#### EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 14, No. 4, 2021, 1324-1336 ISSN 1307-5543 — ejpam.com Published by New York Business Global



# On k-Cost Effective Domination Number in the Join of Graphs

Jesrael B. Palco<sup>1,\*</sup>, Rolando N. Paluga<sup>2</sup>, Gina A. Malacas<sup>3</sup>

<sup>1</sup> Department of Physical Sciences and Mathematics, College of Science and Environment, Mindanao State University at Naawan, 9023, Naawan, Misamis Oriental, Philippines

<sup>2</sup> Department of Mathematics, College of Mathematics and Natural Sciences,

Caraga State University , 8600, Ampayon, Butuan City, Philippines

<sup>3</sup> Department of Mathematics and Statistics, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, 9200, Iligan City, Philippines

**Abstract.** In this paper, we characterized the k-cost effective domination in the join of graphs. Further, we investigate the k-cost effective domination, cost effective domination index, maximal cost effective domination in the join of graphs.

2020 Mathematics Subject Classifications: 05C69

**Key Words and Phrases**: k-cost effective set, k-cost effective domination index, maximal cost effective domination.

## 1. Introduction

Let G = (V(G), E(G)) be a connected simple graph and  $v \in V(G)$ . The neighborhood of v in the set  $N_G(v) = N(v) = \{u \in V(G) : uv \in E(G)\}$ . The degree of a vertex v in a graph G, denoted by  $deg_G(v)$ , is |N(v)|. A subset S of V(G) is a dominating set of G if for every  $v \in V(G) \setminus S$ , there exists  $u \in S$  such that  $uv \in E(G)$ . The domination number  $\gamma(G)$  of G is the minimum cardinality of a dominating set of G. A subset S of V(G) is an independent set of G if  $uv \notin E(G)$  for distinct pairs of vertices u and v in G. An independent dominating set in G is an independent set in G which is dominating in G. The minimum cardinality  $\gamma_i(G)$  of an independent dominating set in G is called independence domination number.

Let  $k \geq 0$  be an integer. Consider a vertex v, its neighborhood set, N(v) and the vertex-set of G, V(G). A vertex  $v \in S \subseteq V(G)$  is said to be k-cost effective if  $|N(v) \cap (V(G) \setminus S)| \geq |N(v) \cap S| + k$ . A dominating set S is k-cost effective, if every vertex in S is k-cost effective. The minimum cardinality of a k-cost effective dominating

DOI: https://doi.org/10.29020/nybg.ejpam.v14i4.4117

Email addresses: jesrael.palco@msunaawan.edu.ph (J. B. Palco), rnpaluga@carsu.edu.ph (R. N. Paluga), gina.malacas@g.msuiit.edu.ph (G. A. Malacas)

<sup>\*</sup>Corresponding author.

set of G is the k-cost effective domination number  $\gamma_{ce}^k(G)$  of G. In cases where there is no k-cost effective dominating set for G, the k-cost effective domination number of G is infinity. The k-cost effective domination index of G, denoted by  $\eta(G)$ , is the maximum value of k such that k-cost effective domination number is finite. That is,

$$\eta(G) = \max\{k : \gamma_{ce}^k(G) \text{ is finite.}\}$$

The maximal cost effective domination number of G is equal to  $\gamma_{ce}^{\eta(G)}(G)$ .

### 2. Results

**Theorem 1.** Let G and H be connected graphs,  $k \geq max\{|V(G)|, |V(H)|\}$ , and  $S \subseteq V(G+H)$ . Then S is a k-cost effective dominating set in G+H if and only if one of the following holds:

- (i) S is (k |V(H)|)-cost effective dominating set in G;
- (ii) S is (k |V(G)|)-cost effective dominating set in H;
- (iii)  $V(G) \cap S$  is  $(k k_1)$ -cost effective dominating set in G, where  $k_1 = |V(H)| 2|V(H) \cap S|$  and  $V(H) \cap S$  is  $(k k_2)$ -cost effective dominating set in H, where  $k_2 = |V(G)| 2|V(G) \cap S|$ .

*Proof:* Let  $k \ge max\{|V(G)|, |V(H)|\}$ , and  $S \subseteq V(G+H)$ . Suppose S is a k-cost effective dominating set in G+H and let  $x \in S$ . Then

$$|N_{G+H}(x)\setminus S|-|N_{G+H}(x)\cap S|\geq k.$$

Suppose  $S \subseteq V(G)$ . Then S is a dominating set in G. Now,

$$|N_{G+H}(x) \setminus S| - |N_{G+H}(x) \cap S| = |V(H)| + |N_G(x) \setminus S|$$
$$- |N_G(x) \cap S|$$
$$> k.$$

This implies that,

$$|N_G(x) \setminus S| - |N_G(x) \cap S| \ge k - |V(H)|.$$

Hence, S is (k - |V(H)|)-cost effective dominating set in G. Similarly, if  $S \subseteq V(H)$ , then S is (k - |V(G)|)-cost effective dominating set in H.

Suppose that  $S_1 = V(G) \cap S \neq \emptyset$  and  $S_2 = V(H) \cap S \neq \emptyset$ . Since S is a k-cost effective dominating set in G + H,

$$|N_{G+H}(x)\setminus S|-|N_{G+H}(x)\cap S|\geq k.$$

Let  $x \in S_1 \subseteq S$ . Then

$$|N_{G+H}(x) \setminus S| - |N_{G+H}(x) \cap S| = |N_G(x) \setminus S_1| + |V(H) \setminus S_2| - |N_G(x) \cap S_1| - |S_2|$$

$$= |N_G(x) \setminus S_1| + |V(H)| - |S_2| - |N_G(x) \cap S_1| - |S_2|$$
  
= |N\_G(x) \land S\_1| - |N\_G(x) \cap S\_1| + |V(H)| - 2|S\_2|.

This implies that,

$$|N_G(x) \setminus S_1| - |N_G(x) \cap S_1| \ge k - |V(H)| + 2|V(H) \cap S|$$
  
=  $k - (|V(H)| - 2|V(H) \cap S|)$   
=  $k - k_1$ ,

where  $k_1 = |V(H)| - 2|V(H) \cap S|$ . Thus,  $S_1 = V(G) \cap S$  is  $(k - k_1)$ -cost effective dominating set in G. Similarly,  $S_2 = V(H) \cap S$  is  $(k - k_2)$ -cost effective dominating set in H.

Conversely, suppose that S satisfies Property (i). Then S is a dominating set in G+H and

$$|N_G(x) \setminus S| - |N_G(x) \cap S| > k - |V(H)|, \forall x \in S.$$

Now,

$$|N_{G+H}(x) \setminus S| - |N_{G+H}(x) \cap S| = |V(H)| + |N_G(x) \setminus S|$$
$$- |N_G(x) \cap S|$$
$$\ge |V(H)| + k - |V(H)|$$
$$= k,$$

for all  $x \in S$ . Since x is arbitrary, S is a k-cost effective dominating set in G+H. Similarly, if S satisfies Property (ii), then S is a k-cost effective dominating set in G+H. Suppose S satisfies Property (iii) and  $x \in V(G) \cap S$ . Then

$$|N_G(x)\setminus S|-|N_G(x)\cap S|>k-k_1,$$

where  $k_1 = |V(H)| - 2|V(H) \cap S|$ . Now,

$$|N_{G+H}(x) \setminus S| - |N_{G+H}(x) \cap S| = |N_G(x) \setminus S| + |V(H) \setminus S| - |N_G(x) \cap S| + |V(H) \cap S|$$

$$= |N_G(x) \setminus S| - |N_G(x) \cap S| + |V(H) \setminus S| - |V(H) \cap S|$$

$$= |N_G(x) \setminus S| - |N_G(x) \cap S| + |V(H)| - 2|V(H) \cap S|$$

$$\geq k - k_1 + k_1$$

$$= k.$$

Similarly, for each  $x \in V(H) \cap S$ ,  $|N_{G+H}(x) \setminus S| - |N_{G+H}(x) \cap S| \ge k$ . Therefore, S is a k-cost effective dominating set in G + H.

**Corollary 1.** Let G and H be connected graphs,  $k \ge max\{|V(G)|, |V(H)|\}$ . If S is a k-cost effective dominating set in G + H, then one of the following holds:

- (i)  $S \subseteq V(G)$  and  $k \leq \eta(G) + |V(H)|$ ;
- (ii)  $S \subseteq V(H)$  and  $k < \eta(H) + |V(G)|$ ;

(iii) 
$$k \le min\{\eta(G) + |V(H)| - 2|V(H) \cap S|, \eta(H) + |V(G)| - 2|V(G) \cap S|\}.$$

**Theorem 2.** Let G and H be connected graphs such that  $\gamma(G) = 1$  or  $\gamma(H) = 1$  and  $0 \le k \le |V(H)| + |V(G)| - 1$ . Then  $S \subseteq V(G + H)$  is a  $\gamma_{ce}^k$ -set in G + H if and only if S is a  $\gamma$ -set in G or S is a  $\gamma$ -set in H.

Corollary 2. Let G and H be connected graphs such that  $\gamma(G) = 1$  or  $\gamma(H) = 1$ . Then

$$\gamma_{ce}^{k}(G+H) = \begin{cases} 1, & \text{if } 0 \le k \le |V(H)| + |V(G)| - 1\\ \infty, & \text{if } k > |V(H)| + |V(G)| - 1. \end{cases}$$

Corollary 3. Let G and H be connected graphs such that  $\gamma(G) = 1$  or  $\gamma(H) = 1$ . Then  $\eta(G+H) = |V(H)| + |V(G)| - 1$  and  $\gamma_{ce}^{\eta(G+H)}(G+H) = 1$ .

In the succeeding theorems,  $\gamma(G) \geq 2$  and  $\gamma(H) \geq 2$  and assume that  $\Delta(G) + |V(H)| \leq \Delta(H) + |V(G)|$ .

**Theorem 3.** Let G and H be connected graphs such that  $min\{\gamma(G), \gamma(H)\} \geq 2$  and  $0 \leq k \leq \Delta(G) + |V(H)| - 2$ . Then S is a  $\gamma_{ce}^k$ -set in G + H if and only if |S| = 2 and one of the following holds:

- (i)  $|V(G) \cap S| = 1$  and  $|V(H) \cap S| = 1$ ;
- (ii) S is a  $\gamma$ -set in G such that  $k |V(H)| + 2 < \delta(S:G)$ ;
- (iii) S is a  $\gamma$ -set in H such that  $k |V(G)| + 2 \le \delta(S:H)$ .

*Proof:* Suppose that  $A = \{a, b\}$  such that  $deg_G(a) = \Delta(G)$  and  $deg_H(b) = \Delta(H)$ . Clearly, A is a dominating set in G + H. Moreover,

$$|N_{G+H}(a) \setminus A| - |N_{G+H}(a) \cap A| = deg_G(a) + |V(H)|$$
  
=  $\Delta(G) + |V(H)|$   
>  $\Delta(G) + |V(H)| - 2$   
>  $k$ .

and

$$|N_{G+H}(b) \setminus A| - |N_{G+H}(b) \cap A| = deg_H(b) + |V(G)|$$

$$= \Delta(H) + |V(G)|$$

$$\geq \Delta(G) + |V(H)|$$

$$> \Delta(G) + |V(H)| - 2$$

$$\geq k.$$

Thus, A is a k-cost effective dominating set in G+H. Accordingly,  $\gamma_{ce}^k(G+H)=|S|\leq 2$ . Suppose that |S|=1. Then  $\gamma(G)=1$  or  $\gamma(H)=1$ , which is

a contradiction to that fact that  $min\{\gamma(G), \gamma(H)\} \ge 2$ . Therefore,  $\gamma_{ce}^k(G+H) = 2$ . Since S is a  $\gamma_{ce}^k$ -set in G+H, |S|=2.

Clearly,  $|V(G) \cap S| = 1$  and  $|V(H) \cap S| = 1$ . Thus, Property (i) holds.

Suppose that  $S \subseteq V(G)$ . Since S is a dominating set in G + H, S is a dominating set in G. Now,  $\gamma(G) \ge 2$ , so S is a minimum dominating set in G, that is, S is a  $\gamma$ -set in G. Let  $S = \{a_1, a_2\} \subseteq V(G)$ . Suppose  $a_1$  and  $a_2$  are adjacent in S. Then

$$|N_{G+H}(a_i) \setminus S| - |N_{G+H}(a_i) \cap S| = (|V(H)| + deg_G(a_i) - 1) - 1$$

$$= |V(H)| + deg_G(a_i) - 2$$

$$\geq |V(H)| + \delta(S:G) - 2$$

$$\geq k, \ i = 1, 2.$$

Thus,  $k - |V(H)| + 2 \le \delta(S:G)$ . Suppose  $a_1$  and  $a_2$  are not adjacent in S. Then

$$|N_{G+H}(a_i) \setminus S| - |N_{G+H}(a_i) \cap S| = |V(H)| + deg_G(a_i)$$
  
>  $|V(H)| + deg_G(a_i) - 2$   
 $\ge |V(H)| + \delta(S:G) - 2$   
=  $k, i = 1, 2.$ 

Thus,  $k - |V(H)| + 2 \le \delta(S:G)$ . Similarly,  $k - |V(G)| + 2 \le \delta(S:H)$ . Conversely, suppose that S satisfies Property (i). Then S is a  $\gamma$ -set in G+H. Moreover,

$$|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| = |V(H)| - 1 + deg_G(a) - 1$$
  
=  $|V(H)| + \Delta(G) - 2$   
>  $k$ .

and

$$|N_{G+H}(b) \setminus S| - |N_{G+H}(b) \cap S| = |V(G)| - 1 + deg_H(b) - 1$$
  
=  $|V(G)| + \Delta(H) - 2$   
=  $|V(H)| + \Delta(G) - 2$   
 $\geq k$ .

Thus, S is a k-cost effective dominating set in G+H. Hence, S is a  $\gamma_{ce}^k$ -set in G+H. Suppose that S satisfies Property (ii). Then S is a  $\gamma$ -set in G+H. Suppose  $a_1$  and  $a_2$  are adjacent in S. Then

$$|N_{G+H}(a_i) \setminus S| - |N_{G+H}(a_i) \cap S| = (|V(H)| + deg_G(a_i) - 1) - 1$$
  
=  $|V(H)| + deg_G(a_i) - 2$   
 $\ge |V(H)| + \delta(S:G) - 2$   
 $\ge k$ .

Suppose  $a_1$  and  $a_2$  are not adjacent in S. Then

$$|N_{G+H}(a_i) \setminus S| - |N_{G+H}(a_i) \cap S| = |V(H)| + deg_G(a_i)$$
  
>  $|V(H)| + deg_G(a_i) - 2$   
\geq |V(H)| + \delta(S:G) - 2  
= k.

Thus, S is a k-cost effective dominating set in G+H. Suppose that a singleton set is a dominating set in G+H. Then  $\gamma(G)=1$  or  $\gamma(H)=1$ , which a contradiction to the fact that  $\min\{\gamma(G),\gamma(H)\}\geq 2$ . Hence, S is a  $\gamma_{ce}^k$ -set in G+H. Similarly, if S satisfies Property (iii), then S is a  $\gamma_{ce}^k$ -set in G+H.

Therefore, S is a 
$$\gamma_{ce}^k$$
-set in  $G + H$ .

**Theorem 4.** Let G and H be connected graphs such that  $min\{\gamma(G), \gamma(H)\} \geq 2$  and  $k = \Delta(G) + |V(H)| - 1$ . Then S is a k-cost effective dominating set in G + H if and only if one of the following holds:

- (i) S is an independent dominating set in G such that  $\delta(S:G) \geq \Delta(G) 1$ ;
- (ii) S is a dominating set in H such that  $0 \le r_H(a) + 2|N_H(a) \cap S| t \le 1$ , where  $r_H(a) = \Delta(H) deg_H(a)$  and  $t = \Delta(H) + |V(G)| \Delta(G) |V(H)|$ , and  $deg_H(a) + |V(G)| 2|N_H(a) \cap S| = \Delta(G) + |V(H)| 1$ .

*Proof:* Suppose that S is a k-cost effective dominating set in G + H. Consider the following cases:

Case 1:  $V(G) \cap S \neq \emptyset$  and  $V(H) \cap S \neq \emptyset$ .

Let  $a \in V(G) \cap S$ . Then

$$|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| \le \Delta(G) - 1 + |V(H)| - 1$$
  
  $< \Delta(G) + |V(H)| - 1$   
  $= k,$ 

a contradiction. Thus, this case is not possible.

Case 2:  $S \subseteq V(G)$ .

Suppose S is not an independent dominating set G. Let  $a \in S$ . Then there exists  $a' \in S$  such that  $d_G(a, a') = 1$ . Now

$$|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| \le \Delta(G) - 1 + |V(H)| - 1$$
  
  $< \Delta(G) + |V(H)| - 1$   
  $= k,$ 

a contradiction. Thus, in this case S is an independent dominating set in G. Let  $r_G(a) = \Delta(H) - deg_G(a)$ . Now, S is a k-cost effective dominating set in G + H, so

$$|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| = deg_G(a) + |V(H)|$$

$$= \Delta(G) - r_G(a) + |V(H)|$$
  
 
$$\geq \Delta(G) + |V(H)| - 1.$$

Thus,  $r_G(a) \leq 1$  and  $deg_G(a) \geq \Delta(G) - 1$  for all  $a \in S$ . Hence,  $\delta(S : G) \geq \Delta(G) - 1$ . Case 3:  $S \subseteq V(H)$ .

Since S is a k-cost effective dominating set in G+H, S is a dominating set in H. Let  $a \in S$  and  $r_H(a) = \Delta(H) - deg_H(a)$ , and  $t = \Delta(H) + |V(G)| - \Delta(G) - |V(H)|$ . Then

$$|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| = deg_H(a) - |N_H(a) \cap S| + |V(G)| - |N_H(a) \cap S|$$

$$= \Delta(H) - r_H(a) - 2|N_H(a) \cap S| + |V(G)|$$

$$= \Delta(G) + |V(H)| + t - r_H(a) - 2|N_H(a) \cap S|$$

$$= \Delta(G) + |V(H)| - (r_H(a) + 2|N_H(a) \cap S| - t).$$

Thus,  $0 \le r_H(a) + 2|N_H(a) \cap S| - t \le 1$ . Hence,  $deg_H(a) + |V(G)| - 2|N_H(a) \cap S| = \Delta(G) + |V(H)| - 1$ .

Conversely, suppose that S satisfies Property (i). Then S is a dominating set in G+H. Let  $a \in S$ . Then

$$|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| = deg_G(a) + |V(H)|$$
$$= \Delta(G) - 1 + |V(H)|$$
$$= k.$$

Hence, S is a k-cost effective dominating set in G + H.

Suppose that S satisfies Property (ii). Then S is a dominating set in G + H. Now,

$$|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| = deg_H(a) - |N_H(a) \cap S| + |V(G)| - |N_H(a) \cap S|$$

$$= \Delta(H) - r_H(a) - 2|N_H(a) \cap S| + |V(G)|$$

$$= \Delta(G) + |V(H)| + t - r_H(a) - 2|N_H(a) \cap S|$$

$$= \Delta(G) + |V(H)| - (r_H(a) + 2|N_H(a) \cap S| - t).$$

If  $r_H(a) + 2|N_H(a) \cap S| - t = 0$ , then

$$|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| = deg_H(a) - |N_H(a) \cap S| + |V(G)| - |N_H(a) \cap S|$$

$$= \Delta(H) - r_H(a) - 2|N_H(a) \cap S| + |V(G)|$$

$$= \Delta(G) + |V(H)| + t - r_H(a) - 2|N_H(a) \cap S|$$

$$= \Delta(G) + |V(H)| - (r_H(a) + 2|N_H(a) \cap S| - t$$

$$= \Delta(G) + |V(H)|$$

$$> \Delta(G) + |V(H)| - 1$$

$$= k.$$

Hence, S is a k-cost effective dominating set in G + H. If

$$r_H(a) + 2|N_H(a) \cap S| - t = 1$$

then

$$|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| = deg_H(a) - |N_H(a) \cap S| + |V(G)| - |N_H(a) \cap S|$$

$$= \Delta(H) - r_H(a) - 2|N_H(a) \cap S| + |V(G)|$$

$$= \Delta(G) + |V(H)| + t - r_H(a) - 2|N_H(a) \cap S|$$

$$= \Delta(G) + |V(H)| - (r_H(a) + 2|N_H(a) \cap S| - t$$

$$= \Delta(G) + |V(H)| - 1$$

$$= k.$$

Hence, S is a k-cost effective dominating set in G + H.

Therefore, S is a k-cost effective dominating set in G + H.

**Theorem 5.** Let G and H be connected graphs such that  $min\{\gamma(G), \gamma(H)\} \geq 2$  and  $k = \Delta(G) + |V(H)|$ . Then S is a k-cost effective dominating set in G + H if and only if one of the following holds:

- (i) S is an independent dominating set in G such that  $\delta(S:G) = \Delta(G)$ ;
- (ii) S is a dominating set in H such that  $deg_H(a) + |V(G)| = 2|N_H(a) \cap S| + \Delta(G) + |V(H)|$  and  $r_H(a) + 2|N_H(a) \cap S| t = 0$ , where  $r_H(a) = \Delta(H) deg_H(a)$ ,  $t = \Delta(H) + |V(G)| \Delta(G) |V(H)|$ .

*Proof:* Suppose that S is a k-cost effective dominating set in G + H. Consider the following cases:

Case 1:  $V(G) \cap S \neq \emptyset$  and  $V(H) \cap S \neq \emptyset$ .

Let  $a \in V(G) \cap S$ . Then

$$|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| \le \Delta(G) - 1 + |V(H)| - 1$$
  
  $< \Delta(G) + |V(H)|$   
  $= k$ ,

a contradiction. Thus, this case is not possible.

Case 2:  $S \subseteq V(G)$ .

Suppose S is not an independent dominating set G. Let  $a \in S$ . Then there exists  $a' \in S$  such that  $d_G(a, a') = 1$ . Now

$$|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| \le \Delta(G) - 1 + |V(H)| - 1$$
  
  $< \Delta(G) + |V(H)|$   
  $= k$ ,

a contradiction. Thus, in this case S is an independent dominating set in G. Now,

$$|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| = deg_G(a) + |V(H)|$$
  
=  $\Delta(G) + |V(H)|$ 

$$= k$$

Thus,  $deg_G(a) = \Delta(G) \ \forall \ a \in S$ . Hence,  $\delta(S:G) = \Delta(G)$ . Case 3:  $S \subseteq V(H)$ .

Since S is a k-cost effective dominating set in G + H, S is a dominating set in H. Let  $a \in S$  and  $r_H(a) = \Delta(H) - deg_H(a)$ , and  $t = \Delta(H) + |V(G)| - \Delta(G) - |V(H)|$ . Then

$$\begin{split} |N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| &= deg_H(a) - |N_H(a) \cap S| + |V(G)| - |N_H(a) \cap S| \\ &= \Delta(H) - r_H(a) - 2|N_H(a) \cap S| + |V(G)| \\ &= \Delta(G) + |V(H)| + t - r_H(a) - 2|N_H(a) \cap S| \\ &= \Delta(G) + |V(H)| - (r_H(a) + 2|N_H(a) \cap S| - t). \end{split}$$

Thus,  $r_H(a) + 2|N_H(a) \cap S| - t = 0$ . Hence,  $deg_H(a) + |V(G)| = 2|N_H(a) \cap S| + \Delta(G) + |V(H)|$ .

Conversely, suppose that S satisfies Property (i). Then S is a dominating set in G+H. Let  $a \in S$ . Then

$$|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| = deg_G(a) + |V(H)|$$

$$= \delta(S:G) + |V(H)|$$

$$= \Delta(G) + |V(H)|$$

$$= k.$$

Hence, S is a k-cost effective dominating set in G + H.

Suppose that S satisfies Property (ii). Then S is a dominating set in G + H. Now,

$$|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| = deg_H(a) - |N_H(a) \cap S| + |V(G)| - |N_H(a) \cap S|$$

$$= \Delta(H) - r_H(a) - 2|N_H(a) \cap S| + |V(G)|$$

$$= \Delta(G) + |V(H)| + t - r_H(a) - 2|N_H(a) \cap S|$$

$$= \Delta(G) + |V(H)| + \Delta(H) + |V(G)| - \Delta(G)$$

$$- |V(H)| - \Delta(H) + deg_H(a) - 2|N_H(a) \cap S|$$

$$= |V(G)| + deg_H(a) - 2|N_H(a) \cap S|$$

$$= \Delta(G) + |V(H)|$$

$$= k.$$

Thus, S is a k-cost effective dominating set in G + H.

Therefore, S is a k-cost effective dominating set in G + H.

**Theorem 6.** Let G and H be connected graphs such that  $min\{\gamma(G), \gamma(H)\} \geq 2$  and  $\Delta(G) + |V(H)| + 1 \leq k \leq \Delta(H) + |V(G)|$ . Then S is a k-cost effective dominating set in G + H if and only if S is a dominating set in H such that  $t - r_H(a) - 2|N_H(a) \cap S| \geq p$ , where  $1 \leq p \leq t$  and  $t = \Delta(H) + |V(G)| - \Delta(G) - |V(H)|$ , and  $r_H(a) = \Delta(H) - deg_H(a)$  and  $deg_H(a) + |V(G)| \geq p + 2|N_H(a) \cap S| + \Delta(G) + |V(H)|$ .

*Proof:* Suppose that S is a k-cost effective dominating set in G+H. Consider the following cases:

Case 1:  $V(G) \cap S \neq \emptyset$  and  $V(H) \cap S \neq \emptyset$ .

Let  $a \in V(G) \cap S$ . Then

$$|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| \le \Delta(G) - 1 + |V(H)| - 1$$
  
  $< \Delta(G) + |V(H)| + 1$   
  $\le k,$ 

a contradiction. Thus, in this case is not possible. Case 2:  $S \subseteq V(G)$ .

Suppose S is not an independent dominating set G. Let  $a \in S$ . Then there exists  $a' \in S$  such that  $d_G(a, a') = 1$ . Now

$$|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| \le \Delta(G) - 1 + |V(H)| - 1$$
  
  $< \Delta(G) + |V(H)| + 1$   
  $\le k$ ,

a contradiction. Thus, in this case S is an independent dominating set in G. Thus,

$$|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| = deg_G(a) + |V(H)|$$
  
=  $\Delta(G) - r_G(a) + |V(H)|$   
 $\leq \Delta(G) + |V(H)| + 1$   
 $\geq k$ ,

a contradiction. Thus, in this case is not possible. Case 3:  $S \subseteq V(H)$ .

Since S is a k-cost effective dominating set in G+H, S is a dominating set in H. Let  $a \in S$ ,  $r_H(a) = \Delta(H) - deg_H(a)$  and  $1 \le p \le t$ , where  $t = \Delta(H) + |V(G)| - \Delta(G) - |V(H)|$ . Then

$$|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| = deg_H(a) - |N_H(a) \cap S| + |V(G)| - |N_H(a) \cap S|$$
  
=  $\Delta(H) - r_H(a) - 2|N_H(a) \cap S| + |V(G)|$   
=  $\Delta(G) + |V(H)| + t - r_H(a) - 2|N_H(a) \cap S|$ .

Thus,  $t - r_H(a) - 2|N_H(a) \cap S| \ge p$ . Hence,  $deg_H(a) + |V(G)| \ge p + 2|N_H(a) \cap S| + \Delta(G) + |V(H)|$ .

Conversely, suppose that S is a dominating set in H such that  $t-r_H(a)-2|N_H(a)\cap S|\geq p$ , where  $1\leq p\leq t$  and  $t=\Delta(H)+|V(G)|-\Delta(G)-|V(H)|$ , and  $r_H(a)=\Delta(H)-deg_H(a)$  and  $deg_H(a)+|V(G)|\geq p+2|N_H(a)\cap S|+\Delta(G)+|V(H)|$ . Then

$$|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| = deg_H(a) - |N_H(a) \cap S| + |V(G)| - |N_H(a) \cap S|$$

$$= \Delta(H) - r_H(a) - 2|N_H(a) \cap S| + |V(G)|$$
  
= \Delta(G) + |V(H)|  
= k.

Hence, S is a k-cost effective dominating set in G + H.

**Theorem 7.** Let G and H be connected graphs such that  $min\{\gamma(G), \gamma(H)\} \geq 2$  and  $k \geq \Delta(H) + |V(G)| + 1$ . Then  $\gamma_{ce}^k(G + H) = \infty$ .

*Proof:* Let  $k \ge \Delta(H) + |V(G)| + 1$ . Suppose that there exists a k-cost effective dominating set S in G + H. Consider the following cases:

Case 1:  $V(G) \cap S \neq \emptyset$  and  $V(H) \cap S \neq \emptyset$ .

Let  $a \in V(H) \cap S$ . Then

$$|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| \le \Delta(H) - 1 + |V(G)| - 1$$
  
  $< \Delta(H) + |V(G)| + 1$   
  $= k,$ 

a contradiction.

Case 2:  $S \subseteq V(G)$ .

Suppose S is not an independent dominating set G. Let  $a \in S$ . Then there exists  $a' \in S$  such that  $d_G(a, a') = 1$ . Now

$$|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| \le \Delta(G) - 1 + |V(H)| - 1$$
  
 $\le \Delta(H) - 1 + |V(G)| - 1$   
 $< \Delta(H) + |V(G)| + 1$   
 $= k,$ 

a contradiction. Thus, in this case S is an independent dominating set in G. Thus,

$$|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| = deg_G(a) + |V(H)|$$

$$= \Delta(G) - r_G(a) + |V(H)|$$

$$= \Delta(H) - r_G(a) + |V(G)|$$

$$< \Delta(H) + |V(G)| + 1$$

$$= k.$$

a contradiction.

Case 3:  $S \subseteq V(H)$ . Let  $a \in S$ . Then

$$|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| = deg_H(a) - |N_H(a) \cap S| + |V(G)| - |N_H(a) \cap S|$$

$$= \Delta(H) - r_H(a) - 2|N_H(a) \cap S| + |V(G)|$$

$$= \Delta(G) + |V(H)| + t - r_H(a) - 2|N_H(a) \cap S|$$

$$= \Delta(G) + |V(H)| - (r_H(a) + 2|N_H(a) \cap S| - t)$$

REFERENCES 1335

$$= \Delta(H) + |V(G)| - (r_H(a) + 2|N_H(a) \cap S| - t)$$
  
<  $\Delta(H) + |V(G)| + 1$   
=  $k$ ,

a contradiction. Hence,  $\gamma_{ce}^k(G+H)=\infty$ .

The next result follows from Theorem 3, Theorem 4, Theorem 5, Theorem 6 and Theorem 7.

**Corollary 4.** Let G and H be connected graphs such that  $\gamma(G) \geq 2$ ,  $\gamma(H) \geq 2$  and  $|V(H)| + \Delta(G) \leq |V(G)| + \Delta(H)$ . Then

$$\gamma_{ce}^{k}(G+H) = \begin{cases} 2, & \text{if } 0 \leq k \leq |V(G)| + \Delta(H) - 2 \\ \min\{\gamma_{i}^{*}(G), \gamma^{*}(H)\}, & \text{if } |V(G)| + \Delta(H) - 1 \leq k \leq \Delta(G) + |V(H)| \\ \gamma(H), & \text{if } |V(H)| + \Delta(G) + 1 \leq k \leq |V(G)| + \Delta(H) \\ \infty & \text{if } k \geq |V(G)| + \Delta(H) + 1 \end{cases}$$

where

 $\gamma_i^*(G) = min\{|S| : S \text{ is a } \gamma_i\text{-set in } G \text{ and } \delta(S:G) \ge \Delta(G) - 1\}, \\
\gamma^*(H) = min\{|S| : S \text{ is a } \gamma\text{-set in } G \text{ and } 0 \le \Delta(G) + |V(H)| - |V(G)| - deg_H(a) + 2|N_H(a) \cap S| \le 1\}, \text{ and} \\
\gamma(H) = min\{|S| : S \text{ is a } \gamma\text{-set in } G \text{ and } deg_H(a) + |V(G)| - |V(H)| - 2|N_H(a) \cap S| \ge p\}$ 

**Corollary 5.** Let G and H be connected graphs such that  $\gamma(G) \geq 2$ ,  $\gamma(H) \geq 2$  and  $|V(H)| + \Delta(G) \leq |V(G)| + \Delta(H)$ . Then  $\eta(G + H) = |V(G)| + \Delta(H)$  and  $\gamma_{ce}^{\eta(G+H)}(G+H) = \gamma(H)$ .

# Acknowledgements

The authors thank the peer reviewers of the paper and readers of European Journal of Pure and Applied Mathematics, for making the journal successful.

#### References

- [1] M. Chellali, T. W. Haynes and S. T. Hedetniemi, *Client-server and cost effective sets in graphs*, AKCE International Journal of Graphs and Combinatorics 15(2017), 211-2018.
- [2] T.W. Haynes, S.M. Hedetniemi, S.T. Hedetniemi, T.L. McCoy, I. Vasylieva, *Cost effective domination in graphs*, Cong. Numer. 211 (2012), 197-209.
- [3] S.M. Hedetniemi, S.T. Hedetniemi, A.A. McRae, Very cost effective bipartitions in graphs. AKCE International Journal of Graphs and Combinatorics. 12(2015), 155-160.
- [4] F. Jamil and H. Maglanque, On cost effective domination in join, corona and composition of graphs, European Journal of Pure and Applied Mathematics, Graph theory. Vol.12, No.3, 978-998, 2019.

REFERENCES 1336

[5] J. Palco, R. Paluga and G. Malacas, On k-cost effective domination number, cost effective domination index and maximal cost effective domination number of simple graphs, Far East Journal of Mathematical Sciences (FJMS), Volume 114, Issue 1, 55-68, 2019.