EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 15, No. 1, 2022, 224-228 ISSN 1307-5543 – ejpam.com Published by New York Business Global

e^* -Essential submodule

Hiba R. Baanoon^{1,*}, Wasan Khalid ²

College of Science, University of Baghdad, Baghdad, Iraq

Abstract. The purpose of this paper is to introduce a new concept in a module M over a ring R, this concept is called e^* -essential submodule, which is a generalization of an essential submodule. We will introduce some examples and properties about this concept such that, what is the inverse image of e^* -essential submodule, the intersection of e^* -essential submodules and direct sum of e^* -essential submodules. We will show the relationship between e^* -essential submodule and Noetherian R-module. Also we will define e^* -closed submodule with some properties

2020 Mathematics Subject Classifications: 16D90, 16D99, 16P40

Key Words and Phrases: Essential submodule, Small submodule, e^* -Essential submodule, e^* -Closed submodule, Noetherian R-module

1. Introduction

Let R be a ring with identity, M be a right R-module and E(M) be the injective hull of M. A submodule N of an R-module M is called a small submodule of M ($N \ll M$) if for any submodule A of M such that M = N + A, then A = M [5]. Leonard defines a module M to be small if it is a small submodule of some R-module and he shows that M is small if and only if M is small in its injective hull [1]. Recall that a submodule A of R-module B is called essential in B if every nonzero submodule of B has nonzero intersection with A [5], [3] and [4].

Oscan in [2], introduced the concept of cosingular submodule as the following: $Z^*(M) = \{m \in M | mR \ll E(M)\}$. An R-module M is called cosingular $Z^*(M) = M$.

As in [6], we will used the Oscan presented to generalize the essential submodule, to introduce the concepte e^* -essential and investigate some properties.

DOI: https://doi.org/10.29020/nybg.ejpam.v15i1.4215

 ${\it Email addresses:} \ {\tt hibabaanoon@uomisan.edu.iq} \ ({\rm H.R. \ Baanoon}),$

wasan.hasan@sc.uobaghdad.edu.iq (W. Khalid)

^{*}Corresponding author.

2. e^* -Essential submodule

Definition 1.

- Let M be R-module, a submodule A of M is said to be e^* -essential if $A \cap B \neq 0$ for each nonzero cosingular submodule B of M. denoted by $A \leq_{e^*} B$.
- A right ideal B of a ring R is e^* -essential in R if and only if B is e^* -essential submodule of R_R .
- An R-homomorphism $f: A \to B$ is said e^* -essential if and only if, Im(f) is e^* -essential submodule in B.
- We may deduce the following from the definition:
 - 1. $A \leq_{e^*} M$ if $A \cap K = 0$, then K = 0 where K is cosingular submodule in M.
 - 2. If $M \neq 0$ and $L \leq_{e^*} M$ then $L \neq 0$.

Examples and Remarks 1.

- Every essential submodule is e*-essential, but the converse need not to be true in general. For example, in Z₆ as Z₆-module, the only cosingular submodule of Z₆ is {\overline{0}}. Hence every submodule K of Z₆ is e*-essential, since K ∩ {\overline{0}} = 0. Therefore, {\overline{0}, \overline{2}, \overline{4}} is e*-essential which is not essential submodule in Z₆ as Z₆-module since there is a nonzero submodule {\overline{0}, \overline{3}} but {\overline{0}, \overline{2}, \overline{4}} ∩ {\overline{0}, \overline{3}} = 0.
- 2. For any R-module M, we have $M \leq_{e^*} M$.
- 3. Every nonzero submodule of \mathbb{Z} as \mathbb{Z} -module is cosingular [2]. Hence, $n\mathbb{Z} \cap m\mathbb{Z} = nm\mathbb{Z} \neq 0$ for each $n \neq 0$ and $m \neq 0$. So that every submodule of \mathbb{Z} is e^* -essential.
- 4. In \mathbb{Z}_6 as \mathbb{Z} -module every submodule is cosingular [2], but $\{\overline{0}, \overline{2}, \overline{4}\}$ is not e^* -essential since $\{\overline{0}, \overline{2}, \overline{4}\} \cap \{\overline{0}, \overline{3}\} = 0$ where $\{\overline{0}, \overline{3}\}$ a nonzero cosingular submodule.
- 5. The image of e^* -essential need not be e^* -essential for example. Let $f: \mathbb{Z} \to \mathbb{Z}_2$ be a \mathbb{Z} -homomorphism defined by $f(x) = \begin{cases} \overline{0} & \text{if } x \text{ even} \\ \overline{1} & \text{if } x \text{ odd} \end{cases}$ So $f(2\mathbb{Z}) = \{\overline{0}\}$. Hence, $2\mathbb{Z}$ is e^* -essential in \mathbb{Z} but $\{\overline{0}\}$ is not e^* -essential in \mathbb{Z}_2 , since $\{\overline{0}\} \cap \mathbb{Z}_2 = 0$ where \mathbb{Z}_2 is nonzero cosingular.
- 6. The quotient submodule of e^* -essential submodule need not to be e^* -essential, for example: $2\mathbb{Z}_{\mathbb{Z}}$ is e^* -essential submodule of $\mathbb{Z}_{\mathbb{Z}}$, but $\frac{2\mathbb{Z}}{2\mathbb{Z}} = 0$ not e^* -essential submodule of $\frac{\mathbb{Z}}{2\mathbb{Z}} \cong \mathbb{Z}_2$.

In the following lemma, gives a property of cosingular submodule

Lemma 1. If K is cosingular submodule of B and $B \le A \le M$, then K is cosingular in A.

Proof. Since K is cosingular submodule of B by **Lemma 2.2** in [2] $Z^*(K) = K \cap Z^*(B)$ and again since B is a submodule of A. So that, $Z^*(K) = K \cap (B \cap Z^*(A))$, from hypothesis $Z^*(K) = K$. Hence, $K \leq Z^*(A)$. Therefore, $Z^*(K) = K \cap Z^*(A) = K$, i.e. K is cosingular in A.

Now, we will prove some properties which e^* -essential submodule satisfied:

Proposition 1. Let $A \leq B \leq M$, then $A \leq_{e^*} M$ if and only if $A \leq_{e^*} B \leq_{e^*} M$ $Proof. \Rightarrow$) Let $K \neq 0$ be a cosingular submodule of B, hence $K \leq M$ since $A \leq_{e^*} M$. Therefore $A \cap K \neq 0$. Hence, $A \leq_{e^*} B$. Now, for $B \leq_{e^*} M$, let $0 \neq L$ be a consigular submodule of M. Hence, $A \cap L \neq 0$ and since $A \leq B$ so that, $B \cap L \neq 0$. \Leftrightarrow) Let N be a nonzero cosingular submodule of M. Since $B \leq_{e^*} M$. Hence, $B \cap N \neq 0$, so that $B \cap N$ is a nonzero cosingular submodule of B (since $B \cap N \leq N$ and by **Lemma 2.2** in [2] $Z^*(B \cap N) = (B \cap N) \cap Z^*(N) = (B \cap N) \cap N = B \cap N$. Since $A \leq_{e^*} B$ then $A \cap B \cap N \neq 0$ and $A \cap N \neq 0$. Therefore, $A \leq_{e^*} M$.

Corollary 1. If $A_1 \leq A_2 \leq A_3 \leq M$ and $A_1 \leq_{e^*} M$, then $A_2 \leq_{e^*} A_3$. Proof. Let L be a nonzero cosingular in A_3 . By **Lemma 1**, we have that L is cosingular in M and since $A_1 \leq_{e^*} M$. Thus, $A_1 \cap L \neq 0$ and since $A_1 \leq A_2$. Therefore, $A_2 \cap L \neq 0$, i.e. $A_2 \leq_{e^*} A_3$.

Proposition 2. Let $f: M \to M'$ be R-homomorphism, if $A \leq_{e^*} M'$, then $f^{-1}(A) \leq_{e^*} M$. Proof. Let $A \leq_{e^*} M'$. Hence, $f^{-1}(A) \leq M$, suppose that $f^{-1}(A)$ is not e^* -essential submodule of M, i.e. there exists a nonzero cosingular submodule B of M such that $f^{-1}(A) \cap B = 0$. Since $\ker(f|_B) = f^{-1}(A) \cap B = 0$. Thus, $B \cong f(B)$. Also, we have that $A \cap f(B) = 0$ since if not, i.e. there exists $0 \neq x = f(b) \in A \cap f(b)$. Hence, $0 \neq b \in f^{-1}(A) \cap B$ which is contradiction. Since B is cosingular by **lemma 2.6** in [2], f(B) is cosingular also $A \leq_{e^*} M'$. Hence, f(B) = 0 which is contradiction. Therefore, $f^{-1}(A) \leq_{e^*} M$.

Proposition 3. If $A \leq_{e^*} B \leq M$ and $A' \leq_{e^*} B' \leq M$, then $A \cap A' \leq_{e^*} B \cap B'$. Proof. Let K be a nonzero cosingular submodule of $B \cap B'$. By **Lemma 1** K be a nonzero cosingular submodule of B and B'. Since $A \leq_{e^*} B$. So that, $A \cap K \neq 0$ and since $A \cap K$ is a nonzero submodule of cosingular K. Hence, $A \cap K$ is cosingular. But, $A' \leq_{e^*} B'$. Hence, $A' \cap (A \cap K) \neq 0$. Therefore, $A \cap A' \leq_{e^*} B \cap B'$.

Corollary 2. Let $B_j \leq_{e^*} M$ for each j = 1, ..., n, then $\bigcap_{i=1}^n \leq_{e^*} M$ Proof. The prove by induction on n.

Proposition 4. Let $M = M_1 \oplus M_2$ with $K_1 \leq M_1$ and $K_2 \leq M_2$, then $K_1 \leq_{e^*} M_1$ and $K_2 \leq_{e^*} M_2$ if and only if, $K_1 \oplus k_2 \leq_{e^*} M$

- Proof. \Rightarrow) There exists an R-homomorphism $\rho_1: M_1 \oplus M_2 \to M_1$ and $\rho_2: M_1 \oplus M_2 \to M_2$ which define by $\rho_1(m_1, m_2) = m_1$ and $\rho_2(m_1, m_2) = m_2$. By **Proposition 2** $\rho_1^{-1}(K_1) = K_1 \oplus M_2 \leq_{e^*} M_1 \oplus M_2$ and $\rho_2^{-1}(K_2) = M_1 \oplus K_2 \leq_{e^*} M_1 \oplus M_2$. Hence, by **Proposition 3** $K_1 \oplus M_2 \cap M_1 \oplus K_2 = K_1 \oplus k_2 \leq_{e^*} M$
- \Leftarrow) There exists an R-homomorphism $J_1: M_1 \to M_1 \oplus M_2$ and $J_2: M_2 \to M_1 \oplus M_2$ which define by $J_1(m_1) = (m_1, 0)$ and $J_2(m_2) = (0, m_2)$. By **Proposition 2** $J_1^{-1}(K_1 \oplus k_2) = K_1 \leq_{e^*} M_1$ and $J_2^{-1}(K_1 \oplus k_2) = K_2 \leq_{e^*} M_2$.

In the following proposition we will give a characterization of e^* -essential submodule.

Proposition 5. Let M be R-module and $N \leq M$, then N is e^* -essential submodule of M if and only if $N \cap xR \neq 0$ for each nonzero cyclic cosingular submodule of M.

 $Proof. \Rightarrow) Clear.$

 \Leftarrow) Let N be a submodule of M and K be a nonzero cosingular submodule of M. Hence, there exists $0 \neq x \in K$ with $xR \leq K$, also $Z^*(xR) = xR$. So by hypothesis $N \cap xR \neq 0$. Hence, $N \cap K \neq 0$. Therefore, $N \leq_{e^*} M$.

In the following proposition shows that, the composition of e^* -essential R-monomorphism is also e^* -essential R-monomorphism.

Proposition 6. Let $f: A \to B$ and $g: B \to C$ are e^* -essential R-monomorphism. Then, $g \circ f: A \to C$ is also e^* -essential R-monomorphism.

Proof. Let L be cosingular submodule of C such that $Im(g \circ f) \cap L = 0$. Since g is monomorphism $0 = \ker g = g^{-1}(0) = g^{-1}(Im(g \circ f) \cap L)$. Hence $g^{-1}(Im(g \circ f)) \cap g^{-1}(L) = Im(f) \cap g^{-1}(L) = 0$. Since g^{-1} is R-homomorphism and L is cosingular submodule of C. Hence $g^{-1}(L)$ is cosingular submodule of B and since $Im(f) \leq_{e^*} B$. Thus, $g^{-1}(L) = 0$ and $Im(g) \cap L = 0$. Since $g: B \to C$ is e^* -essential. Therefore, L = 0 i.e. $g \circ f$ is e^* -essential R-monomorphism.

In the following proposition we will give another characterization of Noetherian R-module. Also, it is show the relationship between e^* -essential submodule and Noetherian R-module.

Proposition 7. An R-module M is Noetherian if and only if, every e^* -essential submodule of M is finitely generated.

Proof. \Rightarrow) Clear.

 \Leftarrow) Let A be an essential submodule of M. Hence, A is e^* -essential and by the hypothsis A is a finitely generated. Hence, every essential submodule is finitely generated by [3]. Therefore, M is Noetherian.

REFERENCES 228

3. e^* -Closed submodule

Definition 2. A submodule A of R-module C is said to be e^* -closed submodule of C, if A has no proper e^* -essential extension inside C. denoted by $A \leq_{e^*C} C$.

Examples and Remarks 2.

- 1. For any module M. 0 and M always e^* -closed.
- 2. In \mathbb{Z}_6 as \mathbb{Z}_6 -module, $\{\overline{0},\overline{2},\overline{4}\}$ is not e^* -closed submodule since $\{\overline{0},\overline{2},\overline{4}\}$ is e^* -essential in \mathbb{Z}_6 .

In the following proposition shows that when the quotient submodule of e^* -essential submodule is e^* -essential:

Proposition 8. Let M be R-module, If $B \leq_{e^*C} M$ and $B \leq K \leq_{e^*} M$ then $\frac{K}{B} \leq_{e^*} \frac{M}{B}$.

Proof. Let $\frac{L}{B}$ be cosingular submodule of $\frac{M}{B}$ with $\frac{K}{B} \cap \frac{L}{B} = 0$. Hence, $K \cap L = B$ since $K \leq_{e^*} M$. Thus, $K \cap L \leq_{e^*} M \cap L = L$. Hence $B \leq_{e^*} L \leq M$ but $B \leq_{e^*C} M$, B = L. Hence, $\frac{L}{B} = 0$. Therefore, $\frac{K}{B} \leq_{e^*} \frac{M}{B}$.

Acknowledgements

The authors would like to thank the reviewers for their invaluable comments and suggestions that led to this improved version of the paper.

References

- [1] F. Auslander and K. Fuller. Rings and categories of modules, graduate texts in mathematicx, 1974.
- [2] A. C. Özcan. Modules with small cyclic submodules in their injective hulls. 2002.
- [3] K. Goodearl. Ring theory: Nonsingular rings and modules, volume 33. CRC Press, 1976.
- [4] M. Hazewinkel, N. Gubareni, and Vladimir V. Kirichenko. *Algebras, rings and modules*, volume 1. Springer Science & Business Media, 2004.
- [5] F. Kasch. Modules and rings, volume 17. Academic press, 1982.
- [6] D.X. Zhou and X.R. Zhang. Small-essential submodules and morita duality. *Southeast Asian Bulletin of Mathematics*, 35(6), 2011.