The Bivariate Extended Poisson Distribution of Type 1
DOI:
https://doi.org/10.29020/nybg.ejpam.v14i4.4151Keywords:
Keywords, extended Poisson distribution, bivariate Poisson law according to Berkhout and Plug (2004), bivariate Poisson law according to Lakshminarayna et al. (1999), estimation and statistical testingAbstract
In this paper, we will construct the bivariate extended Poisson distribution which
generalizes the univariate extended Poisson distribution. This law will be obtained by the method of the product of its marginal laws by a factor. This method was demonstrated in [7]. Thus we call the bivariate extended Poisson distribution of type 1 the bivariate extended Poisson distribution obtained by the method of the product of its marginal distributions by a factor. We will show that this distribution belongs to the family of bivariate Poisson distributions and and will highlight the conditions relating to the independence of the marginal variables. A simulation study was realised.
Downloads
Published
Issue
Section
License
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.