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Abstract. A set S ⊆ V (G) is a restrained strong resolving dominating set in G if S is a strong
resolving dominating set in G and S = V (G) or ⟨V (G) \ S⟩ has no isolated vertex. The restrained
strong resolving domination number of G, denoted by γrsR(G), is the smallest cardinality of a
restrained strong resolving dominating set in G. In this paper, we present characterizations of the
restrained strong resolving dominating sets in the join, corona and lexicographic product of two
graphs and determine the exact value of the restrained strong resolving domination number of each
of these graphs.
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1. Introduction

Domination in graphs was first introduced by C. Berge in 1958 [1]. There are many
studies involving domination and its variations. Slater [8] introduced and studied the
concept of resolving set. In 2003, Robert Brigham et al. [18] linked the concepts of
resolving and domination. In their article, they defined a resolving dominating set as a
set that is both resolving and dominating. Resolving sets and resolving dominating sets
were further studied in [2, 3]. Oellermann, O. R, and Peters-Fransen, J. [6] introduced
and studied the concept of strong resolving set.

Domke et. al [7] introduced and investigated the concept of restrained domination in
graphs.

Khuller, et. al. [11] introduced the concept of metric dimension and this has grown to
become an interesting topic in graph theory. In line with this, Sebo and Tannier [13] in-
troduced the concept of strong metric dimension, a concept which is more restrictive than
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metric dimension. After its introduction, Slater in [8] studied it and discovered its useful-
ness when working with the United States sonar and Coast Guard Loran (long range aids
to navigation) stations. Its applications arise in many diverse fields including chemistry,
for representing chemical compounds [10], the robot navigation [11] and geographical rout-
ing protocols [12], to name a few. In [13], an invariant called the strong metric dimension,
was presented where the authors illustrated its application to combinatorial search. Along
with the increasing discovery of its applications, theoretical studies on this invariant also
appear in several number of other papers including [14], [15], [16], [17]. This paper intends
to generate additional theoretical results and help widen the pool of existing studies from
where new researchers may draw new insights and directions for further investigation.

In this study, we investigate the concept of restrained strong resolving domination
in the join, corona, and lexicographic product of graphs. Readers are referred to [9] for
elementary Graph Theory concepts.

Let G =
(
V (G), E(G)

)
be a graph. The open neighborhood of v ∈ V (G) is

NG(v) = {u ∈ V (G) : uv ∈ E(G)}. An element u ∈ NG(v) is called a neighbor of v. The
closed neighborhood v ∈ V (G) is NG[v] = NG(v) ∪ {v}. Thus, the degree of v ∈ V (G) is

given by degG(v) = |NG(v)|. For S ⊆ V (G), NG(S) =
⋃
v∈S

NG(v) and NG[S] =
⋃
v∈S

NG[v].

A clique in a graph G is a complete induced subgraph. A set C ⊆ V (G) is called
a superclique in G if ⟨C⟩ is a clique and for every pair of distinct vertices u, v ∈ C,
there exists w ∈ V (G) \ C such that w ∈ NG(u) \ NG(v) or w ∈ NG(v) \ NG(u). A
superclique C is maximum in G if |C| ≥ |C∗| for all supercliques C∗ in G. The superclique
number ωS(G) of G is the cardinality of a maximum superclique in G. A superclique
C is called a dominated superclique if for every u ∈ C there exists v ∈ V (G) \ C such
that uv ∈ E(G). The dominated superclique number ωDS(G), of G is the cardinality of a
maximum dominated superclique in G.

A vertex x of a graph G is said to resolve two vertices u and v of G if
dG(x, u) ̸= dG(x, v). For an ordered set W = {x1, ..., xk} ⊆ V (G) and a vertex v in G, the
k-vector

rG(v/W ) = (dG(v, x1), dG(v, x2), ..., dG(v, xk))

is called the representation of v with respect to W . The set W is a resolving set for G
if and only if no two vertices of G have the same representation with respect to W . The
metric dimension of G, denoted by dim(G), is the minimum cardinality over all resolving
sets of G. A resolving set of cardinality dim(G) is called a basis.

A set S ⊆ V (G) of vertices of G is a dominating set if every u ∈ V (G) \ S is adjacent
to at least one vertex v ∈ S. The domination number of a graph G, denoted by γ(G), is
given by γ(G) = min{|S| : S is a dominating set of G}.

A subset S ⊆ V (G) is a strong resolving dominating set of G if S is a dominating
set and for every pair of vertices u, v ∈ V (G), there exists a vertex w ∈ S such that
u ∈ IG[v, w] or v ∈ IG[u,w]. The smallest cardinality of a strong resolving dominating set
of G is called the strong resolving domination number of G and is denoted by γsR(G). A
strong resolving dominating set of cardinality γsR(G) is called a γsR-set of G.
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A set S ⊆ V (G) is a restrained dominating set of G if S is a dominating set of G and
for every v ∈ V (G) \ S there exists u ∈ (V (G) \ S) ∩NG(v). Equivalently, a dominating
subset S of V (G) is a restrained dominating set of graph G if S = V (G) or ⟨V (G) \ S⟩
has no isolated vertex. The restrained domination number of G, denoted by γr(G) is the
minimum cardinality of a restrained dominating set of G. Any restrained dominating set
of G of cardinality γr(G) is referred to as a γr-set of G.

The join of two graphs G and H is the graph G + H with vertex set

V (G + H) = V (G)
•
∪ V (H) and edge set E(G + H) = E(G)

•
∪ E(H) ∪ {uv : u ∈

V (G), v ∈ V (H)}. The corona of two graphs G and H, denoted by G ◦ H, is the graph
obtained by taking one copy of G of order n and n copies of H, and then joining every
vertex of the ith copy of H to the ith vertex of G. For v ∈ V (G), denote by Hv the copy of
H whose vertices are attached one by one to the vertex v. Subsequently, denote by v+Hv

the subgraph of the corona G ◦ H corresponding to the join ⟨{v}⟩ + Hv, v ∈ V (G). The
lexicographic product of two graphs G and H, denoted by G[H], is the graph with vertex-
set V (G[H]) = V (G) × V (H) such that (u1, u2)(v1, v2) ∈ E(G[H]) if either u1v1 ∈ E(G)
or u1 = v1 and u2v2 ∈ E(H).

2. Preliminary Results

This section presents some of the important known results in strong resolving domi-
nation of graphs and some properties of restrained strong resolving dominating set in a
graph.

Theorem 1. [3] Let G be a nontrivial connected graph of order n with γ(G) ̸= 1 and
K1 = ⟨v⟩. Then S ⊆ V (K1 + G) is a strong resolving dominating set of K1 + G if and
only if S = V (G); or S = V (K1 +G) \ C or S = V (G) \ C∗ where C is a superclique and
C∗ is dominated superclique in G.

Theorem 2. [3] Let G be a nontrivial connected graph of order n with γ(G) = 1 and
K1 = ⟨v⟩. Then S ⊆ V (K1 + G) is a strong connected resolving dominating set of
K1 +G if and only if S = V (G) or S = V (K1 +G) \C or

S = (V (G) \ C∗) ∪ {x ∈ C∗ : deg(x) = n− 1}

where C and C∗ are superclique and dominated superclique, respectively in G.

Theorem 3. [3] Let K1 = ⟨v⟩ and G be a disconnected graph whose components are Gi

for i = 1, 2, . . . ,m. A proper subset S of V (K1 +G) is a strong resolving dominating set
of K1 +G if and only if S = V (G) or S = V (G) \ C∗

i or S = V (K1 +G) \ Ci where Ci is
a superclique in Gi, for i = 1, 2, . . . ,m and C∗

i is a dominated superclique of Gi.

Theorem 4. [3] Let G be a nontrivial connected graph and H a connected graph. A
proper subset S of V (G ◦H) is a strong resolving dominating set of G ◦H if and only if
one of the following holds:
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(i) S = A ∪
( ⋃

u∈V (G)

V (Hu)

)
where A ⊆ V (G);

(ii) S = A ∪
( ⋃
u∈V (G)\{v}

V (Hu)
)
∪Bv for a unique vertex v in G, where

A ⊆ V (G) \ {v} and Bv is a strong resolving dominating set of Hv if γ(H) = 1 or Bv is
a strong resolving dominating set of ⟨v⟩+Hv

if γ(H) ̸= 1.

Theorem 5. [3] Let G and H be non-trivial connected graphs of orders m and n,
respectively. A proper subset S of V (G+H) is a strong resolving dominating set of G+H
if and only if at least one of the following is satisfied:

(i) S = V (G+H) \ CG where CG is a superclique of G.

(ii) S = V (G+H) \ CH where CH is a superclique of G.

(iii) If γ(G) = 1 and γ(H) = 1,
S = [V (G+H) \ (CG ∪ CH)] ∪ {z ∈ CG : degG(z) = m− 1} or
S = [V (G+H) \ (CG ∪ CH)] ∪ {w ∈ CH : degH(w) = n− 1}
where CG and CH are supercliques in G and H, respectively.

(iv) If γ(G) ̸= 1 and γ(H) ̸= 1,
S = [V (G+H) \ (CG ∪ CH)] = (V (G) \ CG) ∪ (V (H) \ CH)
where CG and CH are supercliques in G and H, respectively.

Lemma 1. [2] Let G be a nontrivial connected graph with diam(G) ≤ 2. Then
S = V (G) \ C is a strong resolving set of G if and only if C = ∅ or C is a
superclique in G. In particular, sdim(G) = |V (G)| − ωS(G).

Theorem 6. [2] Let G = Kn for n > 1 and H a nontrivial connected graph with
γ(H) ̸= 1 . A subset S of V (G[H]) is a strong resolving set of G[H] if and only
S = V (G[H]) \ (A×C), where A is a subset of V (G) and C = ∅ or C is a superclique
in H.

Remark 1. Every restrained strong resolving dominating set of a connected graph G is a
strong resolving dominating set. Hence, γsR(G) ≤ γrsR(G). Also, every restrained strong
resolving dominating set of G is a restrained dominating set. Thus,γr(G) ≤ γrsR(G).

Remark 2. For any connected graph G of order n, 1 ≤ γrsR(G) ≤ n. Moreover, γ(G) = 1
if and only if G is a non-trivial graph and γrsR(Kn) = n for n ≥ 1.

Proposition 1. Let G be a nontrivial connected graph with diam(G) ≤ 2. Then
S ⊆ V (G) is a restrained strong resolving dominating set of G if and only if S = V (G)\C
where C = ∅ or C is a nonsingleton dominated superclique in G. In particular,

γrsR(G) = |V (G)| − ωDS(G)

.
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Proof : Let S be a restrained strong resolving dominating set of G. Let C = V (G) \ S.
Then, S = V (G) \ C. Since S is a strong resolving, by Lemma 1, C = ∅ or C is a
superclique in G. Since S is restrained dominating, S = V (G) or V (G) \S has no isolated
vertex. Thus, C = ∅ or C is a singleton dominated superclique in G.

The converse follows immediately from Lemma 1, definition of dominated superclique
and definition of restrained dominating set.

Suppose S is a γrsR-set of G. Then, S = V (G)\C where C is a nonsingleton dominated
superclique in G and |C| = ωDS(G). Thus,

γrsR(G) = |S| = |V (G)| − |C| = |V (G)| − ωDS(G).

3. Restrained Strong Resolving Domination in the Join of Graphs

Theorem 7. Let G be a nontrivial connected graph of order n with γ(G) ̸= 1 . Then
S ⊆ V (K1 + G) is a restrained strong resolving dominating set of K1 + G if and only if
S = V (G) \ C or S = V (K1 +G) \ C∗ where C is a non-singleton dominated superclique
and C∗ = ∅ or C∗ is non-singleton dominated superclique of G.

Proof : Let S be a restrained strong resolving set of K1 + G. Since S is strong resolving
dominating set by Theorem 1, S = V (G) or S = V (G) \ C or S = V (K1 + G) \ C∗

where C is a dominated superclique and C∗ is a superclique in G. Since S is restrained
dominating, S = V (G+K1) or V (G+K1) \ S has no isolated vertex. Hence, S ̸= V (G)
and S = V (G) \ C or S = V (K1 +G) \ C∗ where C is dominated supeclique and C∗ = ∅
or C∗ is a nonsingleton superclique of G.

The converse follows immediately from Theorem 1, definitions of dominated super-
clique and restrained dominating set of a graph.

Theorem 8. Let G be a nontrivial connected graph of order n with γ(G) = 1 and
K1 = ⟨v⟩. Then S ⊆ V (K1+G) is a restrained strong resolving dominating set of K1+G
if and only if S = V (K1 +G) \C or S = (V (G) \C∗)∪ {x ∈ C∗ : degG(x) = n− 1} where
C = ∅ or C is nonsingleton superclique of G and C∗ is a superclique of G.

Proof : Let S be a restrained strong resolving dominating set of K1 +G. Then by
Theorem 2, S = V (G) or S = V (K1 +G) \C or S = (V (G) \C∗)∪ {x ∈ C∗ : degG(x) =
n − 1} where C and C∗ are superclique and dominated superclique of G, respectively.
Since S is restrained dominating, S = V (K1+G) or V (K1+G)\S has no isolated vertex.
Thus, S ̸= V (G), C = ∅ or C is non-singleton dominated superclique of G and C∗ is a
superclique of G.

The converse follows immediately from Theorem 2, definitions of superclique and
restrained dominating set of a graph.

The next results follow immediately from Theorem 7.

Corollary 1. Let G be a nontrivial connected graph of order n. Then

γrsR(K1 +G) =

{
n− ωS(G) + 1 , if γ(G) = 1

n− ωDS(G) , if γ(G) ̸= 1.
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Corollary 2. Let G be a connected graph with diam(G) ≤ 2. Then

γrsR(K1 +G) =

{
sdim(G) + 1 , if γ(G) = 1

γsR(G) , if γ(G) ̸= 1.

Corollary 3. Let Pn = [v1, v2, . . . , vn] and Cm = [c1, c2, . . . cm, c1] where n,m ≥ 3.

(i) The sets V (Pn) \ {vi, vi+1} for i = 2, 3, . . . , n− 2, V (Pn) \ {vj} for
j = 1, 2, . . . , n and V (Pn)∪{v} \ {vk, vk+1} for k = 1, 2, . . . , n− 1 are the restrained
strong resolving dominating sets of ⟨v⟩+ Pn.

(ii) The sets V (Cm) \ {ci, ci+1}, (V (Cm)∪ {v}) \ {ci, ci+1}, V (Cm) \ {vi}, V (Cm) \ {vm},
V (Cm) \ {ci, cm} and (V (Cm)∪ {v} \ {c1, cm}) for i = 1, 2, . . . ,m− 1 , are the restrained
strong resolving dominating sets of ⟨v⟩+ Cn.

Theorem 9. Let G be a disconnected graph whose components are Gi for i = 1, 2, . . . , n.
A subset S of V (K1 +G) is a restrained strong resolving dominating set of K1 +G
if and only if S = V (G) \ Ci or S = V (K1 + G) \ C∗

i where Ci is a dominated
superclique of Gi and C∗

i = ∅ or C∗
i is a nonsingleton superclique of G.

Proof : Let S be a restrained strong resolving dominating set of K1 +G. Then
by Theorem 3 S = V (G) or S = V (G) \ Ci or S = V (K1 + G) \ C∗

i where Ci

is a dominated superclique of Gi and C∗
i = ∅ or C∗

i is a nonsingleton superclique in Gi.
Since S is restrained dominating, S = V (K1 + G) or V (K1 + G) \ S has no isolated
vertex. Hence, S ̸= V (G) and C∗

i = ∅ or C∗
i is nonsingleton. Therefore, S = V (G)\C1 or

S = V (K1 +G) \C∗
i where Ci is a dominated superclique in Gi and C∗

i is a nonsingleton
superclique in Gi.

The converse follows immediately from Theorem 3, definitions of dominated super-
clique and restrained dominating set of a graph.

Corollary 4. Let Gi be connected graphs of order ni and G be a disconnected graph
whose components are Gi for i = 1, 2, . . . ,m. Then, γrsR(K1 + G) =

∑m
i=1 ni − rG

where rG = max {max{ωDS(Gi)},max{ωS(Gi) + 1} : i = 1, 2, . . . ,m} .
In the join of two graphs G and H, the results Theorem 7 and Theorem 8 have already

considered the case when G or H is trivial. Hence, the next results, considered the
characterizations of the restrained strong resolving dominating sets of nontrivial connected
graphs G and H.

Theorem 10. LetG andH be nontrivial connected graphs of ordersm and n, respectively.
A subset S of V (G +H) is a restrained strong resolving dominating set of G +H if and
only if at least one of the following is satisfied:

(i) S = V (G+H) \ CG where CG is a nonsingleton superclique of G.

(ii) S = V (G+H) \ CH where CH is a nonsingleton superclique of G.
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(iii) If γ(G) = 1 and γ(H) = 1,
S = [V (G+H) \ (CG ∪ CH)] ∪ {z ∈ CG : degG(z) = m− 1} or
S = [V (G+H) \ (CG ∪ CH)] ∪ {w ∈ CH : degH(w) = n− 1}
where CG and CH are supercliques in G and H, respectively.

(iv) If γ(G) ̸= 1 and γ(H) ̸= 1,
S = [V (G+H) \ (CG ∪ CH)] = (V (G) \ CG) ∪ (V (H) \ CH)
where CG and CH are supercliques in G and H, respectively.

Proof : Let S be a restrained strong resolving dominating set of G+H. By Theorem 5

(a) S = V (G+H) \ CG where CG is a superclique of G.

(b) S = V (G+H) \ CH where CH is a superclique of G.

(c) If γ(G) = 1 and γ(H) = 1,
S = [V (G+H) \ (CG ∪ CH)] ∪ {z ∈ CG : degG(z) = m− 1} or
S = [V (G+H) \ (CG ∪ CH)] ∪ {w ∈ CH : degH(w) = n− 1}
where ⟨CG⟩ and CH are supercliques in G and H, respectively.

(d) If γ(G) ̸= 1 and γ(H) ̸= 1,
S = [V (G+H) \ (CG ∪ CH)] = (V (G) \ CG) ∪ (V (H) \ CH)
where CG and CH are supercliques in G and H, respectively.

Since S is a restrained dominating set of G+H, (i), (ii), (iii), (iv) hold.
The converse immediately follows from Theorem 5 and from definition of restrained

dominating set of a graph.

Corollary 5. Let G andH be nontrivial connected graphs of ordersm and n, respectively.
Then

sdim(G+H) =


(m− ωs(G)) + (n− ωs(H)) + 1, if γ(G) = 1

or γ(H) = 1

(m− ωs(G)) + (n− ωs(H)) , if γ(G) ̸= 1

and γ(H) ̸= 1.

4. Restrained Strong Resolving Domination in the Corona of Graphs

This section gives characterization of the restrained strong resolving dominating sets
in the corona of graphs as well as its restrained strong resolving domination number.

Theorem 11. Let G be a nontrivial connected graph and H a connected graph. A proper
subset S ⊆ V (G ◦H) of a restrained strong resolving dominating set of G ◦H if and only
if one of the following holds:

(i) S = A ∪
( ⋃

u∈V (G)

V (Hu)

)
where A ⊆ V (G) and V (G) \A has no isolated vertex.
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(ii) S = A∪
( ⋃

u∈V (G)\{v}
V (Hu)

)
∪Bv for a unique vertex v in G, where A = V (G) \ {v}

or V (G) \ (A ∪ {v}) has no isolated vertex and Bv is a strong resolving dominating set
of Hv + ⟨v⟩ if v ∈ S and Bv is a strong resolving set where V (Hv) \ Bv has no isolated
vertex if v ∈ S.

Proof : Suppose S is a restrained resolving dominating set of G ◦H. Then S is a strong
resolving dominating and by Theorem 4 one of the following holds:

(a) S = A ∪
( ⋃

u∈V (G)

V (Hu)

)
where A ⊆ V (G);

(b) S = A∪
( ⋃

u∈V (G)\{v}
V (Hu)

)
∪Bv for a unique vertex v in G, where A ⊆ V (G)\{v}

and Bv is a strong resolving dominating set of Hv if γ(H) = 1 or Bv is a strong
resolving dominating set of ⟨v⟩+Hv if γ(H) ̸= 1.

Suppose (a) holds. Since S is a proper restrained dominating subset of G ◦H, V (G ◦
H) \ S = V (G) \A has no isolated vertex. Thus, (i) holds. On the other hand if (b)
holds, then since S is a restrained dominating set and V (G ◦ H) \ S =
(V (G)\A)∪ (V (Hv+ ⟨v⟩)\Bv), A = V (G)\{v} or V (G)\ (A∪{v}) has no isolated vertex
and Bv is a strong resolving dominating set of Hv + ⟨v⟩. Since v ∈ S, V (Hv) \Bv has no
isolated vertex and Bv is a strong resolving dominating set of Hv + ⟨v⟩ if v ∈ S and Bv

is strong resolving set of Hv and V (Hv) \ Bv has no isolated vertex if v ∈ S. Hence, (ii)
holds.

Conversely, suppose (i) and (ii) hold. By Theorem 4, S is a strong resolving
dominating set of G ◦H. If (i) holds, then V (G ◦H) \ S = V (G) \ A has no
isolated vertex. If (ii) holds then V (G ◦H) \S = (V (G) \A)∪ (V (Hv + ⟨v⟩) \Bv). Since
A = V (G) \ {v} or V (G) \ (A∪ {v}) has no isolated vertex, V (G+H) \ S has no isolated
vertex. In either case, V (G ◦ H) \ S has no isolated vertex. Therefore S is a restrained
strong resolving dominating set of G ◦H.

Corollary 6. Let G andH be nontrivial connected graphs of ordersm and n, respectively.
Then, γrsR(G ◦H) = (m− 1)n+ γsR(H +K1).

Proof : Let S be a γrsR-set of G ◦H. Then by Theorem 11 (ii),

S =
⋃

u∈V (G)\{v}

V (Hu)
⋃

Bv

for a unique vertex v in G and Bv is a strong resolving dominating set of Hv. Hence,

γrsR(G ◦H) = |S| = |V (H)||V (G) \ {v}|+ |Bv|
≥ (m− 1)n+ γsR(H)
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Let Cv be a minimum strong resolving dominating set of Hv. For a unique vertex

v ∈ V (G), let ⟨Bv⟩ ∼= ⟨Cv⟩. Then by Theorem 11 S =

( ⋃
u∈V (G)\{v}

V (Hu)

)⋃
Bv is a

restrained strong resolving dominating set of G ◦H. Thus,

γrsR(G ◦H) ≤ |S|

=

∣∣∣∣ ⋃
u∈V (G)\{v}

V (Hu)

∣∣∣∣+ |Bv|

= (m− 1)(n) + |Cv|
= (m− 1)(n) + γsR(H)

Therefore, γrsR(G ◦H) = (m− 1)n+ γsR(H).

5. Restrained Strong Resolving Domination in the Lexicographic
Product of Graphs

Lemma 2. Let G = Kn for n > 1 and H a nontrivial connected graph with γ(H) ̸= 1 .
Then A×C ⊆ V (G[H]) is a dominated superclique in G[H] if and only if A is a nonempty
subset of V (G) and C is a superclique in H.

Proof : Let G = Kn for n > 1 and H a nontrivial connected graph with γ(H) ̸= 1.
Suppose A× C ⊆ V (G[H]) is a dominated superclique in G[H]. By a Lemma in [3], A is
a nonempty subset of V (G) and C is a superclique in H.

Conversely, suppose A ⊆ V (G), A ̸= ∅ and C is a superclique in H. Then
A× C ⊆ V (G[H]) is a superclique in G[H] by a Lemma in [3]. We show that A× C is a
dominated superclique . Let (a, b) ∈ A×C. Then a ∈ A and b ∈ C. Since γ(H) ̸= 1, there
exists d ∈ V (H)\NH(b). Hence, d /∈ C. Since G = Kn for n > 1, a vertex v ∈ V (Kn)\{a}
exists where av ∈ E(Kn). Thus, (v, d) /∈ A × C and (a, b)(v, d) ∈ E(G[H]). Therefore,
A× C is a dominated superclique in G[H].

Theorem 12. Let G = Kn for n > 1 and H a nontrivial connected graph with γ(H) ̸= 1.
A subset S of V (G[H]) is a restrained strong resolving dominating set of G[H] if and only
if S = V (G[H]) \ (A× C) and one of the following is satisfied:

(i) A ⊆ V (G) and C = ∅

(ii) A is singleton subset of V (G) and C is a nonsingleton suerclique in H.

(iii) A is nonempty nonsingleton subset of V (G) and C is a superclique
in H.

Proof : Let S be a restrained strong resolving dominating set of G[H]. By Theorem 6,
S = V (G[H]) \ (A× C) where A is a subset of V (G) and C = ∅ or C is a superclique in
H. Since S is restrained strong resolving dominating, S = V (G[H]) or V (G[H]) \ S has
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no isolated vertex. If S = V (G[H]) then A×C = ∅, showing that A ⊆ V (G) and C = ∅.
Thus, (i) holds. If V (G[H]) \ S has no isolated vertex, then A × C is a nonsingleton
dominated superclique in G[H]. This implies that A is a singleton subset of V (G) and C
is a nonsingleton superclique in H or A is nonempty nonsingleton subset of V (G) and C
is a superclique in H. Hence (ii) or (iii) holds.

For the converse, suppose S = V (G[H]) \ (A × C), where A and C satisfy (i),(ii)
or (iii). Then, either A × C = ∅ or by Lemma 2, A × C is a nonsingleton dominated
superclique in G[H]. By Theorem 6, S is a strong resolving set in G[H]. Since A×C is a
dominated superclique, S is a strong resolving dominating set of G[H]. If (i) is true, then
A ⊆ V (G) and C = ∅, that is, A × C = ∅ and S = V (G[H]). If (ii) or (iii) is satisfied,
then V (G[H]) \ S has no isolated vertex. Therefore, S is a restrained strong resolving
dominating set G[H].

Lemma 3. Let G = Kn for n > 1 and H a nontrivial connected graph with γ(H) = 1.
Then A×C ⊆ V (G[H]) is a dominated superclique of G[H] if and only if A is a nonempty
subset of V (G) and C is a superclique in H such that |A| = 1 whenever C ∩ C∗ ̸= ∅ for
some γ-set C∗ of H.

Proof : Suppose A×C ⊆ V (G[H]) is a dominated superclique in G[H]. Then A×C ̸= ∅.
By a Lemma in [3], A is a nonempty subset of V (G) and C is a superclique in H such
that |A| = 1 whenever C ∩ C∗ ̸= ∅ for some γ-set C∗ of H.

Conversely, suppose A ⊆ V (G) and A ̸= ∅ and C is a superclique in H such that
|A| = 1 whenever C ∩ C∗ ̸= ∅ for some γ-set C∗ of H. Then by a Lemma in [3], A × C
is a superclique in G[H]. We show that A × C is a dominated superclique in G[H]. Let
(a, b) ∈ A × C. Then a ∈ A and b ∈ C. If C ∩ C∗ = ∅ for all γ-set C∗ of H, then there
exists d ∈ V (H) \NH(b). Thus, d /∈ C. Since G = Kn for n > 1, a vertex
y ∈ (V (Kn) \ {a}) ∪NG(a) exists. This implies that

(y, d) ∈ [V (G[H]) \ (A× C)] ∩NG[H]((a, b)).

Suppose, that C ∩ C∗ ̸= ∅ for some γ-set C∗ of H. Then |A| = 1. Let w ∈ A and
p ∈ C ∩ C∗. Since G = Kn for n > 1, there exists u ∈ (V (Kn) \ {w}) ∩NG(w)
and (u, v) /∈ (A× C) for all v ∈ V (H). Thus, (w, p)(u, v) ∈ E(G[H]). Therefore A× C is
a dominated superclique in G[H].

Using Lemma 3, the proof of the next result will just be similar to that of Theorem
12.

Theorem 13. Let G = Kn for n > 1 and H a nontrivial connected graph with γ(H) = 1.
A subset S of V (G[H]) is a restrained strong resolving dominating set of G[H] if and only
if S = V (G[H]) \ (A× C) and one of the following is satisfied:

(i) A ⊆ V (G) and C = ∅

(ii) A is nonempty nonsingleton subset of V (G) and C is a superclique in H if C∩C∗ = ∅
for all γ-set C∗ in H.
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(iii) A is a singleton subset of V (G) and C is a nonsingleton superclique inH if C∩C∗ ̸= ∅
for some γ-set C∗ of H.

Corollary 7. Let G = Kn for n > 1 and H a non-trivial connected graph of order m.
Then γrsR(G[H]) = mn− ωDS(G[H]).

Proof : Let S be a γrsR-set of G[H]. Then S is a restrained strong resolving dominating
set of G[H]. By Theorem 12 or Theorem 13, S = V (G[H]) \ (A × C) where A × C is a
dominated superclique in G[H]. Since S is a γrsR-set, A × C is a maximum dominated
superclique of G[H]. Hence,

γrsR(G[H]) = |S|
= |V (G[H])| − |A× C|
= mn− ωDS(G[H]).

By Lemma 2 and Lemma 3, the dominated superclique A× C of Kn[H] is maximum
if A = V (G) and C is a maximum superclique in H. Thus, the next result follows.

Corollary 8. Let G = Kn for n > 1 and H be a connected graph of order m > 1. Then
γrsR(G[H]) = n(m− ωS(H)).
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