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Abstract. In this paper, second order linear two-point boundary value problems are treated using
new method based on hybrid cubic B-spline. The values of the free parameter, v, are chosen via
optimization. The value of the free parameter plays an important role in giving accurate results.
Optimization of this parameter is carried out. This method is tested on four examples and a
comparison with cubic B-spline, trigonometric cubic B-spline and extended cubic B-spline methods
has been carried out. The examples suggest that this method produces more accurate results than
the other three methods. The numerical results are presented to illustrate the efficiency of our
method.
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1. Introduction

Boundary value problems occur in various fields of physics, applied mathematics, chem-
istry, biology, and engineering. Consider the general form of linear second-order two-point
boundary value problem :

u"(z) + m(z)d (x) + n(x)u(z) = r(x), z€[0,1],
u(0) = B1, u(l) = B, (1)

where m(z),n(x),r(x) € C°[0,1] and n(z) < 0 on [0,1]. The existence of solution to
such problem was studied in [1, 2].
Linear two-point boundary value problems have been discussed widely and solved numer-
ically by many authors [3-9, 14, 21, 24, 26]. Homotopy perturbation method is better
than most of the other methods in the literature in giving accurate results with rapid con-
vergence [4]. Variational iteration method is successful in dealing with singular problems.
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Moreover, this method does not need discretization, interpolation and it can derive the
exact solution by using one iteration only. This method is also valid for large coefficients
[5]. The extended adomian decomposition method is a very effective algorithm which pro-
vides promising results with simple calculations [6]. Spectral method gives highly accurate
solutions to boundary value problems [7]. Reproducing kernel gives quite accurate and
efficient solution for linear fourth-order multi-point boundary value problems [8, 9]. Finite
difference method gives highly accurate results only at the chosen knots whereas in some
other methods, the results can be obtained at any point in the domain [3, 15].

The aim of this research is to use hybrid cubic B-spline (HCBSM) to solve equation (1).
This equation had already been treated using cubic B-spline method (CBSM), trigono-
metric cubic B-spline method (TCBSM), extended cubic B-spline method (ECBSM), and
BS2 methods. ECBSM is by far the efficient spline-based method in producing accurate
results [15-18]. Cubic spline is used to obtain the solution at any point in the range [10—
13]. B-spline interpolation is the efficient to interpolate any smooth functions comparing
with finite difference, finite element, finite volume methods [15]. Cubic trigonometric B-
spline produces more accurate results compared to cubic B-spline if the problems were
trigonometric [16]. The ECBSM have a free parameter A, and this parameter is important
to give more accurate results. The value of A can be obtained by optimization [17]. BS2
methods give more accurate solution [18]. The generalized nonlinear Klien-Gordon equa-
tion and nonlinear two-point BVPs have been treated using HCBSM and the results are
promising [19, 25]. Therefore, HCBSM can be applied to solve equation (1) . The hybrid
cubic B-spline also contains a free parameter, .

2. Hybrid Cubic B-spline

HCBS is a combination between CBS and TCBS [19]. One free parameter, -, is
introduced within the basis function. For a finite interval [0, 1], suppose that {z;};" , is a
uniform partition of a finite interval [0,1] with n € Z* such that 0 = zo < 71 < ... < T, =
1. We can extend the partition using

_1-0

h=—— x9=0, x;=x9+1ih, 1€Z.
n

Hybrid cubic B-spline basis function, H}(x), can be defined as:
Hi(x) =B}(z) + 1= NT}(x), v€ER. (2)

where B}(x) and T} (x) is a basis functions of cubic B-spline and trigonometric cubic
B-spline, respectively [15, 19, 20, 22], as shown in (3)-(4).
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(z — )3, x € [z, Tit1],
4($) _ 1 h3 + 3h2(x — 1‘2'4,_1) + 3h<{L‘ — $i+1)2 — 3(1‘ — .%'2'4_1)3, T € [$i+17 .’Ez’+2},
! 24h4 h3 + 3h2(1‘i+3 - ."L‘) + 3h($¢+3 — l‘)Q - 3(ZE¢+3 - l’)g, S [l’i+2, ."L‘Z'+3},

(Tita — )%, @ € [Tits, Tiza].

(3)

(@), @€ [, wiga),
i) = L p(xo)lp(z:)a(@ive) + p(zir1)a(Tirs)] + P (Tir1)a(@ive), @ € [wir1, Tigal,
' £ a(@ia)p(@i)a(@ivs) + p(@iv)a(zivd)] +p()a* (@is), @ € [Tip2, Tivs),
¢*(Tira), @ € [Tita, Tiyal,
T —x; T, — T h 3h W
p(z;) = sin( Y, q(x;) = sin(= ), K= sin(i) sin(h) sin(?).

If v = 0, this basis function is equal to cubic trigonometric B-spline basis function and
if ¥ = 1, the basis function becomes B-spline basis function. H}(z) is a piecewise function
of degree 3.

The values of H; and its derivatives H;, H;l at the nodal points are tabulated in Table
1, where

o — 1+(1—fy)sin2(%) 0 — 4y 2(1 — ) sin(%) 0y — 7 31 —-9) 0y = - 3(1-7)
6 sin(h)sin(3)’ 6 sin(3) 7 2h  4sin(3)’ 2h  4sin(3)’
. v 3(1— 'y)[sin(%) — 251113(%) + sin(%)] as — —27_3(1 — )[sin(2h) + 251112(%) sin(h)].
h? 8sin(2) sin(h) sin(3) ’ h? 4sin(2) sin(h) sin(32)

Table 1: Coefficient of H;, H, and H,

z Ti—1 Ti | Tiql
H; ai as al
’
H, a3 0 agq
a2
H; as ag as

From the basis function, an arbitrary spline curve can be generated by the following
formula:

n—1
S(x)= > CiH}(z), =€ [xo,za), Ci€R. (5)
1=—3

There are only four nonzero basis functions, H} ;(z), H} 5(z), H ;(z), and H}(z) on the
sub-interval [x;, z;+1]. This is due to the local support property of the B-spline basis. At
z;, there are only three nonzero basis functions; namely, H} 5(z;), H} o(x;), and H} | (x;)
[19]. So, by finding the first and second derivatives of S(x) and substituting z;, we obtain

S(z;)) = A1Ci_g+ AsCio+ A1Ci_1, (6)
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/

S(xi) = A3Ciz— A3Ci, (7)
S (x;) = AuCiz+ AsCio+ AyCiy, (8)
where
A; :’701+(1_7)n27 for i = 1,2,..,5, (9)
with
1 4 —1 1 —2
0-1:67 02:67 0.3:%1 0-4:?7 05:ﬁ7
B K2 _ 2np -3 ~ 3(k1 — 263 + K3) _ —3(ka+ 2K7K2)
m = sy o Mm=—— MW=-— M= N5 =
Koks3 K3 4dKg 8K1KoKs3 4K1KoK3
(10)
and
. h . ., 3h .
K1 = 81n(§), ko =sin(h), k3= Sln(7), K4 = sin(2h). (11)

3. Hybrid Cubic B-spline interpolation method

In order to solve problem (1), suppose that the solution is S(x), as follows:

1

S (z) + m(z)S (z) + n(z)S(z) = r(z), z€][0,1],

S(0) =1, S(1) = pPo. (12)
Substituting z; in (12) , we have
S (zi) + m(x:)S () + n(xs)S(x;) = r(x;), i=0,1,..,n. (13)
By substituting equations (6) to (8) into (1), we have
{Cizslyoa + (1 = v)m] + Ci—z[yos + (1 = v)ns] + Ci—1[yoa + (1 — v)nal}
+m(zi){Ci—s[—yo3 — (1 = y)ns] + Ci—1[yos + (1 — v)ns]}
+n(@i){Ci—s[yo1+ (1 —7)m]+Ciz[yor + (1 —=7)me]+ Cic1[yor + (1 —=7)m]} = r(z;). (14)
By collecting the terms that only contain C;_3, C;_2, and C;_; from (14), we have

Ci—slyos + (1 = y)na — m(x;)(yos + (1 = y)n3) + n(x;) (yor + (1 —v)m)]

+Ci—alyos + (1 —y)ns + n(z) (yo2 + (1 —7)n2)]
+Ci1[yos + (1 —y)na 4+ m(x;) (yoz + (1 — v)n3) +n(xi) (yor + (1 —v)m)] = r(xi). (15)
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Similarly, the boundary conditions can be simplified as the following;:

5(0) = S(x0) = Cslyo1+(1=y)m]+C-2[yoe+(1=7)ne]+C_1[yo1+(1—y)m] = B1 (16)

S(1) = S(zn) = Cnslyor+ (1 =7)ml+ Cralyoa+ (1 =7)n2]+ Cnalyor + (1 =7)m] = b2
(17)
We can rearrange (15), (16), and (17) to get a matrix equation in the form of

[Al(n43)x (n+3) [Cl(nt3)x1 = [Rl1x(n+3) (18)

where C' = [C_3,C_5,C_1,...,Cp_1]T is the unknown vector, R = [B1,7(x0),7(21), ..., 7(22), B2]T,
and A is an (n + 3) x (n + 3) -dimensional matrix given by

yoi+(A—y)n1  yoo+(1—v)n2  yor+{1—v)m 0 s 0 0
ag(zg) bo (z0) co(zq) 0 o 0 0
0 ay(ey) by (wy) cy1(wy) 0 T 0

0 ce o 0 an (zn) bn (zn) cn(en)

vor1+(1=v)n1  voo+(l-=v)nz  vyo1+(1—-v)m (n+3)x (n+3)

The coefficients in the matrix A are as the following for ¢ = 0,1, ..., n:

ai(z;) = [yoa+ (L —y)m] —m(zi)[yos + (1 —y)ns] + n(zi)[yor + (1 —v)m]
[vos + (L —v)ns] 4+ n(z)[yo2 + (1 — v)n2]
ci(ri) = [yoa+ (1= )] +m(z;)[yos + (1 —v)ns] + n(zi)[yor + (1 — y)m]

=
<7
—

8
<!
~

I

+
+

Therefore, C' can be solved by taking

C=A"'R. (19)

In order to get the approximate analytical solution of equation (1) we can substitute
the values of C; in equation (5), for i = —3,—2,...,n — 1 . The numerical solution can be
calculated after obtaining the values of by trial and error [19].

4. Optimizing the vy

The approximate analytical solution is of the form

n—1
S(x,v) = E CiH (2,7), = € [0, zn], Ci €R. (20)
i=—3

where C;’s are obtained by solving a linear system of order (n + 1) x (n + 1). C;’s are
functions of z and «. The approach used is adopted from [17]. Equation (20) has two free
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parameters, x and 7. So, S(x) can be written as S(z,~). S(x,) is piecewise polynomials
with n intervals, as in equation (21). Each Sj(z,~), for i = 1,2,...,n — 1 is a polynomials
of degree four.

Si(z,7), ®€ [, zit1], (21)

Equation (1) can be written as in Equation (22).
u’(z) + m(z)d (z) + n(z)u(x) — r(z) =~ 0. (22)
Substituting the approximate solutions, S(x,~) and its derivatives into (22), we have
S (z,7) + m(x)S (2,7) + n(x)S(z,v) — r(z) = 0 (23)
Equation (23) can be written as of error formula. From this equation, we have
D(z,7) =S (2,7) + m(z)S (x,7) + n(x)S(w,7) = r(x), @ € |20, n]
which can be expanded into equation (24).
Sy (z,7) + m(x)S;(z,7) + n(z)Si(z,7) — r(z), z € [15, mip1], (24)

Since equation (24) is piecewise functions with n equations, it is wise to have some represen-
tatives from every sub-interval. Suppose we have a sequence , {z }?:_11, where z} € [zg, ]
and m € Z" such that 2} = Lgi“, for i =1,2,...,n — 1. Evaluating D(x,) at {:U;k}?:_ll

would produce a sequence of 2n expressions containing -,
D(x;ka ’7)7 WS [:E’L'a 1Ei+1] (25)

By handling equations (25) as the error at collocation points, the expressions are combined
using the two-norm formula resulting equation (26). We hope to minimize d; () norm as
follows:

n—1

di(y) = 4| D _(D(x}),7) (26)

=1

Also, from equation (26) we can obtain da(7) which is assumed to be easier to calculate

than the former.
n—1

da(v) =Y (D(x},7)) (27)

i=1
On the other hand, we can combine the expressions using one-norm formula, as in equation

(28). -
ds(v) = |D(x}, )| (28)
i=1

This is done to make comparisons between results of dy (), d2(7), and d3(y) in terms of
computational time and accuracy. ds(vy) is significantly more simplified that the other
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two. By using Mathematica, we can find the value of v depends on equations (26), (27),
and (28) as follows:

da(7) =Y (D(},7))* =0

i=1
n—1

d3(y) = |D(z},7)| =0
i=1

Finally, the values of v and C; can be obtained for i = 1,2,...,n — 1. Thus, the solutions
for each knot, z;, can be obtained from Equation (1).

5. Numerical Examples and Discussions

HCBSM was applied on Examples 1-4 with n = 10 and the results are compared
with the analytical solutions. Norms of the results are found numerically by the following
formulas:

n—1

> 18 (i) — u(x))?

i=1

Log = thax | §(z;) —u(as) | Ly =

Example 1. [15]

() = —e*1 -1,

u(0) =0, u(1l) =0

The analytical solution is u(z) = z(1 —e
The results for examples 1, 2, 3, and 4 are shown in Tables 2, 3, 4, and 5 and Figures 1, 2,
3, and 4, respectively. We found that our method produced much more accurate results
than the CBSM [15], TCBSM [16], and ECBSM [23].

(29)

zfl)_

Table 2: Absolute errors and norms of CBSM [15], TCBSM [16], ECBSM [23], and HCBSM for Example 1 with
n =10

T CBSM TCBSM ECBSM HCBSM

(A =2.9375E — 03) | (y = 1.73125)
0.1 | 7.531E —05 | 1.756FE — 04 2.996E — 06 1.568E — 07
0.2 | 1.439E — 04 | 3.369E — 04 4.896 E — 06 2.264FE — 07
0.3 | 2.031E—04 | 4.772E — 04 5.739E — 06 2.062E — 07
0.4 | 2.499E — 04 | 5.890E — 04 5.611E — 06 1.022E — 07
0.5 | 2.803E —04 | 6.633E — 04 4.668E — 06 6.7T43E — 07
0.6 | 2.900E —04 | 6.890E — 04 3.144E — 06 2.696 E — 07
0.7 | 2.736E — 04 | 6.528E — 04 1.375E — 06 4.527E — 07
0.8 | 2.249E — 04 | 5.390E — 04 1.776 E — 07 5.425F — 07
0.9 | 1.366E —04 | 3.288E — 04 9.013E — 07 4.369E — 07
Lo | 2.900E —04 | 6.890F — 04 5.739E — 06 5.425FE — 07
Ly | 6.609E —04 | 1.568E — 03 1.148E — 05 9.466E — 07
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0.20

0.15

S(x)

0.10]

0.05]

X

Figure 1: Numerical solution S(z) and exact solution u(x) for Example 1 using HCBSM with n = 10 and
v =1.73125

Example 2. [15]

u(z) 4+ (x4 D) (z) — 2u(z) = (1 —22)e ™™, 0<z<1

(30)
u(0) = —1, u(l)=0
The analytical solution is u(z) = (x — 1)e™™.

Table 3: Absolute errors and norms of CBSM [15], TCBSM [16], ECBSM [23], and HCBSM for Example 2 with
n =10

z CBSM TCBSM ECBSM HCBSM
(A = 2.9375E — 03) (y = 1.6775)
0.1 1.161E — 04 | 2.922E — 04 1.004E — 06 3.618E — 07
0.2 1.872E — 04 | 4.686E — 04 3.920F — 07 4.115E — 07
0.3 2.229F — 04 | 5.547E — 04 1.030E — 06 2.802F — 07
0.4 2.311E — 04 | 5.719E — 04 2.655E — 06 6.830F — 07
0.5 2.185FE — 04 | 5.37T6E — 04 4.038E — 06 1.495E — 07
0.6 1.906E — 04 | 4.661E — 04 4.875E — 06 3.199E — 07
0.7 1.152E — 04 | 3.687E — 04 4.969E — 06 4.071E — 07
0.8 1.053E — 04 | 2.543E — 04 4.208E — 06 3.890F — 07
0.9 5.406 E — 05 1.297E — 04 2.551F — 06 2.544F — 07
Loo 2.311E — 04 | 5.719E — 04 4.969FE — 06 4.071E — 07
Lo 5.222FE — 04 1.290E — 03 9.912FE — 06 9.433E — 07
T
0.0
-02 |+
X -041
@ L
3 ® HCBSM
-0.6 - E
L —— Exact
-0.8 E
L \ \ \ \
0.0 02 0.4 0.6 0.8 1.0

X

Figure 2: Numerical solution S(z) and exact solution u(x) for Example 2 using HCBSM with n = 10 and
~ = 1.6775
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Example 3. [2]

2

u(z) — mPu(x) = —2n2 sin(rz),

u(0) =0, u(l) =0

0<z<1

The analytical solution is u(z) = sin(7x).

1291

Table 4: Absolute errors and norms of CBSM [15], TCBSM [16], ECBSM [23], and HCBSM for Example 3 with

n =10
= CBSM TCBSM ECBSM TICBSM
(A = —1.6500E — 02) | (y = —3.0919)
0.1 | 1.270E — 03 | 9.568E — 04 2.769E — 07 5.184E — 09
0.2 | 2.415E — 03 | 1.820E — 03 5.267E — 07 9.861E — 09
0.3 | 3.324E — 03 | 2.505E — 03 7.249E — 07 1.357E — 08
0.4 | 3.908E —03 | 2.945E — 03 8.522F — 07 1.596E — 08
0.5 | 4.109E — 03 | 3.096E — 03 8.960E — 07 1.678E — 08
0.6 | 3.908E —03 | 2.945F — 03 8.522F — 07 1.596E — 08
0.7 | 3.324E — 03 | 2.505E — 03 7.249E — 07 1.357E — 08
0.8 | 2.415E — 03 | 1.820F — 03 5.267E — 07 9.862F — 09
0.9 | 1.270E — 03 | 9.568F — 04 2.769E — 07 5.182F — 09
Too | 4.109E — 03 | 3.096E — 03 8.960E — 07 1.678E — 08
T, | 9.183E — 03 | 6.923E — 03 2.004E — 06 3.751E — 08

X

Figure 3: Numerical solution S(x) and exact solution u(x) for Example 3 using HCBSM with n = 10 and

v = —3.0919

Example 4. [16]

u(z) —u(z) =0,

0<z<1

u(0) =0, u(1) = sinh(1)

The analytical solution is u(x) = sinh(x).
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Table 5: Absolute errors and norms of CBSM [15], TCBSM [16], ECBSM [23], and HCBSM for Example 4 with

n =10

z CBSM TCBSM BECBSM HCBSM

(A =1.6875E — 03) | (y = 1.32475)
0.1 | 1.294E — 05 | 5.269E — 05 1.660E — 07 7.773E — 10
0.2 | 2.518E —05 | 1.025E — 04 3.230E — 07 1.512E — 09
0.3 | 3.598E —05 | 1.465E — 04 4.615E — 07 2.161E — 09
0.4 | 4.460E — 05 | 1.816E — 04 5.721E — 07 2.679E — 09
0.5 | 5.023E —05 | 2.045E — 04 6.444F — 07 3.017E — 09
0.6 | 5.201E —05 | 2.118E — 04 6.672E — 07 3.124E — 09
0.7 | 4.899E —05 | 1.995E — 04 6.284E — 07 2.942E — 09
0.8 | 4.012E — 05 | 1.634E — 04 5.146 E — 07 2.409F — 09
0.9 | 2.423E — 05 | 9.866E — 05 3.107E — 07 1.455E — 09
Loo | 5.201E — 05 | 2.118E — 04 6.672E — 07 3.124E — 09
12 T.179E — 04 | 4.802E — 04 1.513E — 06 7.083E — 09

S(x)

Figure 4: Numerical solution S(z) and exact solution u(x) for Example 4 using HCBSM with n = 10 and

v = 1.32475

6. Conclusions

In this research, a new method for finding approximate solutions for a second-order
linear two-point boundary value problems based on hybrid cubic B-spline was proposed.
This method is called HCBSM. The values of the free parameter « have influence on the
accuracy of our method. This method improved the accuracy of its predecessors; CBM,
TCBSM, and ECBSM and produced more accurate results than other spline methods.
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