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1. Introduction

Recently a great deal of interest has been focused on the applications of the (DTM)
to solve various scientific models, see Refs.[2],[3],[4],[5-6],[7-8],[9],[13-15], [16-
17], [18] and [22]. The (DTM) has also been applied to solve linear and non-linear
higher-order initial value problems, for example [15] and [16].

In this paper, we are interested in the differential transformation method (DTM) to
solve linear and non-linear higher-order boundary value problems (HOBVPs). Many
numerical techniques, such as finite difference method [10] and decomposition method
[19-21] have been implemented to solve (HOBVPs) numerically. The differential
transformation method (DTM) is a numerical method for solving boundary value
problem [17]. The concept of differential transformation was first proposed by Zhou
[23] in 1986, and it was applied to solve linear and non-linear initial value problems
in electric circuit analysis. The method can be used to evaluates the approximat-
ing solution by the finite Taylor series and by an iteration procedure described by
the transformed equations obtained from the original equation using the operations
of differential transformation. The basic definitions of the differential transforma-
tion are introduced in Section 2. The mathematical background of the higher-order
boundary value problems is described in Section 3. Analysis of higher-order boundary
value problems is illustrated by differential transformation method (DTM) in Section
4. Numerical examples are used to illustrate the effectiveness of the proposed method

in Section 5.
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2. The Differential Transformation Method (DTM)

An kth- order differential transformation (DT) of a function y(x) = f(x) is de-

fined about a point x = x0 as:
k
v =4 [92] 2.1)
X=Xo

where k belongs to the set of non-negative integers, denoted as the K-domain.

The function y(x) may be expressed in terms of the differential transforms (DT),

Y (k) as:

00 x—xo)
Y =32, [ v (o). 2.2)
Upon combining (2.1) and (2.2), we obtain
o k X
y(x)= Zk:o(x - Xo)k% [dd{((k )i| e’ (2.3)

which is actually the Taylor’s series for y(x) about x = x,.

From the basic definition of the differential transforms (DT), one can obtain cer-
tain laws of transformational operations, some of these, are listed in the following.
(1): If 2(x) =u(x) £ v(x) then, Z(k) = U(k) £V (k).

(2): If z(x) = au(x) then, Z(k) = aU(k). Here a is a constant.

(3): If 2(x) = £ then, Z(k) = (k + DU (k + 1).

@): If2(x) = S22 then, Z(k) = (k + 1)(k +2)U(k + 2).

(5): If z(x) = % then, Z(k) =(k+1)(k+2)---(k+m)U(k + m).

(6): If z(x) = u(x)v(x) then, Z(k) = Z;{:o V(OU(k —1).

1 k=n
0 k#n.

(7): If z2(x) = x™ then, Z(k) = 6 (k — n)where, 6§ (k —n) =

(8): If z(x) = exp(Ax) then, Z(k) = 2

k!

(9): I 2(x) = (1+ x)™ then, Z(k) = Hon=tin=itl)
(10): If z(x) =sin(wx + a) then, Z(k) = sin(Z + a).

(11): If 2(x) = cos(wx + a) then, Z(k) = i—fcos(%" +q).
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3. The Higher-order Boundary Value Problems

(i) even-order boundary value problems

Consider the special (2m)-order BVP of the form
yC™(x) = f(x,y), 0<x<b, (3.1)
with boundary conditions
y#(0) = ayj; j=0,1,2,...,(m—1), (3.2)

y(zl')(b)=/32j; j=0,1,2,...,(m—1), (3.3)

(ii) odd-order boundary value problems

Consider the special (2m + 1)-order BVP of the form
yC(x) = f(x,y), 0<x<b, (3.4)
with boundary conditions
yE(0) = 14415 j=0,1,2,...,m, (3.5)

YE(B) =y, j=0,1,2,...,m, (3.6)

It is interesting to point out that y(x) and f(x,y) are assumed real and as many
times differentiable as required for x € [0,b] and a,; and f8,;, j =0,1,2,...(m — 1)
describe the even-order are real finite constants [11], moreover, the conditions a,;
,J=0,1,2,...,(m — 1) describe the even-order derivatives at the boundary x = 0,
while y,;,; and y5;14, j = 0,1,2,...,m describe the odd-order are real finite constants
and the conditions y,;,;, j = 0,1,2,...m describe the odd-order derivatives at the
boundary x = b.

Theorems which list the conditions for existence and uniqueness solution of such
problems are contained in a comprehensive survey in a book by Agarwal [1], though

no numerical methods are contained therein for solving HOBVP’s of higher order.
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4. Analysis of Higher-order Boundary Value Problems by

Differential Transformation

Let the differential transform of the deflection function y(x) be defined from Eq.
(2.1) as:

Y(k)=1 [%L (4.1)
where x, = 0. Also the deflection function may be expressed in terms of Y (k) from
Eq. (2.2) as:

Y@ =Y, [ 5] . (4.2)
Now, using the transformational operations which has been formed in Sec.2, one can

obtain by taking the differential transform of Eq. (3.1) and (3.4) respectively and

some simplification, the following recurrence equations as m =0,1,2,....

vem+k) =2, | 205 ] v (), (4.3)
v(m+k+1) =30, [ 2l Ty, ), (4.4)

where Y (., .) denotes the transformed function of linear or nonlinear function f (x, y).
It may be noted that Eq. (4.2) is independent of the boundary conditions.

The differential transforms of the boundary conditions at x = 0 are obtained from
Egs. (3.2) and (3.5) in the cases even-order (odd-order) boundary value problems

respectively, with the definition (4.1) as:
N1 .
Y(2j)= a %2p j=0,1,2,...,2m—1), (4.5)

Y(2j+ 1) = G Vo j=0,1,2,...,2m, (4.6)

Substituting from (4.5) and (4.6) into (4.3) or (4.4) and using (4.2), yields for j =
0,1,2,...,(m—1),

MEIED IR [(ZL],)!OLZ]} Y (k)xk, (4.7)



I. Abdel-Halim and V. Ertiirk / Eur. J. Pure Appl. Math, 2 (2009), (426-447) 431

and for j=0,1,2,...,m,

y() =20, [T}H)ﬂ’zﬁl] Y (k)xk. (4.8)

Noting that y®*V(0)=A,,r=0,1,2,...,(m—1),and y?7(0)=B,,r=0,1,2,...,m,

are constants that will be approximated at the end point x = b.

5. Numerical Examples

In this section, linear and nonlinear HOBVPs will be tested by using the differential

transformation method, (see [12]).

Example 5.1. We first consider the following linear fifth-order BVP , which is also solved
by Adomian decomposition method (ADM) in the study of [21 ]

yW(x) = y(x) — 15¢* — 10xe”, 0<x<1, (5.1)
subject to the boundary conditions

y(0)=0, y'(0)=1, y”"(0)=0, y(1)=0, y'(1)=—e. (5.2)

Applying the operations of (DT) to Eq. (5.1), the following recurrence relation is ob-

tained:

, 15 k[ sk-1-1)
vk +s) = Lo )] (5.3)

By using Egs. (2.1) and (5.2) the following transformed B.C.’s at x = 0 can be obtained:
Y(0)=0, Y(1)=1, Y(2)=0, (5.4)

where, according to Eq. (2.1), a = % =Y(3)and b = @ = Y (4). Utilizing the

recurrence relation in Eq. (5.3) and the transformed B.C.’s in Eq. (5.4), Y (k) for k> 5

are easily obtained.
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The constants a and b are evaluated from the B.C.’s given in Eq. (5.2) for x =1, by

taking N = 13, to obtain the system:

148284463 4 3632669041 4541061529
148262400 ¢ 3632428800 5448643200
239595841 5148284463 15028547

a-+ b=——e+———.
79833600 37065600 129729600

This in turn gives a = —0.3333315065 and b = —0.5000018268.
For N = 24, these values are a = —0.333315040 and b = —0.5000018292. Then,
by using the inverse transformation rule in Eq. (4.2), we get the following series solution

is evaluated up to N = 24:

ylo) = 2 — 050000182922 — 0333331504027 — 0.1252° — 0.0333333333325

— 0604 E — 2 27 — 01190476463 E — 2 #° — 01736100001 F — 3 oY
—0.2201585538F — 1210 — 0.2480158730F — 52t — 0.2505210839F — 6x!?
0220644315 — T2 — 0.192708757F — s2'* — 01491196928 F — 0z'®
—0.1070602022F — 102 — 0.7169215000F — 12247 — 0.2655264821F — 1321
—0.2055264824F — 1z — 0.1479T 14344 E — 152 — 0.7800603484F — 1727"
—0.3014588213F — 1822 — 0.1868326235F — 1022 — 0.8500073668F — 21221,

Example 5.2. We next consider the following non-linear fifth-order BVP
Yy (x) = e *y3(x), 0<x<1, (5.5)
subject to the boundary conditions

y(0)=0=y'(0)= y"(0)=1, y(I)=y'(1)=e. (5.6)

Applying the operations of (DT) to Eq. (5.6), the following recurrence relation is ob-

tained:

Y(k+5)= L3 S Ly -s)Y (k- D). (5.7)

(k+5)! s=0

By using Egs. (2.1) and (5.7) the following transformed B.C.’s at x = 0 can be obtained:

Y(O)=1, Y(1)=1, Y(2)= %, (5.8)
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where, according to Eq. (2.1), a; = O] (0) =Y(3)and a, = w =Y (4). Utilizing the
recurrence relation in Eq. (5.3) and the transformed B.C.’s in Eq. (5.4), Y(k) for k> 5
are easily obtained.

The constants a, and a, are evaluated from the B.C.’s given in Eq. (5.7) for x =1,

by taking N = 12, to obtain the system:

80149541 _ 98589 1996097 1 ., 1
31033440 98560 1 " 1996097 2 " 1330561 " 4752011
5848303 285343 665471 1 1

- = + + 24+ :
2851200 95040 ' " 1663202 T 1386071 " 3960 11?2

This in turn gives a; = 0.666611767 and a, = 0.0416703271.
For N = 20, these values are a; = 0.1666611892 and a, = 0.0416703549. Then,
by using the inverse transformation rule in Eq. (4.2), we get the following series solution

is evaluated up to N = 20:

yx) = 14240527 + 016666118922 + 0.041670315492" + 0.8333333333F — 2
L0 13888888807 — 2 28 4 0.19841269843F — 3 27 + 024799957 10F —

4027562 1457200 — 52 + 0.2755731922F — 6210 4+ 0.2505210020F — Tz“
+0.208767T49005 — 812 + 0.1605608300F — 921 4+ 0.114715900F — 1021
+0.3304339480 F — 827 + 0.1987113795F — 82'% 4 0.2812690000F — 14217
+0.1560220000F — 152 4 0.8235580000F — 1721 + 0. 143000104 F — 12220,

Numerical results for linear and non-linear of fifth- order BVP’s, the differential trans-

formation method (DTM) with comparison to the exact solution are given in Table 1.

Table 1:
Comparison of numerical result of BVP’s (5.1)-(5.2) and (5.6)-(5.7) see Fig. 1.
LN-57 order BVP NLN-5" order BVP
*  DTM(N =21 Yezaet = £(1 — 1)€% DTM(N = 20)° Yewact = €°
0.0 .(J[lUU[][](lU[]l +[l(l 000060000 E+00 L 1006000000EA4-01 L 100000000E4-01
0.1 .9946539001-01 L994653000E-01 L1051 7100E+01 L110517100E+01
0.2 . 195424400E+00 195424400E+00 122140300E 401 1221403001401
0.3 283470300E+00 283470400E4+00 134985900E+01 _134985900E4-01
0.4 358037900E+00 358037000E+00 140182500E+01 149182500401
0.5 A412180200F-+00 A12180300154+00 AGART2100E401 GART2L00E+01
0.6 . 437308100E+00 A3T308500E+00 ,t\_)J] 1800E+01 L182211900E+01
0.7 422887900E+00 22888000400 L201375200E 401 L201375300k+01
0.8 35608G300E+00 356086500E+00 .2 1000E401 229554100E4-01
0.0 221364000E-+00 H\ 3641001400 L245960200E+01 300E-+01
1.0 -.302302000E-06 24044500 E-06 2T1828000E+01 S200E4-01
#DTM (N=20 and \:!, ) is DT'M of /m/m 20 and of order 24 respectively .

Example 5.3. Again, following the study of [19 ], we consider the following linear sixth-
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order BVP , which is also solved by Adomian decomposition method (ADM)
yOO(x) = y(x) — 6e*, 0<x<l, (5.9)

subject to the boundary conditions

(iv)

y(0)=1, y"(0)=-1, y™(0)=-3, y)=0, y' (D) =-2¢,y (1)=—4e.
(5.10)
Applying the operations of DT to Eq. (5.11), the following recurrence relation is ob-

tained:

k[Y(o)-£]

(k+6)! (5.11)

Y(k+6)=

By using Egs. (2.1) and (5.12) the following transformed B.C.’s at x = 0 can be ob-

tained:
Y(0)=1, Y(2)=-; YA =7, (5.12)

where, according to Eq. (2.1), a =Y(1), b = % =Y(3)and c = @ = Y(5).
Utilizing the recurrence relation in Eq. (5.13) and the transformed B.C.’s in Eq. (5.14),
Y (k) for k > 6 are easily obtained.

The constants a, b and c are evaluated from the B.C.’s given in Eq. (5.12) for x =1,

by taking N = 13, to obtain the system:

889750903 60481 332641 _ 456655181
889574400 ' 60480 ' 332640° 1245404160’
332641 5041 60481 110549143

a+ + c=—2¢ 4 —n 2
309168007 T 840 ~ ' 3024 39916800
60481 1 5041 _ 829261
362880° 20 42 ¢ 7120060

This in turn gives a = —0.5388992288E°, b = —0.3333328229 and c = —0.03333330492.
For N = 23, these values are a = —0.4667205875E~° ,b = —0.3333329279 and
¢ = —0.03333327191. Then, by using the inverse transformation rule in Eq. (4.2), we

get the following series solution is evaluated up to N = 23:

y(x) = 1-0.4667205875E% —6x — 0.5x2 — 0.3333329279x> — 0.125x*



I. Abdel-Halim and V. Ertiirk / Eur. J. Pure Appl. Math, 2 (2009), (426-447) 435
— 0.03333327191x° — .6944444444E~% — 2x° — .1190476283E % — 2x’
— .1736111111E > — 3x® — .2204584867E " — 4x° — .2480158730E > — x'°
— .2505208992E °x!! — .2296443269E 7 x'? — .1927085335E 8x 13
— .1491196928E °x'* — .1070602736E1°x'> — .7169215999E 2 x1®
— .4498329534E 13x'7 — 2655265185E 4 x1® — 1479714382E 1 x !
— .7809603484E ' x** — .3914587736E '®x*! — .1868326192E " x**

— .8509971524E %' x%3, (5.13)

Example 5.4. We next consider the following non-linear sixth-order BVP
y@O(x) = e*y?(x), 0<x<l, (5.14)

subject to the boundary conditions

y(O) = 15 y/(o) = _1: y//(o) = 1: }’(1) = e_la y/(l) = _e_la }’//(1) = e_l'
(5.15)
Applying the operations of DT to Eq. (5.16), the following recurrence relation is ob-

tained:
Y(k+6)= (k%), S Lo YT =9)Y(k=D). (5.16)

By using Egs. (2.1) and (5.17) the following transformed B.C.’s at x = 0 can be ob-

tained:

Y(O)=1, Y()=-1, Y(2)= l, (5.17)

where, according to Eq. (2.1), a, = 12 (0) =Y(3),a, = o) )(O) =Y(4) and a; = y(;.(O)

Y (5). Utilizing the recurrence relatlon in Eq. (5.18) and the transformed B.C.’s in Eq.
(5.19), Y(k) for k > 6 are given.

1 1 1 1 1
Y(6)= —, Y(7)=———, Y(8)= ——, Y(9)= —— ,
=20 YN =500 Y® =200 Y@= 30220 * 362880
1 1 1 1
Y(10) = _ CYy(1)) = + ,
(10) = Z=50% ~ 3628800° * "M~ Te6320% T 39916800
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and so on.

The constants a,, a, and as are evaluated from the B.C.’s given in Eq. (5.17) for

x =1, by taking N = 11, to obtain the system:

_, 2000701 30241 75601 166321

— + + - ,
3991680 302401 T 756002 " 166320
. 321 10081 30241 75601

24800 3360 17 7560 27 15120%
46943 2521 10081 30241

= + n .
45630 420 17T T840 2T 1512 &

This in turn gives a, = —.1666630261, a, = .04166085689 and a; =.008330914797.
For N = 17, these values are a; = .1666633333, a, = .04166152737 and a; =
—.008331283835. Then, by using the inverse transformation rule in Eq. (4.2), we

get the following series solution is evaluated up to N = 17:

y(x) = 1 —x+0.527 +0.16666333332% + 0.4166152737TF — 1ot — 0.8331283835F — 22°
+0. 1388888880 — 2 2% — 019841260817 — 3 27 + 0.2480158730F — 1 2°
—0.2755621693F — 52° + 0.2755052123F — 62'0 — 0.2503078576F — 7o'
+0.2087675720F — 82 — 0.1605904400F — 922 + 0.1147075100F — 1021
—0.7646535000E — 122 4+ 0.3044023390F — 82'% — 0.7792670132F — 102"

Numerical results for linear and non-linear of sixth- order BVE the differential trans-

formation method DTM with comparison to the exact solution are given in Table 2.

Table 2:

Comparison of numerical result of BVP’s (5.11)-(5.12) and (5.16)-(5.17) see Fig. 2

LN-G"" order bvp NLN-G7 order-bvp

1 DTM(N =23y Yezaer = (1 — x)e®  DTM(N =17) Yezact =€ F

0.0 .100000000E+01 00000000401 1000000001401 100000060 E401
0.1 .004653800E+00 H04GE3800E+00 604837400 E4-00 04837400 E-+00
0.2 07T122100E+00 9771222006400 _S1ST30800E400 BI8T30800E-+00
0.3 .944901000E+00 L944001200E400 . 7T40818300E4+00 740818200400
0.4 .895094600E+00 L805004800E400  .670320200E+00 6703200001400
0.5 .824360400E+00 8243607001200 5308001400 606530700400
0.6 .T2884T300E+00 T28BATHS00E4+00  548811800E+00 5ASS11GO0E+00
0.7 .604125600E+00 G04125T00E4+00 496585500400 965853001500
0.8 AM510TO00E+00 AAST0S100E4H00 . 440320200E-4-00 AA932800015-+00
0.9 245960000E+00 245960100E+00 406569000 E400 06560600 E-+00
1.0 -.299616900F-06 -.324044500E-06  _36GTSTOG00E 400 B6TSTO400E+00

«DTM (N=17 and N=23) 1s DTM of order 17 and of order 23 vespectively
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Example 5.5. We consider the following linear ninth-order BVP [20],
¥y (x) = y(x) — 9e*, 0<x<1, (5.18)

subject to the boundary conditions

yP0)=(1-7j), j=0,1,2,3,4,

. (5.19)
yO(1)=—je, j=0,1,2,3.

Applying the operations of DT to Eq. (5.21), the following recurrence relation is ob-

tained:

| _9
Y(k+9) = % (5.20)

By using Egs. (2.1) and (5.22) the following transformed B.C.’s at x = 0 can be ob-

tained:

Y(0)=1, Y(1)=0, Y(2)=7, Y(3)=3, Y4 =7, (5.21)

where, according to Eq. (2.1), we have

a=20=y(5), b=2"0=y(),

5!
c=2"Ooy(y), d=Y"O=y(s).
Utilizing the recurrence relation in Eq. (5.23) and the transformed B.C.’s in Eq. (5.24),

Y (k) for k > 9 are easily obtained:

Y(9)=-

45360’
Y(10) = ———,
403200
1
Y(11) = ———,
3991680
Y(12) = ——-——,
43545600
Y(13) = —————,
518918400
1 1

Y(14) =

726485760a 726485760
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1
726485760 145297152000
1 1

Y(16) - c— )
4151347200 2324754432000

1

Y(17) = d—- ,
8821612800 39520825344000
1

376610217984000°
1

6758061133824000’
1

128047474114560000°

Y(18) = —

Y(19) = -

Y(20) = —

and so on.
The constants a,b,c and d are evaluated from the B.C.’s given in Eq. (5.22) for

x =1, by taking N = 17, to obtain the system:

726485761 1816214401 1151347201 §821612801 —4037 16263633
726485760 1816214400 1151347200 SS216128000  118362476032007
259459201 26485761 1816214401 1151347201 " 5812412107297
1 C = —_—
51891840 121030960 259459200 518918400 2324754432000
TORI3601 N 250450201 726485761 1816214401 | 163526184469
(U 0 i« a = —_—
3991610 8648640 17207280 32432400 .
19958101 TOR33601 250459201 726485761 5
fl C i = I I ——
332640 665280 1235520 2162160 20059430400

This in turn gives a = —.3336167167E~1 , b = —.6870399019E 2 and

c = —.1255380280E 2 and d = —.1544141065E 3.
For N = 26, these values are a = —.3336167167E~! ,b = —.6870399019E 2
and ¢ = —.1255380280E 2 and d = —.1544141066E~>. Then, by using the inverse

transformation rule in Eq. (4.2), we get the following series solution is evaluated up to

N = 26:

ylz) = 1 —0.52% —0.33333333332° — 0.12527 — (0.0333G1671672° — 0.6870399019F — 245
—0.1255380280F — 227 — 0.1544141066F — 32® — 0.2204585538F — 42°
—0.2480158730F — 52'® — 0.2505210830F — 6! — 0.2206443269F — 7o'2
—0.19270R5260F — 8! — 0.1491587002F — 9% 2% — 0.1066526013F — 10215
—0.7325560642F — 1221 — 0.4280718287F — 13217 — 0.2655265185F — 14218
0 ATOTIABAAE — 1521 — 0.7809603484F — 17220 — 0.301458%213F — 1822
—0.1868326192F — 10222 — 0.8511280785F — 212 — 0.8511280785F — 2122

—0.3608403804F — 2222 — 0.156835T113E — 2327 — 0.6007061140F — 25226
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Numerical results for linear ninth- order BVE the differential transformation method
(DTM) with comparison to the exact solution are given in Table 3.

Table 3: Comparison of numerical result of BVP’s (5.21)-(5.22) see Fig.3.

linear ninth-order BVP

DTM(N = 26)*

Yezaet = (1 — 1 Yt

00000000 4+-01
946538 00E 40
OTT12220014-00
944901 LOOE 40
SO5094800F 400

b=

LT2RIATAO0E 00
604125400 E+00

L 100000000EA+01
0994653800 E4-00
9771222001400
.044901200154-00
LRO5094300E4+00

T28847500E4-00
G04125T00E4-00

w S

451078001 +00 AAS108100E4-00

0 (
0 (
0 (
0 (
824360500E+00 .824360700E4-00
0 (
0 (
0 (
0 (

9245059900 +0 2450960100400
1O -.332080400E-06 -.324044500E-06

wDTM (N=26) is DTM of order 26.,

Example 5.6. We consider the following non-linear tenth-order BVP

¥y (x) = e *y3(x), 0<x<1, (5.22)
subject to the boundary conditions
y#(0)=1,j=0,1,2,3,4,

(5.23)
y#(1)=e, j=0,1,2,3,4.

Applying the operations of DT to Eq. (5.26), the following recurrence relation is obtained

Y(k+10)=—E 50 S CLY (- s)Y(k-D. (5.24)

(k+10)!

By using Egs. (2.1) and (5.27) the following transformed B.C.’s at x = 0 can be ob-

tained:

Y(0)=1, Y(2)=3, Y4 ==, Y(6)=1, Y(8) == (5.25)

21 41° 6!° 8!’

where, according to Eq. (2.1), we have

) y(iii)(o)
0=y (0)=Y(Q), Y(5), a;==—7—=Y(0), a;= =Y(5),



I. Abdel-Halim and V. Ertiirk / Eur. J. Pure Appl. Math, 2 (2009), (426-447) 440

(vii) (ix)
¥ (0) y*(0)
a, = 7 =Y(7), as= o1 =Y(9),

Utilizing the recurrence relation in Eq. (5.28) and the transformed B.C.’s in Eq. (5.29),
Y (k) for k > 10 are easily obtained:

1;
Y(10) = ——
(19 = 3558800
1
Y(l]-) = al - )
19958400 ~ 39916800
1 1 1
Y(12) = + af — a;
159667200 ' 2395008001 119750400 "
1 1 1 1 ,
Y(13) = a, + a, — - aj,
518918400 2 " 5189184007 ~ 889574400 1037836800
1 1 1
Y(14) = n - — +
(14) = 1057836800 ~ 1816214400 1'% ~ 1816214400% ~ 2724321600 "
1 e
7264857600 1
and so on.

The constants a,,a, , as, a, and as are evaluated from the B.C.’s given in Eq. (5.27)

for x =1, by taking N = 12, to obtain :

a, = 1.000000124,
a, = .9999819650,

1.000157229,

Q
w
Il

a, = 9985666714,
as = 1.009946626.

For N = 17, these values are a; = .9999698990, a, = 1.000278188, a; =.9973109664,
a, = 1.023991491 and as; = .8383579606.
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Then, by using the inverse transformation rule in Eq. (4.2), we get the following
series solution is evaluated up to N = 17:
y(x) = 14 0.9999698090 * 2 — 0.52% + 0.16671303142° + 0.0416666666 72"
—+0. [)(]\'HH‘UJ"(]QF + 0001 L\\\m\\\‘lq + 0.00020317291 ]‘l_r’7
+0.000024801587302% + 0.2310280T04F — 527 + 0.2755731922F — 6iz'°
+0.2505060019F — :r“+(1 2087675T00E — 812 + 1767030012F — 8213

+0.1 1156930005 — 102 + 0.1822782051 F — 92 4 0.23058226855 — 10216
S+ 101T0STHIRE — 1027, (5.30)

Numerical results for non-linear tenth- order BVE the differential transformation
method (DTM) with comparison to the exact solution are given in Table 4, and which
have been indicated in Fig. 4.

Table 4: Comparison of numerical result of BVP’s (5.26)-(5.27), see Fig.4.

nonlinear tenth-order BVP

T DTM(N =17) Yexaet — €F

0.0 .100000000E+01 . 100000000E+01
0.1 1104316800101 11051 T100E+01
0.2 .122139700E401 122140300E+01
0.3 .134985100E 401 134985900 E+01
0.4 . 149181500E 401 149182500E+01
0.5 lm>~ 1100E+01 AGART2100E4-01
0.6 .182210000F4-01 18221 1900E+01
0.7 .201374400E+01 201375300E+01
0.8 .222553400E4-01 54100E+01
0.9 >1 0500001401 2459603005 +01
1.0 271828000F401 2T1828200E+01

«DTM (N=17) is differential transformation method of order 17,

Example 5.7. Finally, we consider the non-linear twelfth-order BVP [20]

y(xii)(x) — zexyZ(x) +y(iii)(x)’ 0<x<1, (5.26)
subject to the boundary conditions

y@(0)=1, j=0,1,2,3,4,5,
y@ (1) =e, j=0,1,2,3,4,5.

(5.27)

Applying the operations of (DT) to Eq. (5.31), the following recurrence relation is
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obtained:

(230, S, 2 =)V (k= 1)+ (k+ 1)k + 2)(k +3)Y (k+3)
(5.28)

Y(k+12)= i)

By using Egs. (2.1) and (5.32) the following transformed B.C.’s at x = 0 can be ob-

tained:

Y(O)=1, Y(2)=43, Y4 =

21°

Y(6)=2,Y(®) =g, Y(10)=1, (529

4" 6" 8!

where, according to Eq. (2.1), we have

Y(1) =a, =y(0),

Y= a = y(“;(o),
ﬂw=%=ﬂ§m,
Y(7)=a,= &
Y(9)=as= #,
(xi)
Y(11) = ag = > 11(!0)

Utilizing the recurrence relation in Eq. (5.33) and the transformed B.C.’s in Eq. (5.34),
Y (k) for k > 12 are easily obtained:

Y(lz) = 239500800 + 79833600 a2,

Y(]'B) - 2075673600 + 15567155200 a1

Y(14) 14529715200 + 10897;86400 1 + 21794;72800(1 + 726485760 s,
Y(15) - 87178291200 + 544863132000 1 + 1089721864000 Cl% + 544863132000 a2,
Y(16) 498161664000 + 326918592000 @ + 8717821912000 % + 2179451728000 Cl2+

1
5d1ds +

21794572800 4151347200 4>
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and so on.

The constants a,,a, , as, a, , as and ag are evaluated from the B.C.’s given in Eq.

(5.32) for x =1, by taking N = 16, to obtain:

a, = —0.9999999967, a, = —0.1666666720,

a; = —0.0083333307,a, = —0.0001984133,

as = —0.0000027557, a5 = —0.0000000251

Then, by using the inverse transformation rule in Eq. (4.2), we get the following series

solution is evaluated up to N = 16:

ylr) = 1o+ 0527 — 01666672 + 0.041666T27 — 0.0083333327 + 0.001388802°
—0.00019841327 + 0.00002480162° — 2.75566F — Gz° + 2.75573E — 72"
—250565F — 8zt 4 2 08768E — 9212 — 1.6050E — 102 + 114707 — 1121

~THATICE — 132 + L7796 E — 12"  O(2™).

(5.35)

Numerical results for non-linear twelfth- order BVE the differential transformation

method DTM with comparison to the exact solution are given in Table 5, and which have

been indicated in Fig. 5.

Table: 5 Comparison of numerical result of BVP’s (5.31)-(5.32), see Fig.5.

non-linear twelfth-order BVP

1 DTM(N = 16)

e
Yexact — €

0.0 10.00000000E4+01
0.1 9.048374184E-01
0.2 B 1ATIOTHITE-01
0.3 T.A08182215E-01
0.4 6G.703200470E-01
0.5  G.0GH30660SE-01
0.6 HASS1163T1E-01
0.7 4.965853046E-01
0.8 4.493280647E-01
0.9 4065606601 E-01

1.0 B.6787T94112E-01

10.000000001
9.048374180E-
8187307531 -
TA08182207E-
6.703200460F-
6065306597 -
5488116361 -
LOGHS53038E-
1493280641 -
1065696507 -
367879441 2E-

«DTM (N=16) is differential transformation method of order 16,
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1 Comparison differential transtformation method (IXTM) solution
of nonlinear BVP of 10-th order with exact solution y(x)-exp(x)
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1.0

DTM of order 16
9 Exact solution

0.9 1

yix)

DTM for NLN-BVP of 12-th order with N= 16
0.3

0.2

0.0 0.2 0.4 [IX}Y 0.8 1.0
X
Fig, 5: Comparison differential transformation method (DTM) solutipn
on nonlinear BVP of 12-th order with exact solution vixj—expi(- x)

6. Conclusion

The computations associated with the examples discussed above were performed
by using Maple 4. The existence and uniqueness of the solution is guaranteed by
Agarwal’s [1]. We first gave the definition of HOBVPs, second gave the analysis of
HOBVPs by DTM. In above problems, we gave higher-order series solution. It is shown
that DTM is a very fast convergent, precise and cost efficient tool for solving HOBVPs

in the bounded domains.
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