could be similar, and we will explain one of
the cases in the following section.

3.1. Formulation of the Bai-Gan JIT Model as a JIT Snow Removal
Model

Suppose that there arem truck departuresA1, A2, ..., Am that provide k typesW1, W2, , ...,Wk

of trucks capacities. Let ail be the number of trucks with capacity Wl, 1 ≤ l ≤ k departed
from Ai, 1 ≤ i ≤ m . We will assume that all trucks are multi-tasks. When a specific task
is not in use, we assign 0 to its corresponding defined parameter.

Suppose there are n snow depots (a depot can be defined as a side of a street or a specific
destination) B1, B2, ..., Bn to where the trucks dump the snow. The number of trucks of
capacity Wl needed to transport snow at destination Bj is bjl, and the due time for all
trucks transporting snow to Bj is tj ; the due time tj would be determined depending on
the snow density and volume. Suppose that the time for salting, plowing the snow on the
side road, or hauling it to the specific destination using the truck with capacity Wl from
Ai to Bj is tij , and the unit cost for such service is cijl. Finally, let xijl denote the number
of trucks of capacity Wl traveling from Ai to Bj . The conditions for the JIT model can
also be represented by

(tij − tj)xijl = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ l ≤ k. (5)

If xijl is greater than 0, at least one truck travels from Ai to Bj . For equation (5) to hold,
we need tij = tj , which means the due time equals to service time.

We define the Snow removal JIT-Transportation problem as the following programming
problem:

minz =
m∑
i=1

n∑
j=1

k∑
l=1

cijlxijl
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s.t. (tij − tj)xijl = 0 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ l ≤ k.

n∑
j=1

xijl ≤ ail, 1 ≤ i ≤ m, 1 ≤ l ≤ k.

m∑
i=1

xijl = bjl 1 ≤ j ≤ n, 1 ≤ l ≤ k.

Illustrative Example 1. Suppose that A1, A2, A3 are three truck departures such
that each of them provides three types of trucks with different capacities G1, G2, G3.
The distribution of trucks is listed in table 1. There are four snow depots; namely
B1, B2, B3, B4, which have limited capacities of snow holding shown in table 2. Tables
3 and 4, show the demand due times (DT) and costs between truck departure locations
and snow depots.

Table 1: Supplies.

Types of Truck Capacity
Trucks Departures G1 G2 G3

A1 0 26 25
A2 58 10 35
A3 42 24 18

Table 2: Snow Depot Limits.

Types of Truck Capacity
Snow Depot G1 G2 G3 DT

B1 25 0 0 5
B2 30 26 47 7
B3 20 20 10 9
B4 10 14 32 6

Table 3: Shiping Time.

Snow Depots
Truck Departures B1 B2 B3 B4

A1 10 9 8 5
A2 5 10 9 8
A3 4 7 13 6
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Table 4: Unit Transportation cost.

Snow Depots
Truck Departures B1 B2 B3 B4

A1 8 12 14 17
A2 9 7 11 12
A3 13 14 9 17

The problem as formulated above does not have a feasible solution verified as well using
MATLAB, see the page url: https://github.com/bandpey65/JIT-Snow_removal_Ex1/
blob/405a89990c7cd3e27f9551a1f39d249ffac8cb78/JITSnowremovalEx1.m

We propose different approaches to solve the problem.

3.2. The Penalty-Allocation Method:

Let dij = max{tij − tj , 0}, we define

F (x) = max{dij : xijl = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ l ≤ k}, (6)

and

f(x) =
k∑

l=1

m∑
i=1

n∑
j=1

cijlxijl, (7)

where x = (xijl) ∈ Rmnk. Then the JIT-transportation problem can be expressed as

min z = ω1p1 + ω2p2 (8)

such that
F (x) + n1 − p1 = 0
f(x) + n2 − p2 = 0

Case1 : dij = 0 then tij − tj ≤ 0

which means the truck arrive from Ai to Bj before or on due time,

Also F (x) = 0, since F (x) + n1 − p1 = 0 hence n1 = p1 = 0;

Case2 : dij ̸= 0 then tij − tj > 0

which means the truck arrive from Ai to Bj after due time,

Also F (x) > 0, since F (x) = p1 − n1 hence p1 > n1, and n1 = 0.

Remark 1. Note that tij − tj < 0 implies that the truck arrives before due time; also, (5)
imposes xijl = 0, which means no truck is assigned to travel from Ai to Bj.
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Remark 2. By defining priority factors, we could prioritize time over cost or vice versa.

s.t.
n∑

j=1

xijl = ail,

m∑
i=1

xijl = bjl,

xijl ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ l ≤ k

ns ≥ 0, ps ≥ 0, s = 1, 2, negative resp. positive deviational variable with nkpk = 0,
k = 1, 2, ωk : given priority factor.

Illustrative Example 2. We We ran a simulation to solve the same example using
the above formulation.

We randomly assigned W1 to be 3 and W2 to be 1. The proposed approach and the
changes we made did not lead us to find a feasible solution.

See the page url: https://github.com/bandpey65/JIT-Snow_removal_Ex2/blob/

a157461980155601e304809e56566b3fa5baee51/JIT-Snow_removal_Ex2.m

Note: These numbers can be changed to prioritize the variables in different ways to
satisfy the goals of the organization in charge such as SHA.

3.3. Balanced Transportation Problem:

Definition:

(i) Let x ∈ D be given, where D is the set of feasible solutions. If F (x) = 0, then x is
called a JIT solution of (4); if F (x) ̸= 0, then x is called a deviation solution of this
JIT-transportation problem.

(ii) Let m, n, k ∈ N, be given. Let

dij = max{(tij − tj), 0}, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

For λ ≥ 0, we define

B(λ) = {(i, j, l)|dij ≤ λ, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ l ≤ k}.
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(iii) The B(λ)-JIT-transportation problem (4) is

min g(λ, x) =
∑

(i, j, l)∈B(λ)

cijlxijl +M
∑

(i, j, l)/∈B(λ)

xijl

s.t. x ∈ D where M is a sufficiently large positive number.

s.t.
n∑

j=1

xijl = ail,

m∑
i=1

xijl = bjl,

xij ≥ 0,

where 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ l ≤ k, and all cijl, tij , tj , ail, bil are nonnegative.

Illustrative Example 3.
In this example, we modified the formulation of the problem and the constraints; we

obtained an optimal solution.

Optimal solution found.

x111 = 20, x131 = 30, x151 = 20, x221 = 30, x251 = 20, x331 = 10, x341 = 60, x112 =
50, x132 = 30, x152 = 10, x222 = 40, x252 = 50, x332 = 20, x342 = 70, and xijl = 0 for

all other xijl.

See the page url: https://github.com/bandpey65/JIT-Snow_removal_Ex3/blob/

1adf2c2cdaafcd585bb6f15488859cdb9286f967/JIT-Snow_removal_Ex3.m

4. An Application of a Network Flow Algorithm to Solve a Snow
Removal Problem

This section begins by representing the snow removal problem as a network flow described
in section 2.2.1 We consider the streets map as a directed graph G = (V,E). The set
of vertices V represents locations, and the set of edges E represents streets connecting
them; we are using a directed graph so that the directions of streets would be taken into
consideration. The departure points for trucks are the salt storages defined as source
nodes, and the destinations (places/place to dump the snow) are defined as sink nodes.
The Ai, i = 1, ...n are the nodes representing the start points of the routes which are
assigned a number of available resource loads at that node; for instance, in the case of



Z. Bandpey et al. / Eur. J. Pure Appl. Math, 14 (4) (2021), 1112-1131 1125

de-icing, the available resource could be the amount of salts loaded in the trucks. The
Bj , j = 1, ...m are the end nodes representing the end point of the routes and assigned
a number which is the demand load. Each edge in the network representing a street has
a non-negative capacity c(e); the capacity can be defined as a multi-variable function
since many factors are involved such as truck’s salt capacity and gas consumption, width
of street and density of snow. In our study we define the capacity only in function of
time and cost not taking into consideration width of the streets and density of the snow.
The same process can be applied for each classification of the roads and amount of snow
following SHA’s designation of snow phases and roadways type as explained in 2.1. Time
or cost can be prioritized or simply combined. We define a capacity function based on
the actual unit cost and lateness penalty cost; if the work is done after the due time, a
lateness penalty would be added to the actual cost. The capacity function is defined by
c(eij) = Cij +αT (i, j), where α is the lateness penalty coefficient. Different values can be
assigned to α depending on whether we are treating urban or rural roads, and as defined
in 3.1, T (i, j), the deviation of time is given by t(i, j)−DT . The goal is to minimize the
total cost Cij , which correlates directly to minimizing the penalty α incurred due to time
deviation.

Illustrative Example 4. Let us consider a modified version of Example 3, where
each element in every row for the supply and demand table represents the sum of entries
of the corresponding row in example 3.

Table 5: Supplies.

Trucks Departures Supplies

A1 51
A2 103
A3 84

Table 6: Demands.

Snow Depots Demands

B1 25
B2 104
B3 50
B4 56

The entries in the time deviation table below are calculated by T (i, j) = t(i, j)−DT ,
using the service time and due time values from example 3.

The entries in the unit transportation cost table below are calculated by c(eij) =
Cij + αT (i, j), using the cost values from example 3.
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Table 7: Time Deviation.

Snow Depots
Truck Departures B1 B2 B3 B4

A1 5 2 −1 −1
A2 0 3 0 2
A3 −1 0 4 0

Table 8: Unit Transportation cost after applying lateness penalty.

Snow Depots
Truck Departures B1 B2 B3 B4

A1 8 + 5α 12 + 2α 14 + α 17− α
A2 9 7 + 3α 11 12 + 2α
A3 13− α 14 9 + 4α 17

Note: The entries of this chart represent the cost of moving from node Ai to node Bj . For
instance, C(1,1) is equal to 8 + 5α, where the number 5, coefficient of α represents the
time deviation. A positive coefficient shows the work has been done after the due time; in
this case, five times the penalty α was added to the cost. A negative time deviation shows
the work has been done before the due time; for instance, in C(1,4), time deviation is −1,
means the work has been done before the due time by one-time unit, so we subtract one
time the penalty α from the cost.

A bipartite graph designed for network flow would be a better way to represent the case
discussed above. It is originated at a node S and terminated at a node T. We assign a large
number M to the capacity of each edge coming from S to Ai and from Bj to T . The graph
below illustrates how a bipartite graph was used to represent the discussed example. Note
that if we have more than one source (Sn) and sink (Tt), n, t ∈ N∗, we would partition our
map into smaller parts with one Sn and Tt, to apply the same process to each partition.
To find an optimal solution, we solve the problem, considering each partition separately.
Several methods can be used to partition the map of a city to find an optimal solution,
which will be subject of future research.
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To ensure the existence of a solution for this problem, we add the nodes A4 and B5

to make the graph above balanced. The model should satisfy the following constraints’
limitations.

s.t.

n∑
j=1

xijl = ail,

m∑
i=1

xijl = bjl,

n∑
i=1

ail =

n∑
j=1

bjl

where 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ l ≤ k, and all cijl, tij , tj , ail, bil are nonnegative
and as described in 2.2.

We formulate the problem as a min-cost flow problem; then, we use linear programming
method to solve it. The formulation is as follow:

Min CX
s.t.
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AX=b
X ≥ 0

Where C = (cij)1×n, A = (aij)m×n, b = (bi)m×1, X = (xij)n×1

We will solve the problem for α = 0, (meaning all the work has been done Just In
Time), and similarly, it could be solved for any other value of α.

The balanced graph is constructed by adding A4 and B5 as follow:

The problem now is formulated as linear programming that can be solved with well-
known methods. The MATLAB code can be found at the following url.

url:https://github.com/bandpey65/JIT-Snow_removal_Ex4/blob/19803a3fa731e912ed84ab5948c0e8522c566e55/
JIT-Snow_removal_Ex4.m

x11 = 0 x12 = 0 x13 = 23 x14 = 30 x15 = 0 x21 = 0 x22 = 0 x23 = 0 x24 = 0 x25 = 103
x31 = 0 x32 = 77 x33 = 7 x34 = 0 x35 = 0 x41 = 23 x42 = 27 x43 = 0 x44 = 0 x45 = 2

5. Conclusion

In this paper, we formulate two mathematical models for the snow removal problem.
The Bai-Gan JIT algorithm is applied to develop the JIT-Snow Removal Model which
minimizes operational cost and time deviation. Recall, time deviation is defined as the
difference between service and due times. The priority factors are assigned to the variables
time and cost in JIT-Snow Removal Model to enhance the capacity of stakeholders (SHA,
transportation personnel, and policy makers). The network flow problem is applied for
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snow removal; the cost function is formulated as a multi-objective function that considers
both cost and time deviation. This function minimizes the total cost, which correlates
directly to minimizing the penalty α incurred due to time deviation. Several examples
are illustrated, and solutions are obtained by running simulations of the models using the
MATLAB®. The codes are available in an open-source website, and their links are cited
in the paper.
For future projects, we plan to implement our study to find tangible optimal solutions for
the snow removal problem for a specific city. We will use maps of that city to highlight
critical places like hospitals, schools, and other localities prioritized by stakeholders. In
the model, these localities are represented as key nodes and their connecting streets form
the base structure. To perform our task efficiently, we need to gather data about physical
locations, characteristics, usage, work history, work planned, costs, resources, and any
other information considered relevant by the stakeholder of that city. To validate the
efficiency of the proposed models, we may also need information provided by the asset
management systems that shows previous years financial reports, the current economic
value and future asset value estimates. The successful implementation of this research can
provide an optimal and executable solution to the wide-open Snow Removal Problem.

Acknowledgements

We would like to thank Dr. Xiao-Xiong Gan for his valuable input regarding the Just
In Time method and for his time and effort regarding proofreading this research. We
would also like to thank Dr. Sam Tannouri, Dr. Jigish Zaveri, and Dr. Young-Jae lee for
their support in the early stages of this research.

References

[1] B. L. Golden and R. T. Wong, Capacited Arc Routing Problems, Networks, pp. 305-
315, 1981.

[2] A. Haghani, University of Maryland, Calvert County Snow Emergency Decision Sup-
port, Final report to The State Highway Administration, Maryland Department of
Transportation, 2000.

[3] M.D. Salim, M.A. Timmerman, T. Strauss and M.E. Emch, University of Northern
Iowa, Artificial Intelligence-Based Optimization of the Management of Snow Removal
Assets and Resources, Report to the Midwest Transportation Consortium, 2002.

[4] A. Haghani and M. Hamedi, University of Maryland, Calvert County Snow Emergency
Decision Support System, Phase II, Report to The State Highway Administration,
Maryland Department of Transportation, 2002.

[5] K. Holmberg, Urban Snow Removal: Modeling and Relaxations, Linköpings Univer-
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