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Abstract. We give a condition ensuring that the operators in a nilpotent Lie algebra of linear
operators on a finite dimensional vector space have a common eigenvector.
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1. Introduction

Throughout this paper V is a vector space of positive dimension over a field f and
≫ is a nilpotent Lie algebra over f of linear operators on V . An element u ∈ V is an
eigenvector for S ⊂≫ if u is an eigenvector for every operator in S. If V has a basis
(e1, . . . , en) representing each element of ≫ by an upper triangular matrix, then e1 is an
eigenvector for≫. Such a basis exists when f is algebraically closed and≫ is solvable (Lie’s
Theorem), and also when every element of ≫ is a nilpotent operator (Engel’s Theorem).
Our results are further conditions guaranteeing existence of eigenvectors.

The minimal and characteristic polynomials of a linear operator A on V are denoted
respectively by πA, µA ∈ f [t] = the ring of polynomials over f . The cardinality of a set S
is written #S.

Let k be a Galois extension field of f of degree d := [k : f ], and define M ⊂ to be the
additive monoid generated by zero and the prime divisors d.

Consider the conditions:

(C1) µA splits in k for every A ∈≫

(C2) dimV /∈ M
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2. Results

Our main result is:

Theorem 1. If(C1) and(C2) hold then ≫ has an eigenvector.

The proof is preceded by some applications.
When(C1) holds, Theorem 1 shows that there is an eigenvector in every invariant

subspace whose dimension is not in M. This is exploited to yield the following two results:

Corollary 1. If a nilpotent Lie algebra of linear operators on n does not have an eigen-
vector, every nontrivial invariant subspace has odd dimension.

Proof. When f is the real field and k is the complex field , M consists of the positive
even integers.

Corollary 2. Let(C1) hold. Assume ≫ preserves a direct sum decomposition V = ⊕iWi,
and let D ⊂ denote the set of dimensions of the subspaces Wi.

(i) If ≫ does not have an eigenvector then D ⊂ M.

(ii) If V ′ ⊂ V is a maximal subspace spanned by eigenvectors of ≫ then dim(V ′) ≥
#{D \M}.

Proof. Assertion (i) follows from Theorem 1. To prove (ii) order the Wi so that
W1, . . . ,Wm are the only summands whose dimensions are not in M. For each j ∈
{1, . . . ,m} we choose an eigenvector ej ∈ Wj by Theorem 1. The ej are linearly in-
dependent and belong to V ′ by maximality of V ′, whence (ii).

Example 1. Assume n /∈ M and let α ∈ f [t] be a monic polynomial that splits in k[t].
Denote by A(α) the set of n × n matrices T over f such that α(T ) = 0. Then every
pairwise commuting family T ⊂ A(α) has an eigenvector in fn. This follows from Theorem
1 applied to the Lie algebra ≫ of linear operators on fn generated by T . Being abelian,
≫ can be triangularized over k, hence(C1) holds.

Example 2. The assumption that n ∈ M is essential to Theorem 1. For instance, take
f =, k =, V = 2. The abelian Lie algebra of 2× 2 of real skew symmetric matrices. does
not have an eigenvector in 2.

Example 3. The hypothesis of Theorem 1 cannot be weakened to ≫ being merely solvable.
For a counterexample with f =, k =, take ≫ to be the solvable 3-dimensional real Lie
algebra with basis (X,U, V ) such that [X,U ] = −V, [X,V ] = U, [U, V ] = 0.

A Lie algebra β over f is supersolvable if the spectrum of the linear map ad A : β → β
lies in f for all A ∈ β. If β is not supersolvable it need not have an eigenvector, as is
shown by Example 3. We don’t know if Theorem 1 extends to supersolvable Lie algebras,
except for the following special case:
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Theorem 2. A supersolvable Lie algebra β of linear transformations of 3 has an eigen-
vector.

Proof. Lacking an algebraic proof, we use a dynamical argument. Let G ⊂ GL(3, )
be the connected Lie subgroup having Lie algebra β. The natural action of G on the
projective plane ¶2 of lines in 3 through the origin fixes some L ∈ ¶2. This follows from
supersolvability because dim(¶2) = 2, the action on ¶2 is effective and analytic, and the
Euler characteristic of ¶2 is nonzero (Hirsch & Weinstein [1]). The nonzero points of L
are eigenvectors for β.

2.1. Proof of Theorem 1

We rely on Jacobson’s Primary Decomposition Theorem [2, II.4, Theorem 5]. This
states that V has a ≫-invariant direct sum decomposition ⊕Vi where each primary com-
ponent Vi has the following property: For each A ∈≫ the minimal polynomial of A|Vi is
a prime power in f [t].

Condition(C2) implies the dimension of some primary component is /∈ M. To prove
Theorem 1 it therefore suffices to apply the following result to such a primary component:

Theorem 3. Assume(C1) and(C2). If πA is a prime power in f [t] for each A ∈≫ then
the following hold:

(a) πA(t) = (t− rA)
n, rA ∈ f

(b) there is a basis putting ≫ in triangular form

Assertion (a) is equivalent to πA having a root rA ∈ f . Therefore (a) follows from:

Lemma 1. Let α ∈ f [t] be a polynomial of degree n that splits in k[t]. If n /∈ M then α
has a root in f , and the sum of the multiplicities of such roots is /∈ M.

Proof. Let R ⊂ k denote the set of roots of π, and Rj ⊂ R the set of roots of
multiplicity j.

The Galois group Γ has order [k : f ] and acts on R by permutations. The cardinality
of each orbit divides [k : f ], and R ∩ f is the set of fixed points of this action.

Each Rj is a union of orbits, as is Rj\f . It follows that #(Rj \ f) ∈ M.
Let k ≤ n denote the sum of the multiplicities of the roots that are not in f . Then

k =
n∑

j=2

j ·#(Rj \ f)

Therefore k ∈ M because M is closed under addition.
By hypothesis n /∈ M, hence n − k /∈ M and n − k > 0. As n − k is the sum of the

multiplicities of the roots in f , the conclusion follows.

Now that (a) of Theorem 3 is proved, assertion (b) is a consequence of the following
result:
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Lemma 2. Let be a nilpotent Lie algebra of linear operators on V . Assume that for all
A ∈ there exists rA ∈ f such that πA(t) = (t− rA)

n.
Then V has a basis putting in triangular form.

Proof. Every A ∈ can be written uniquely as rAI + NA with NA nilpotent and I
the identity map of V . It is easy to see that the set comprising the NA is closed under
commutator brackets. Therefore V has a basis triangularizing all the NA (Jacobson [2,
II.2, Theorem 1′]), and such a basis triangularizes .

This completes the proof of Theorem 1.
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