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Abstract. In this paper, we introduce the notion of a pythagorean fuzzy small submodule. We
prove various characterisations for pythagorean fuzzy small submodules. We provide a relation
between a pythagorean fuzzy small submodule and a basic small submodule. In addition, some
important properties regarding pythagorean fuzzy small submodules are investigated.
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1. Introduction

In 1965, Zadeh [16] introduced the concept of fuzzy set which was a generalisation
of the classical set. This encourages many researchers to investigate set theory in fuzzy
setting. Pythagorean fuzzy set is one of the most important fuzzy sets. Its importance
lies behind the fact that this set can be applied in order to characterized uncertain data
accurately.

This kind of fuzzy sets has been widely investigated. Peng [11] introduced several op-
erators on a pythagorean fuzzy set and discussed its properties. Yager [15] introduced the
concept of a pythagorean fuzzy subset as a generalization of an intuitionistic fuzzy subset.
In [4], lattices which have been suggested for pythagorean fuzzy sets were characterized
and then the results extended to the unit disc of the complex plane.

Moreover, it can be applied on many areas, for instance, decision making, information
measures and aggregation operators. Yager used pythagorean memmbership in decision
making [14]. In [10], some algorithms in decision making problems were presented. Grag
[5] presented some generalised aggregation operators in order to illustrate a group decision
making problem. In [6], he presented an improved score function for solving multi-criteria
decision-making in the environment of pythagorean fuzzy set. In [8], hesitant pythagorean
fuzzy set was investigated and applied to some methods for multiple criteria decision mak-
ing. A new approach in computing the weight of decision makers is presented in [9] using
properties of pythagorean fuzzy sets. Distance and similarity measures of pythagorean
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fuzzy set was presented and applied to decision making, see [17]. For more application of
this concept in decision making, see [13] and [12].

The study of pythagorean fuzzy sets is a step in order to study q-rung orthopair fuzzy
sets as a generalization of pythagorean fuzzy sets see [7], [1] and [2].

In this paper, we introduce the notion of pythagorean submodule. In addition, we
present the concept pythagorean small submodule and investigate some results regarding
this concept. Moreover, we find a relationship between small submodule and pythagorean
fuzzy small submodule. We also study homomorphism between pythagorean fuzzy mod-
ules.

2. Preliminaries

Definition 1. A pythagorean fuzzy set (PFS) P of universe of discourse X is of the
form P = {(a, ηP (a), η̂P (a)) : a ∈ X}, where ηP (a) and η̂P (a) are the membership and
non-membership values of a respectively in which

0 ≤ ηP (a) ≤ 1, 0 ≤ η̂P (a) ≤ 1

and
0 ≤ ηP (a)

2 + η̂P (a)
2 ≤ 1,

for every a ∈ X.

We prsent some basic notions regarding pythagorean fuzzy sets.

Definition 2. Let P, S be pythagorean fuzzy sets in a fixed set X. Then

• P is a subset of S if for all a ∈ X, we have

η2P (a) ≤ η2S(a) and η̂2P (a) ≥ η̂2S(a)

.

• η2P∩S(a) = min{η2P (a), η2S(a) : a ∈ X} and
η̂2P∩S(a) = max{η̂2P (a), η̂2S(a)}.

• η2P∪S(a) = max{η2P (a), η2S(a)} and
η̂2P∪S(a) = min{η̂2P (a), η̂2S(a)}.

• η2P+S(a) = η2P (a) + η2S(a)− η2P (a)η
2
S(a) and η̂

2
P+S(a) = η̂2P (a)η̂

2
S(a).

Now, we are able to introduce the definition of a pythagorean fuzzy submodule.

Definition 3. Let M be an R-module and P a pythagorean fuzzy subset of M . Then
P is called a pythagorean fuzzy submodule of M , denoted by P ≤PF M , if the following
conditions are satisfied:

(1) η2P (0) = 1 and η̂2P (1) = 0.
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(2) η2P (a+ b) ≥ min{η2P (a), η2P (b)} for all a, b ∈M and
η̂2P (a+ b) ≤ max{η̂2P (a), η̂2P (b)} for all a, b ∈M .

(3) η2P (ra) ≥ η2P (a) and η̂
2
P (ra) ≤ η̂2P (a) for all a ∈M and r ∈ R

Recall that for a module M , we define the pythagorean fuzzy set χPFM = (χM , χ
c
M ) in

which

χM (a) =

{
1 if a ∈M

0 otherwise

and

χcM (a) =

{
0 if a ∈M

1 otherwise

Definition 4. Let M be a module and P be a pythagorean fuzzy subset of M . Then

(1) P ⋆ = η⋆P ∩ η̂⋆P , where

η⋆P = {a ∈M : ηP (a) > 0}
η̂⋆P = {a ∈M : η̂(a) < 1}

(2) P⋆ = η⋆P ∩ η̂⋆P , where

η⋆P = {a ∈M : ηP (a) = 1}
η̂⋆P = {a ∈M : η̂(a) = 0}

3. Pythagorean Fuzzy Small Submodule

Recall that a submodule N of a module M is called a small submodule of M , denoted
byN ≪M , ifN+S ̸=M for every proper submodule S ofM . Clearly, the zero submodule
is a small submodule of any module M . Moreover, a small submodule of a module M
should be a proper submodule. Now, we present some well-known properties regarding
the concept of small submodules.

Theorem 1. [3] Suppose that M is a module and S, T,N are submodules of M such that
S ≤ T . Then

(1) S +N ≪M if and only if S ≪M and N ≪M .

(2) T ≪M if and only if S ≪M and T
S ≪ M

S .

(3) If S ≪ T , then S ≪M .
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Now, we are ready to introduce the main concept in this paper.
Consider a module M . Then a PFS, P = (ηP , η̂P ), is called a pythagorean fuzzy small

submodule of M , denoted by P ≪PF M , if P + S ̸= χPFM for any PSF S ̸= χPFM . That is
whenever P + S = χPFM , then S = χPFM .

Theorem 2. Let M be a module and P be a submodule of M . Then P ≪M if χPFP ≪PF

M .

Proof. Suppose that χPFP ≪PF M and P + S = M for some proper submodule S of
M . Then for any m ∈M there exist a ∈ P and b ∈ S such that a+ b = m. We obtain

η2
χPF
P +χPF

S
(m) = χ2

P (m) + χ2
S(m)− χ2

P (m)χ2
S(m)

≥ min{χ2
P (a) + χ2

S(a)− χ2
P (a)χ

2
S(a), χ

2
P (b) + χ2

S(b)− χ2
P (b)χ

2
S(b)}

= 1

This means that η2
χPF
P +χPF

S
= χ2

M . Similarly,

η̂2
χPF
P +χPF

S
(m) = χc

2

P (m)χc
2

S (m)

≤ max{χc2P (a)χc
2

S (a), χc
2

P (b)χc
2

S (b)}
= 0

This means that η̂2
χPF
P +χPF

S
= χc

2

M . Thus χPFP +χPFS = χPFM , but this contradicts the facts

that χPFP ≪PF M and χPFS ̸= χPFM as S is a proper submodule of M . Therefore, P is a
small submodule of M .

Theorem 3. Let M be a module and P be a pythagorean fuzzy submodule of M . If
P ≪PF M , then P⋆ ≪M .

Proof. Assume that P ≪PF M . In order to see that P⋆ ≪M , suppose that P⋆+S =M
for a submodule S of M . We aim to prove that P + χPFS = χPFM . Let m ∈ M . Then
m = a+ b, for some a ∈ P⋆ and b ∈ S. Then

ηP+χPF
S

(m) =η2P (m) + χ2
S(m)− η2P (m)χ2

S(m)

≥min{η2P (a) + χ2
S(a)− η2P (a)χ

2
S(a), η

2
P (b) + χ2

S(b)− η2P (b)χ
2
S(b)}

=1

Moreover,

η̂P+χPF
S

(m) =η̂2P (m)χc
2

S (m)

≤max{η̂2P (a)χc
2

S (a), η̂2P (b)χ
c2

S (b)}
=0

Thus P + χPFS = χPFM . By hypothesis, χPFS = χPFM . Therefore, S =M .
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Example 1. Consider the Z-module Z10 and the submodule S = ⟨5̄⟩. Let P be a pythagorean
fuzzy submodule of Z10 defined as follows

ηP (m) =

{
1 if m ∈ S
1
4 otherwise

and

η̂P (m) =

{
0 if m ∈ S
1
6 otherwise

It is clear that P⋆ is not a small submodule of Z10 as P⋆ + ⟨2̄⟩ = Z10. Thus P is not a
pythagorean fuzzy small submodule of Z10.

Corollary 1. Let P, S be two pythagorean fuzzy submodules of a module M in which
P ⊆ S. Then P ≪PF S if and only if P⋆ ≪ S⋆.

Proof. Clear.

Theorem 4. Let M be a module, S be a submodule of M and P is a pythagorean fuzzy
submodule of M in which P ⊆ χPFS . If P |S is a pythagorean fuzzy small submodule of S,
then P is pythagorean fuzzy small submodule of M .

Proof. Assume that T is a pythagorean fuzzy submodule ofM such that P +T = χPFM .
In order to see that P |S + (T |S ∩ χPFS ), let a ∈ S. Then we obtain

η2
P |S+(T |S∩χPF

S )
(a) =η2P |S (a) + η2

T |S∩χPF
S

(a)− η2P |S (a)η
2
T |S∩χPF

S
(a)

=η2P |S (a) + min{η2T |S (a), χ
2
S(a)} − η2P |S (a)min{η2T |S (a), χ

2
S(a)}

=min{η2P (a), χ2
S(a)}+min{η2T (a), χ2

S(a)}
−min{η2P (a), χ2

S(a)}min{η2T (a), χ2
S(a)}

=η2P (a) + η2T (a)− η2P (a)η
2
T (a)

=η2P+T (a)

=χ2
M (a)

=1

=χ2
S(a)

and

η̂2
P |S+(T |S∩χPF

S )
(a) =η̂2P |S (a)η̂

2
T |S∩χPF

S
(a)

=η̂2P |S (a)max{η̂2T |S (a), χ
c2

SPF (a)}

=max{η̂2P (a), χc
2

SPF (a)}max{η̂2T (a), χc
2

SPF (a)}
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=η̂2P (a)η̂
2
T (a)

=η̂2P+T (a)

=χc
2

M (a)

=0

=χc
2

S (a)

This implies that P |S+(T |S ∩χPFS ) = χPFS . By hypothesis, we conclude that T |S ∩χPFS =
χPFS . Thus χPFS ⊆ T |S . Then χPFM = P + T ⊆ T ⊆ χPFM . Therefore, T = χPFM and P is
pythagorean fuzzy small submodule of M .

As a consequence of the above theorem, we have:

Corollary 2. Let M be a module and, P and S are pythagorean fuzzy submodules of M
in which P ⊆ S. If P is pythagorean fuzzy small submodule of S, then P is pythagorean
fuzzy small submodule of M .

Proof. Clear.

Remark 1. The converse of theorem 4 need not be true in general. That is if M is a
module, S be a submodule of M and P is a pythagorean fuzzy small submodule of M
in which P ⊆ χPFS , then it is not true in general that P |S is a pythagorean fuzzy small
submodule of S. For example take P |S = S.

Proposition 1. Let M be a module and P, S, T be pythagorean fuzzy submodules of M .
Then:

(P ∩ S) + (P ∩ T ) ⊆ P ∩ (S + T ).

Proof. Let m ∈M . Then

η2(P∩S)+(P∩T )(m) =η2P∩S(m) + η2P∩T (m)− η2P∩S(m)η2P∩T (m)

=min{η2P (m), η2S(m)}+min{η2P (m), η2T (m)}
−min{η2P (m), η2S(m)}min{η2P (m), η2T (m)}

≤min{η2P (m), η2S(m) + η2T (m)− η2S(m)η2T (m)}
=min{η2P (m), η2S+T (m)

=η2P∩(S+T )(m)

Moreover,

η̂2(P∩S)+(P∩T )(m) =η̂2P∩S(m)η̂2P∩T (m)

=max{η̂2P (m), η̂2S(m)}max{η̂2P (m), η̂2T (m)}
≥max{η̂2P (m), η̂2S(m)η̂2T (m)}
=η̂2P∩(S+T )(m)



A. Alhumaimeed / Eur. J. Pure Appl. Math, 15 (1) (2022), 36-46 42

Proposition 2. Let M be a module and, P and S are pythagorean fuzzy submodules of
M in which χPFM = P

⊕
PF S. Then M = P ⋆

⊕
S⋆ = P⋆

⊕
S⋆.

Proof. Let m ∈M . Then

1 =χ2
M (m)

=η2P+S(m)

=η2P (m) + η2S(m)− η2P (m)η2S(m)

=η2P (m)(1− η2S(m)) + η2S(m)

This implies that η2P (m) = 1 or η2S(m) = 1, so that η̂2P (m) = 0 or η̂2S(m) = 0. Hence
m ∈ P⋆ or m ∈ S⋆, so that M = P⋆ + S⋆. Hence M = P ⋆ + S⋆. We aim now to show that
the intersection P ⋆ ∩ S⋆ = 0. Assume that m ∈ P ⋆ ∩ S⋆. Then η2P (m), η2S(m) > 0. Since
χPFM = P

⊕
PF S, we obtain

0 <min{η2P (m), η2S(m)}
=χ2

0(m),

which means that m = 0 and hence, P⋆ ∩ S⋆ ⊆ P ⋆ ∩ S⋆ = 0. Therefore, the result holds.

Now, we are able to show that the convers of corollary 2 is true if S is a pythagorean
fuzzy direct summand of M as follows:

Theorem 5. Let M be a module and, P and S are pythagorean fuzzy submodules of M in
which P ⊆ S and S is a pythagorean fuzzy direct summand of M . Then P is pythagorean
fuzzy small submodule of S if and only if P is pythagorean fuzzy small submodule of M .

Proof. Assume that P is a pythagorean fuzzy small submodule of M . Applying
theorem 3, P⋆ is a small submodule of M . That S is a pythagorean fuzzy direct summand
of M and P⋆ ⊆ S⋆, implies that P⋆ is a small submodule of S⋆. Applying corollary 2, the
result hold.

Theorem 6. Let M be a module and, P and S be pythagorean fuzzy submodules of M
such that P ∩ S = χPF0 . Then

(1) (P
⊕

PF S)
⋆ = P ⋆

⊕
S⋆.

(2) (P
⊕

PF S)⋆ = P⋆
⊕
S⋆.

Proof.

(1) Since P ∩ S = χPF0 , we need to prove that (P + S)⋆ = P ⋆ + S⋆. Suppose that
m ∈ (P + S)⋆. By definition, η2P+S(m) > 0. This implies that

0 < η2P (m) + η2S(m)− η2P (m)η2S(m)

= η2P (m)(1− η2S(m)) + η2S(m)
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which means that η2P (m) ̸= 0 or η2S(m) ̸= 0. Moreover,

1 > η̂2P+S(m)

= η̂2P (m)η̂2S(m)

which implies that η̂2P (m) < 1 or η̂2S(m) < 1. Thus m ∈ P ⋆ or m ∈ S⋆, so that
m ∈ P ⋆ + S⋆. and (P + S)⋆ ⊆ P ⋆ + S⋆. Now, suppose that m = a1 + b1 ∈ P ⋆ + S⋆,
where a1 ∈ P ⋆ and b1 ∈ S⋆. By definition, η2P (a1), η

2
S(b1) > 0. Thus

0 <min{η2P (a1)(1− η2S(a1)) + η2S(a1), η
2
P (b1)(1− η2S(b1)) + η2S(b1)}

=min{η2P (a1) + η2S(a1)− η2P (a1)η
2
S(a1), η

2
P (b1) + η2S(b1)− η2P (b1)η

2
S(b1)}

≤η2P (m) + η2S(m)− η2P (m)η2S(m)

=η2P+S(m)

Moreover, η̂2P (a1), η̂
2
S(b1) < 1 which implies that

1 >max{η̂2P (a1)η̂2S(a1), η̂2P (b1)η̂2S(b1)}
≥η̂2P (m)η̂2S(m)

=η̂2P+S(m)

Thus m ∈ (P + S)⋆. Then P ⋆ + S⋆ ⊆ (P + S)⋆ and therefore, the equality holds.

(2) Since P ∩ S = χPF0 , we need to prove that (P + S)⋆ = P⋆ + S⋆. Suppose that
m ∈ (P + S)⋆. By definition, η2P+S(m) = 1. This implies that

1 = η2P (m) + η2S(m)− η2P (m)η2S(m)

= η2P (m)(1− η2S(m)) + η2S(m)

which means that η2P (m) = 1 or η2S(m) = 1. Moreover,

0 = η̂2P+S(m)

= η̂2P (m)η̂2S(m)

which implies that η̂2P (m) = 0 or η̂2S(m) = 0. Thus m ∈ P⋆ or m ∈ S⋆, so that
m ∈ P⋆ + S⋆ and (P + S)⋆ ⊆ P⋆ + S⋆. Now, suppose that m = a1 + b1 ∈ P⋆ + S⋆,
where a1 ∈ P⋆ and b1 ∈ S⋆. By definition, η2P (a1), η

2
S(b1) = 1. Thus

1 =min{η2P (a1) + η2S(a1)− η2P (a1)η
2
S(a1), η

2
P (b1) + η2S(b1)− η2P (b1)η

2
S(b1)}

≤η2P (m) + η2S(m)− η2P (m)η2S(m)

=η2P+S(m)

Moreover, η̂2P (a1), η̂
2
S(b1) = 0 which implies that

0 =max{η̂2P (a1)η̂2S(a1), η̂2P (b1)η̂2S(b1)}
≥η̂2P (m)η̂2S(m)

=η̂2P+S(m)

Thus m ∈ (P + S)⋆. Then P⋆ + S⋆ ⊆ (P + S)⋆ and therefore, the equality holds.
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4. Homomorphism

Let P, S be two R-modules, L ≤PF P and N ≤PF S. Consider an R-homomorphism

ψ : P −→ S

For s ∈ S, we define:

ηψ(L)(s) =

{
max{ηL(p) : s = ψ(p)} if s ∈ Im(ψ)

0 otherwise

and

η̂ψ(L)(s) =

{
min{ηL(p) : s = ψ(p)} if s ∈ Im(ψ)

1 otherwise

Now, we are ready to prove the following:

Theorem 7. Let ψ : P −→ S be a monomorphism of modules. If T is a pythagorean
fuzzy small submodule of P , then ψ(T ) is a pythagorean fuzzy small submodule of S.

Proof. Suppose that ψ(T ) + L = χPFS . We aim to prove that L = χPFS . Let s ∈ S,
then

1 =η2ψ(T )+L(s)

=η2ψ(T )(s) + η2L(s)− η2ψ(T )(s)η
2
L(s)

In the case that s /∈ Im(ψ), we obtain

1 =η2ψ(T )(s) + η2L(s)− η2ψ(T )(s)η
2
L(s)

=η2L(s)

and so 1 = η2L(s) and η̂
2
L(s) = 0. If s ∈ Im(ψ), we have

1 =η2ψ(T )(s) + η2L(s)− η2ψ(T )(s)η
2
L(s)

=max{η2T (p) : ψ(p) = s}+ η2L(s)−max{η2T (p) : ψ(p) = s}η2L(s)
=η2T (p) + η2L(s)− η2T (p)η

2
L(s), for some p in which ψ(p) = s

=η2T (p)(1− η2L(s)) + η2L(s)

If η2T (p) = 1, then T = χP and this is a contradiction with the fact that T is a pythagorean
fuzzy small submodule of P . Thus η2L(s) = 1 and L = χS . Moreover,

0 =η̂2ψ(T )+L(s)
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=η̂2ψ(T )(s)η̂
2
L(s)

=η̂2T (p)η̂
2
L(s) for some p in which ψ(p) = s

Note that ψ is one to one and so p is unique. By hypothesis η̂2T (p) ̸= 0, so that η̂2L(s) = 0.
Hence L = χPFS .

Remark 2. (1) If ψ is not one to one, then the above theorem need not be true. For
instance, take S the zero module and ψ the zero homomorphism.

(2) The converse of the above theorem need not be true. That is if ψ : P −→ S is a
monomorphism of modules, T is a pythagorean fuzzy submodule of P and ψ(T ) is
a pythagorean fuzzy small submodule of S, then it is not true in general that T is
a pythagorean fuzzy small submodule of P . For example, Let P be a pythagorean
fuzzy small submodule of S and consider the inclusion P ↪→ S. Then ψ(P ) = P is
a pythagorean fuzzy small submodule of S but P is not a pythagorean fuzzy small
submodule of P .

5. Conclusion and Future Directions

In this paper, we introduce the notion of pythagorean submodule. In addition, we
present the concept pythagorean small submodule and investigate some results regarding
this concept. Moreover, we find a relationship between small submodule and pythagorean
fuzzy small submodule. We also study homomorphism between pythagorean fuzzy mod-
ules.

This work can be extended and generalised in the environment of q-rung orthopair
fuzzy sets. It can be applied in order to solve multi-criteria decision making problems.
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