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Abstract. In [12], a numerical comparison between the differential transform method and

Adomian decomposition method for solving fourth-order boundary value problems was pre-

sented. In this article, we use the differential transformation method (DTM) to solve the linear

and non-linear higher-order boundary value problems (HOBVPs). The method proved to be

very successful and powerful in computing such elements. The specific problems chosen for
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pared with the theoretical solution. It is shown that the solutions obtained from the technique

have a very high degree of accuracy.

2000 Mathematics Subject Classifications: 35C10, 74S30, 65L10, 34B05, 34B15.

∗Corresponding author.

Email addresses: ismhalim�hotmail.om (I. Abdel-Halim), vserturk�omu.edu.tr (V. Ertürk)

http://www.ejpam.com 426 c© 2009 EJPAM All rights reserved.



I. Abdel-Halim and V. Ertürk / Eur. J. Pure Appl. Math, 2 (2009), (426-447) 427

Key Words and Phrases: Higher-order boundary value problem, Differential transformation,

Taylor’s series expansion.

1. Introduction

Recently a great deal of interest has been focused on the applications of the (DTM)

to solve various scientific models, see Refs.[2],[3],[4],[5-6],[7-8],[9],[13-15], [16-

17], [18] and [22]. The (DTM) has also been applied to solve linear and non-linear

higher-order initial value problems, for example [15] and [16].

In this paper, we are interested in the differential transformation method (DTM) to

solve linear and non-linear higher-order boundary value problems (HOBVPs). Many

numerical techniques, such as finite difference method [10] and decomposition method

[19-21] have been implemented to solve (HOBVPs) numerically. The differential

transformation method (DTM) is a numerical method for solving boundary value

problem [17]. The concept of differential transformation was first proposed by Zhou

[23] in 1986, and it was applied to solve linear and non-linear initial value problems

in electric circuit analysis. The method can be used to evaluates the approximat-

ing solution by the finite Taylor series and by an iteration procedure described by

the transformed equations obtained from the original equation using the operations

of differential transformation. The basic definitions of the differential transforma-

tion are introduced in Section 2. The mathematical background of the higher-order

boundary value problems is described in Section 3. Analysis of higher-order boundary

value problems is illustrated by differential transformation method (DTM) in Section

4. Numerical examples are used to illustrate the effectiveness of the proposed method

in Section 5.
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2. The Differential Transformation Method (DTM)

An kth- order differential transformation (DT) of a function y(x) = f (x) is de-

fined about a point x = x0 as:

Y (k) = 1
k!

h

dk y(x)

d xk

i

x=x0

, (2.1)

where k belongs to the set of non-negative integers, denoted as the K-domain.

The function y(x) may be expressed in terms of the differential transforms (DT),

Y (k) as:

y(x) =
∑∞

k=0

h

(x−x0)
k

k!

i

Y (k). (2.2)

Upon combining (2.1) and (2.2), we obtain

y(x) =
∑∞

k=0(x − x0)
k 1

k!

h

dk y(x)

d xk

i

x=x0

, (2.3)

which is actually the Taylor’s series for y(x) about x = x0.

From the basic definition of the differential transforms (DT), one can obtain cer-

tain laws of transformational operations, some of these, are listed in the following.

(1): If z(x) = u(x)± v(x) then, Z(k) = U(k)± V (k).

(2): If z(x) = αu(x) then, Z(k) = αU(k). Here α is a constant.

(3): If z(x) =
du(x)

d x
then, Z(k) = (k+ 1)U(k+ 1).

(4): If z(x) =
d2u(x)

d x2 then, Z(k) = (k+ 1)(k+ 2)U(k+ 2).

(5): If z(x) =
dmu(x)

d xm then, Z(k) = (k+ 1)(k+ 2) · · · (k+m)U(k+m).

(6): If z(x) = u(x)v(x) then, Z(k) =
∑k

l=0 V (l)U(k− l).

(7): If z(x) = x m then, Z(k) = δ (k− n)where,δ (k− n) =







1 k = n

0 k 6= n.

(8): If z(x) = exp(λx) then, Z(k) = λk

k!
.

(9): If z(x) = (1+ x)m then, Z(k) =
m(m−1)···(m−k+1)

k!
.

(10): If z(x) =sin(ωx +α) then, Z(k) = ωk

k!
sin(πk

2
+α).

(11): If z(x) = cos(ωx +α) then, Z(k) = ωk

k!
cos(πk

2
+α).
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3. The Higher-order Boundary Value Problems

(i) even-order boundary value problems

Consider the special (2m)-order BVP of the form

y(2m)(x) = f (x , y), 0< x < b, (3.1)

with boundary conditions

y(2 j)(0) = α2 j; j = 0, 1, 2, . . . , (m− 1), (3.2)

y(2 j)(b) = β2 j; j = 0, 1, 2, . . . , (m− 1), (3.3)

(ii) odd-order boundary value problems

Consider the special (2m+ 1)-order BVP of the form

y(2m+1)(x) = f (x , y), 0< x < b, (3.4)

with boundary conditions

y(2 j+1)(0) = γ2 j+1; j = 0, 1, 2, . . . , m, (3.5)

y(2 j+1)(b) = γ2 j+1; j = 0, 1, 2, . . . , m, (3.6)

It is interesting to point out that y(x) and f (x , y) are assumed real and as many

times differentiable as required for x ∈ [0, b] and α2 j and β2 j , j = 0, 1, 2, . . . (m− 1)

describe the even-order are real finite constants [11], moreover, the conditions α2 j

, j = 0, 1, 2, . . . , (m− 1) describe the even-order derivatives at the boundary x = 0,

while γ2 j+1 and γ2 j+1, j = 0, 1, 2, . . . , m describe the odd-order are real finite constants

and the conditions γ2 j+1, j = 0, 1, 2, . . . m describe the odd-order derivatives at the

boundary x = b.

Theorems which list the conditions for existence and uniqueness solution of such

problems are contained in a comprehensive survey in a book by Agarwal [1], though

no numerical methods are contained therein for solving HOBVP’s of higher order.
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4. Analysis of Higher-order Boundary Value Problems by

Differential Transformation

Let the differential transform of the deflection function y(x) be defined from Eq.

(2.1) as:

Y (k) = 1
k!

h

dk y(x)

d xk

i

x=x0

, (4.1)

where x0 = 0. Also the deflection function may be expressed in terms of Y (k) from

Eq. (2.2) as:

y(x) =
∑∞

k=0

h

xk

k!

i

Y (k). (4.2)

Now, using the transformational operations which has been formed in Sec.2, one can

obtain by taking the differential transform of Eq. (3.1) and (3.4) respectively and

some simplification, the following recurrence equations as m= 0, 1, 2, . . ..

Y (2m+ k) =
∑∞

k=0

h

(2m)!

(2m+k)!

i

Y (., .), (4.3)

Y (2m+ k+ 1) =
∑∞

k=0

h

(2m+1)!

(2m+k+1)!

i

Y (., .), (4.4)

where Y (., .) denotes the transformed function of linear or nonlinear function f (x , y).

It may be noted that Eq. (4.2) is independent of the boundary conditions.

The differential transforms of the boundary conditions at x = 0 are obtained from

Eqs. (3.2) and (3.5) in the cases even-order (odd-order) boundary value problems

respectively, with the definition (4.1) as:

Y (2 j) = 1
(2 j)!
α2 j, j = 0, 1, 2, . . . , (2m− 1), (4.5)

Y (2 j+ 1) = 1
(2 j+1)!

γ2 j+1, j = 0, 1, 2, . . . , 2m, (4.6)

Substituting from (4.5) and (4.6) into (4.3) or (4.4) and using (4.2), yields for j =

0, 1, 2, . . . , (m− 1),

y(x) =
∑∞

k=0

h

1
(2 j)!
α2 j

i

Y (k)x k, (4.7)
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and for j = 0, 1, 2, . . . , m,

y(x) =
∑∞

k=0

h

1
(2 j+1)!

γ2 j+1

i

Y (k)x k. (4.8)

Noting that y(2r+1)(0) = Ar , r = 0, 1, 2, . . . , (m−1) , and y(2r)(0) = Br , r = 0, 1, 2, . . . , m,

are constants that will be approximated at the end point x = b.

5. Numerical Examples

In this section, linear and nonlinear HOBVPs will be tested by using the differential

transformation method, (see [12]).

Example 5.1. We first consider the following linear fifth-order BVP , which is also solved

by Adomian decomposition method (ADM) in the study of [21]

y(υ)(x) = y(x)− 15ex − 10xex , 0< x < 1, (5.1)

subject to the boundary conditions

y(0) = 0, y ′(0) = 1, y ′′(0) = 0, y(1) = 0, y ′(1) =−e. (5.2)

Applying the operations of (DT) to Eq. (5.1), the following recurrence relation is ob-

tained:

Y (k+ 5) =
k!
h

Y (k)− 15
k!
−10
�

∑k
l=0

h

δ(k−l−1)
l!

i�i

(km+5)!
(5.3)

By using Eqs. (2.1) and (5.2) the following transformed B.C.’s at x = 0 can be obtained:

Y (0) = 0, Y (1) = 1, Y (2) = 0, (5.4)

where, according to Eq. (2.1), a =
y′′′(0)

3!
= Y (3) and b =

y(iv)(0)

4!
= Y (4). Utilizing the

recurrence relation in Eq. (5.3) and the transformed B.C.’s in Eq. (5.4), Y (k) for k≥ 5

are easily obtained.
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The constants a and b are evaluated from the B.C.’s given in Eq. (5.2) for x =1, by

taking N = 13, to obtain the system:

148284463

148262400
a+

3632669041

3632428800
b = −

4541061529

5448643200
,

239595841

79833600
a+

5148284463

37065600
b =−e+

15028547

129729600
.

This in turn gives a = −0.3333315065 and b =−0.5000018268.

For N = 24, these values are a = −0.333315040 and b = −0.5000018292. Then,

by using the inverse transformation rule in Eq. (4.2), we get the following series solution

is evaluated up to N = 24:

Example 5.2. We next consider the following non-linear fifth-order BVP

y(υ)(x) = e−x y2(x), 0 < x < 1, (5.5)

subject to the boundary conditions

y(0) = 0= y ′(0) = y ′′(0) = 1, y(1) = y ′(1) = e. (5.6)

Applying the operations of (DT) to Eq. (5.6), the following recurrence relation is ob-

tained:

Y (k+ 5) = k!
(k+5)!

∑k

l=0

∑l

s=0
(−1)s

s!
Y (l − s)Y (k− l). (5.7)

By using Eqs. (2.1) and (5.7) the following transformed B.C.’s at x = 0 can be obtained:

Y (0) = 1, Y (1) = 1, Y (2) = 1
2
, (5.8)
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where, according to Eq. (2.1), a1 =
y′′′(0)

3!
= Y (3) and a2 =

y(iv)(0)

4!
= Y (4). Utilizing the

recurrence relation in Eq. (5.3) and the transformed B.C.’s in Eq. (5.4), Y (k) for k≥ 5

are easily obtained.

The constants a1 and a2 are evaluated from the B.C.’s given in Eq. (5.7) for x = 1,

by taking N = 12, to obtain the system:

e−
80149541

31933440
=

98589

98560
a1 +

1996097

1996097
a2 +

1

133056
a2

1 +
1

47520
a1a2,

e−
5848303

2851200
=

285343

95040
a1 +

665471

166320
a2 +

1

13860
a2

1 +
1

3960
a1a2.

This in turn gives a1 = 0.666611767 and a2 = 0.0416703271.

For N = 20, these values are a1 = 0.1666611892 and a2 = 0.0416703549. Then,

by using the inverse transformation rule in Eq. (4.2), we get the following series solution

is evaluated up to N = 20:

Numerical results for linear and non-linear of fifth- order BVP’s, the differential trans-

formation method (DTM) with comparison to the exact solution are given in Table 1.

Example 5.3. Again, following the study of [19], we consider the following linear sixth-
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order BVP , which is also solved by Adomian decomposition method (ADM)

y(vi)(x) = y(x)− 6ex , 0< x < 1, (5.9)

subject to the boundary conditions

y(0) = 1, y ′′(0) = −1, y(iv)(0) =−3, y(1) = 0, y
′′
(1) =−2e, y

(iv)

(1) = −4e.

(5.10)

Applying the operations of DT to Eq. (5.11), the following recurrence relation is ob-

tained:

Y (k+ 6) =
k![Y (k)− 6

k!]
(k+6)!

. (5.11)

By using Eqs. (2.1) and (5.12) the following transformed B.C.’s at x = 0 can be ob-

tained:

Y (0) = 1, Y (2) =−1
2
, Y (4) = −1

8
, (5.12)

where, according to Eq. (2.1), a = Y (1), b =
y′′′(0)

3!
= Y (3) and c =

y(v)(0)

5!
= Y (5).

Utilizing the recurrence relation in Eq. (5.13) and the transformed B.C.’s in Eq. (5.14),

Y (k) for k ≥ 6 are easily obtained.

The constants a, b and c are evaluated from the B.C.’s given in Eq. (5.12) for x = 1,

by taking N = 13, to obtain the system:

889750903

889574400
a+

60481

60480
b+

332641

332640
c =−

456655181

1245404160
,

332641

39916800
a+

5041

840
b+

60481

3024
c =−2e+

110549143

39916800
,

60481

362880
a+

1

20
b+

5041

42
c =−4e+

829261

120960
.

This in turn gives a = −0.5388992288E−6 , b =−0.3333328229 and c = −0.03333330492.

For N = 23, these values are a = −0.4667205875E−6 ,b = −0.3333329279 and

c = −0.03333327191. Then, by using the inverse transformation rule in Eq. (4.2), we

get the following series solution is evaluated up to N = 23:

y(x) = 1− 0.4667205875E−6 − 6x − 0.5x2− 0.3333329279x3 − 0.125x4
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− 0.03333327191x5 − .6944444444E−2 − 2x6− .1190476283E−2 − 2x7

− .1736111111E−3 − 3x8− .2204584867E−4 − 4x9− .2480158730E−5 − x10

− .2505208992E−6 x11− .2296443269E−7 x12 − .1927085335E−8 x13

− .1491196928E−9 x14− .1070602736E−10 x15− .7169215999E−12 x16

− .4498329534E−13 x17− .2655265185E−14 x18− .1479714382E−15 x19

− .7809603484E−17 x20− .3914587736E−18 x21− .1868326192E−19 x22

− .8509971524E−21 x23. (5.13)

Example 5.4. We next consider the following non-linear sixth-order BVP

y(υi)(x) = ex y2(x), 0< x < 1, (5.14)

subject to the boundary conditions

y(0) = 1, y ′(0) = −1, y ′′(0) = 1, y(1) = e−1, y ′(1) = −e−1, y ′′(1) = e−1.

(5.15)

Applying the operations of DT to Eq. (5.16), the following recurrence relation is ob-

tained:

Y (k+ 6) = k!
(k+6)!

∑k

l=0

∑l

s=0
1
s!

Y (l − s)Y (k− l). (5.16)

By using Eqs. (2.1) and (5.17) the following transformed B.C.’s at x = 0 can be ob-

tained:

Y (0) = 1, Y (1) =−1, Y (2) = 1
2
, (5.17)

where, according to Eq. (2.1), a1 =
y′′′(0)

3!
= Y (3), a2 =

y(iv)(0)

4!
= Y (4) and a3 =

y(v)(0)

5!
=

Y (5). Utilizing the recurrence relation in Eq. (5.18) and the transformed B.C.’s in Eq.

(5.19), Y (k) for k ≥ 6 are given.

Y (6) =
1

720
, Y (7) = −

1

5040
, Y (8) =

1

40320
, Y (9) =

1

30240
a1 +

1

362880
,

Y (10) =
1

75600
a2 −

1

3628800
, Y (11) =

1

166320
a3 +

1

39916800
,
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...

and so on.

The constants a1, a2 and a3 are evaluated from the B.C.’s given in Eq. (5.17) for

x = 1, by taking N = 11, to obtain the system:

e−1 −
2000701

3991680
=

30241

30240
a1 +

75601

75600
a2 +

166321

166320
a3,

−e−1 −
321

44800
=

10081

3360
a1 +

30241

7560
a2 +

75601

15120
a3,

e−1 −
46943

45630
=

2521

420
a1 +

10081

840
a2 +

30241

1512
a3.

This in turn gives a1 = −.1666630261, a2 = .04166085689 and a3 =.008330914797.

For N = 17, these values are a1 = .1666633333, a2 = .04166152737 and a3 =

−.008331283835. Then, by using the inverse transformation rule in Eq. (4.2), we

get the following series solution is evaluated up to N = 17:

Numerical results for linear and non-linear of sixth- order BVP, the differential trans-

formation method DTM with comparison to the exact solution are given in Table 2.
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Example 5.5. We consider the following linear ninth-order BVP [20],

y(i x)(x) = y(x)− 9ex , 0< x < 1, (5.18)

subject to the boundary conditions

y( j)(0) = (1− j), j = 0, 1, 2, 3, 4,

y( j)(1) = − je, j = 0, 1, 2, 3.
(5.19)

Applying the operations of DT to Eq. (5.21), the following recurrence relation is ob-

tained:

Y (k+ 9) =
k![Y (k)− 9

k!]
(k+9)!

. (5.20)

By using Eqs. (2.1) and (5.22) the following transformed B.C.’s at x = 0 can be ob-

tained:

Y (0) = 1, Y (1) = 0, Y (2) = −1
2

, Y (3) = −1
3

, Y (4) = −1
8

, (5.21)

where, according to Eq. (2.1), we have

a =
y(v)(0)

5!
= Y (5), b =

y(vi)(0)

6!
= Y (6),

c =
y(vii)(0)

7!
= Y (7), d =

y(viii)(0)

8!
= Y (8).

Utilizing the recurrence relation in Eq. (5.23) and the transformed B.C.’s in Eq. (5.24),

Y (k) for k ≥ 9 are easily obtained:

Y (9) = −
1

45360
,

Y (10) = −
1

403200
,

Y (11) =−
1

3991680
,

Y (12) = −
1

43545600
,

Y (13) =−
1

518918400
,

Y (14) =
1

726485760
a−

1

726485760
,
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Y (15) =
1

726485760
b−

1

145297152000
,

Y (16) =
1

4151347200
c −

1

2324754432000
,

Y (17) =
1

8821612800
d −

1

39520825344000
,

Y (18) = −
1

376610217984000
,

Y (19) = −
1

6758061133824000
,

Y (20) = −
1

128047474114560000
,

and so on.

The constants a, b, c and d are evaluated from the B.C.’s given in Eq. (5.22) for

x = 1, by taking N = 17, to obtain the system:

This in turn gives a = −.3336167167E−1 , b = −.6870399019E−2 and

c = −.1255380280E−2 and d = −.1544141065E−3.

For N = 26, these values are a = −.3336167167E−1 ,b = −.6870399019E−2

and c = −.1255380280E−2 and d = −.1544141066E−3. Then, by using the inverse

transformation rule in Eq. (4.2), we get the following series solution is evaluated up to

N = 26:
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Numerical results for linear ninth- order BVP, the differential transformation method

(DTM) with comparison to the exact solution are given in Table 3.

Table 3: Comparison of numerical result of BVP’s (5.21)-(5.22) see Fig.3.

Example 5.6. We consider the following non-linear tenth-order BVP

y(x)(x) = e−x y2(x), 0 < x < 1, (5.22)

subject to the boundary conditions

y(2 j)(0) = 1, j = 0, 1, 2, 3, 4,

.

y(2 j)(1) = e, j = 0, 1, 2, 3, 4.

(5.23)

Applying the operations of DT to Eq. (5.26), the following recurrence relation is obtained

Y (k+ 10) = k!
(k+10)!

∑k

l=0

∑l

s=0
(−1)s

s!
Y (l − s)Y (k− l). (5.24)

By using Eqs. (2.1) and (5.27) the following transformed B.C.’s at x = 0 can be ob-

tained:

Y (0) = 1, Y (2) = 1
2!

, Y (4) = 1
4!

, Y (6) = 1
6!

, Y (8) = 1
8!

, (5.25)

where, according to Eq. (2.1), we have

a1 = y ′(0) = Y (1), Y (5), a2 =
y(iii)(0)

3!
= Y (3), a3 =

y(v)(0)

5!
= Y (5),



I. Abdel-Halim and V. Ertürk / Eur. J. Pure Appl. Math, 2 (2009), (426-447) 440

a4 =
y(vii)(0)

7!
= Y (7), a5 =

y(i x)(0)

9!
= Y (9),

Utilizing the recurrence relation in Eq. (5.28) and the transformed B.C.’s in Eq. (5.29),

Y (k) for k ≥ 10 are easily obtained:

1;

Y (10) =
1

3628800
,

Y (11) =
1

19958400
a1 −

1

39916800
,

Y (12) =
1

159667200
+

1

239500800
a2

1 −
1

119750400
a1,

Y (13) =
1

518918400
a2 +

1

518918400
a1 −

1

889574400
−

1

1037836800
a2

1,

Y (14) =
1

1037836800
+

1

1816214400
a1a2 −

1

1816214400
a2 −

1

2724321600
a1+

1

7264857600
a2

1

...

and so on.

The constants a1,a2 , a3, a4 and a5 are evaluated from the B.C.’s given in Eq. (5.27)

for x = 1, by taking N = 12, to obtain :

a1 = 1.000000124,

a2 = .9999819650,

a3 = 1.000157229,

a4 = .9985666714,

a5 = 1.009946626.

For N = 17, these values are a1 = .9999698990, a2 = 1.000278188, a3 = .9973109664,

a4 = 1.023991491 and a5 = .8383579606.
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Then, by using the inverse transformation rule in Eq. (4.2), we get the following

series solution is evaluated up to N = 17:

Numerical results for non-linear tenth- order BVP, the differential transformation

method (DTM) with comparison to the exact solution are given in Table 4, and which

have been indicated in Fig. 4.

Table 4: Comparison of numerical result of BVP’s (5.26)-(5.27), see Fig.4.

Example 5.7. Finally, we consider the non-linear twelfth-order BVP [20]

y(x ii)(x) = 2ex y2(x) + y(iii)(x), 0< x < 1, (5.26)

subject to the boundary conditions

y(2 j)(0) = 1, j = 0, 1, 2, 3, 4, 5,

y(2 j)(1) = e−1, j = 0, 1, 2, 3, 4, 5.
(5.27)

Applying the operations of (DT) to Eq. (5.31), the following recurrence relation is
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obtained:

Y (k+ 12) = k!
(k+12)!

h

2
∑k

l=0

∑l

s=0
1
s!

Y (l − s)Y (k− l) + (k+ 1)(k+ 2)(k+ 3)Y (k+ 3)
i

.

(5.28)

By using Eqs. (2.1) and (5.32) the following transformed B.C.’s at x = 0 can be ob-

tained:

Y (0) = 1, Y (2) = 1
2!

, Y (4) = 1
4!

, Y (6) = 1
6!

, Y (8) = 1
8!

, Y (10) = 1
10!

, (5.29)

where, according to Eq. (2.1), we have

Y (1) = a1 = y ′(0),

Y (3) = a2 =
y(iii)(0)

3!
,

Y (5) = a3 =
y(v)(0)

5!
,

Y (7) = a4 =
y(vii)(0)

7!
,

Y (9) = a5 =
y(i x)(0)

9!
,

Y (11) = a6 =
y(x i)(0)

11!
.

Utilizing the recurrence relation in Eq. (5.33) and the transformed B.C.’s in Eq. (5.34),

Y (k) for k ≥ 12 are easily obtained:

Y (12) = 1
239500800

+ 1
79833600

a2,

Y (13) = 1
2075673600

+ 1
1556755200

a1,

Y (14) = 1
14529715200

+ 1
10897286400

a1 +
1

21794572800
a2

1 +
1

726485760
a3,

Y (15) = 1
87178291200

+ 1
54486432000

a1 +
1

108972864000
a2

1 +
1

54486432000
a2,

Y (16) = 1
498161664000

+ 1
326918592000

a1 +
1

871782912000
a2

1 +
1

217945728000
a2+

1
217945728000

a1a2 +
1

4151347200
a4,

...
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and so on.

The constants a1,a2 , a3, a4 , a5 and a6 are evaluated from the B.C.’s given in Eq.

(5.32) for x =1, by taking N = 16, to obtain:

a1 =−0.9999999967, a2 = −0.1666666720,

a3 = −0.0083333307, a4 =−0.0001984133,

a5 = −0.0000027557, a5 = −0.0000000251

Then, by using the inverse transformation rule in Eq. (4.2), we get the following series

solution is evaluated up to N = 16:

Numerical results for non-linear twelfth- order BVP, the differential transformation

method DTM with comparison to the exact solution are given in Table 5, and which have

been indicated in Fig. 5.

Table: 5 Comparison of numerical result of BVP’s (5.31)-(5.32), see Fig.5.
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6. Conclusion

The computations associated with the examples discussed above were performed

by using Maple 4. The existence and uniqueness of the solution is guaranteed by

Agarwal’s [1]. We first gave the definition of HOBVPs, second gave the analysis of

HOBVPs by DTM. In above problems, we gave higher-order series solution. It is shown

that DTM is a very fast convergent, precise and cost efficient tool for solving HOBVPs

in the bounded domains.
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