EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 15, No. 3, 2022, 856-863

ISSN  1307-5543 — ejpam.com
Published by New York Business Global

Double Integral involving the Product of the Bessel
Function of the First Kind and modified Bessel Function
of the Second Kind: Derivation and Evaluation

Robert Reynolds!s*, Allan Stauffer!

L Department of Mathematics and Statistics, Faculty of Science, York University, Toronto,
Ontario, Canada, M3J1P3

Abstract. A double integral whose kernel involves the Bessel functions K,(z8) and J,(ya) is
derived. This integral is expressed in terms of the Hurwitz-Lerch zeta function and evaluated for
various values of the parameters involved. Some examples are evaluated and expressed in terms of
fundamental constants. All the results in this work are new.
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1. Introduction

Integrals involving Bessel functions have been studied in the works by Glasser [3],
where the study of wave propagation along a coaxial cable was investigated, Temme [7],
where the mathematical discussion of the exchange processes, of heat or of matter (as
in ion exchange or adsorption), that arise when a fluid flows through the pores or voids
along a column containing matter in the solid state, was studied. Throughout these works
the authors derive definite integrals involving the Bessel function or the product of Bessel
functions for specific orders. in our present paper we will be expanding on the previous for-
mulae by deriving a double integral of the product of Bessel functions over a general order.

In this paper we derive the double definite integral given by

/O /0 £y K (28) Ty (ya) log* (;) dady (1)

where the parameters k,a, o, §,v, m are general complex numbers and Re(a, 8,v,m) >
0, Re(v) < Re(m) < 3/2. This definite integral will be used to derive special cases in
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terms of special functions and fundamental constants. The derivations follow the method
used by us in [6]. This method involves using a form of the generalized Cauchy’s integral
formula given by

k wy
Y 1 e
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where C is in general an open contour in the complex plane where the bilinear concomitant
has the same value at the end points of the contour. We then multiply both sides by a
function of z and y, then take a definite double integral of both sides. This yields a definite
integral in terms of a contour integral. Then we multiply both sides of Equation (2) by

another function of x and y and take the infinite sums of both sides such that the contour
integral of both equations are the same.

2. Definite Integral of the Contour Integral

We use the method in [6]. The variable of integration in the contour integral is ¢ =
w + m. The cut and contour are in the first quadrant of the complex ¢-plane. The cut
approaches the origin from the interior of the first quadrant and the contour goes round
the origin with zero radius and is on opposite sides of the cut. Using a generalization
of Cauchy’s integral formula we form the double integral by replacing y by log (%) and
multiplying by #™ 1y! =™K, (28)J,(ya) then taking the definite integral with respect to
x € [0,00) and y € [0,00) to obtain
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from equations (3.10.1.2) and (3.14.3) in [1] where Re(«) > 0, |Re(v)|< Re(w +m —v) <
3/2 and using the reflection formula (8.334.3) in [4] for the Gamma function. We are able
to switch the order of integration over x and y using Fubini’s theorem since the integrand
is of bounded measure over the space C X [0, 00) x [0, 00)

3. The Hurwitz-Lerch zeta Function and Infinite Sum of the Contour
Integral

In this section we use Equation (2) to derive the contour integral representations for
the Hurwitz-Lerch zeta function.
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3.1. The Hurwitz-Lerch zeta Function

The Hurwitz-Lerch zeta function (25.14) in [2] has a series representation given by

o0

D(z,s,v) = Z(v +n) %" (4)

n=0

where |z|]< 1,v # 0,—1,.. and is continued analytically by its integral representation

given by
1 00 ps—1,—vt 1 00 ts—le—(v—l)t
(z,,v) I'(s) /0 1—zet I'(s) /0 et — 2 (5)

where Re(v) > 0, and either |z|< 1,z # 1, Re(s) > 0, or z = 1, Re(s) > 1.

3.2. Infinite sum of the Contour Integral

Using equation (2) and replacing y by log(a) + log(a) — log(8) + 3im(2y + 1) then
multiplying both sides by —iwam_zﬁ_me%”@y*’l)(m_”) taking the infinite sum over y €

[0,00) and simplifying in terms of the Hurwitz-Lerch zeta function we obtain

1 s m—v
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) ) 2ﬂ'
1 - - m m
“5r3 3 [ imuam 25 exp (wloga) + logla) ~ log(9)
y=0

+ %iﬂ@y +1)(m—v+ w)> dw (6)

o/ me tam27m exp (wllog(a) + log(a) — 1og(9)

1
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from equation (1.232.2) in [4] where I'm (3m(m —v+w)) > 0 in order for the sum to
converge.
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4. Definite Integral in terms of the Hurwitz-Lerch zeta Function

Theorem 1. For all k,a € C, Re(a, B,v,m) > 0, Re(v) < Re(m) < 3/2,

/ / "y T (28)u (yer) log” < >dxdy

k+1 ™™ 26 7z7r(k+m v) (’7)

o (emmv), 4, Z2iloe) — 2log(o) + 2ilg(3) + 7r>
T

Proof. The right-hand sides of relations (3) and (6) are identical; hence, the left-hand
sides of the same are identical too. Simplifying with the Gamma function yields the desired
conclusion.

Example 1. The degenerate case.

/0 /0 eyl K (28) T (yo) dady = éﬂam_Qﬁ_m csc (;W(m - v)) (8)

Proof. Use equation (7) and set k& = 0 and simplify using entry (2) in Table below
(64:12:7) in [5].

Example 2. The Hurwitz zeta function ((s,v)

/ / VzeB) sin(ay) logk ( >dxdy

NN

— o im(kt1) k41 <2k< ( —2ilog(a) — 2ilog(a) + 2ilog(B) + 7r> (9)
\fﬁ?’/Q ir

_9k¢ <—k, : <—2i log(a) — 2i loigra) + 2ilog(B) + m N 1)))

Proof. Use equation (7) and set m = 3/2,v = 1/2 and simplify using entry (4) in Table
below (64:12:7) in [5].

Example 3.

/ /ooe lsm log()dmdy:() (10)

og +7T>

and

o [ e " sin(y) 21
/0 /0 ; <10g2 (%) +7r2> dedy = — = 3 (11)
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Proof. Use equation (9) apply 'Hopital’s rule as k — —1 and set a = —1,a = =1
rationalize the denominator and simplify using entry (2) in Table below (64:7) in [5].

Example 4.
/ s VER e (r)dmdy = (var —ssin (T) —2v2tan? (sin (£))
Vi (1og? (5) + ) (12)
/ / \FKl J%(y) dudy 8cos (§) — V2 (m + 2tanh™! (sin (F))) (13)
a7

log %) + 7r2>

Proof. Use equation (7) and set k = —1,m = 3/2,v = 1/4,aa = § = 1,a = —1 and
simplify using entry (3) in Table below (64:12:7) in [5].

Example 5.

wm“mmxﬁ) (90)
/ / log ,81?) dxdy )

m—25—me—5m(2m—2v+l) (65”"(7”_”) — tanh™! (e%i”(m_“))>

= 2l

Proof. Use equation (7) and set k = —1,m = 3/2,v = 1/4,a = 3/« and simplify using
entry (3) in Table below (64:12:7) in [5].

Example 6. The Polylogarithm function Lig(z),

Y e g (1T - Rl Lim(k—mtv) 7 i (m—v)

/ / 2"y K (2) Jy (y) log® | = ) dedy = —int ez hmmAUI L (emm ”)
0 Jo Y
(15)

Proof. Use equation (7) and set a = i, 5 = a = 1 and simplify using equation (64:12:2)
in [5].
Example 7. The Polylogarithm function Lis(2),

. _Lir(m—v . imr(m—uv
log ) T
Proof. Use equation (7) and set k = —2,a =i, f = a = 1 and simplify using equation
(64:12:2) in [5].
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Example 8. Catalan’s constant G,

o =T 2 _ 2 (z
I e R S
4log (y) + 7 )
and
x sin(y) log <£> 2 _ 48¢
/ / 3/2 410g ( ) +:2)2d$dy = _7;68\/§7r2 (18)

Proof. Use equation (16) and set m = 2,v = 1/2 and simplify.

Example 9.

[e) oo ,,—m—p+1 M D __ MMy D
/ / Yy Ky(z)Jo(y) (y"a?P — 2™y )dmy
0 0

x log (%)

=2 (tamh*1 (e%i”(m*”)) — tanh ™! (e%i“(p*”)» (19)

Proof. Use equation (7) and form a second equation by replacing m — p and taking
their difference. Next set k = —1,a = 1, = f = 1 and simplify using entry (3) in Table
below (64:12:7) in [5].

Example 10.

/000 /000 (z— \/Ey\f; E{;)@)Jé 2 drdy = 2tanh ™! <1 - \/g + \2) (20)

Proof. Use equation (19) set v = 1/3,m = 3/2,p = 2 and simplify.

Example 11.

// 2*/5 (W/y — V) Ko(2)Jo o) gy
flog() (21)

1
— tanh ™! (29\/2 <254 —31v5 - 2\/4505 + 1109@))

Proof. Use equation (19) set v =0,m = 3/2,p = 7/5 and simplify.
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Example 12.

/ / (Vo — 2> Y/y) K1 (x) 5(y)dxdy:
Vi ()

N |

(e (5 248) + 1 (an (22)))

(22)

Proof. Use equation (19) set v =1/5,m = 3/2,p = 7/5 and simplify.

Example 13.

(5210 — 23/19) K (2).]: ()

/ / on (5 S edy = — tanh™! (sin (%)) (23)
— 2tanh ™! (tan <i72T>)

Proof. Use equation (19) set v =2/9,m = 3/2,p = 6/5 and simplify.

Example 14.

oo roo (z—/z/y) K1 (4v/3z) J1 (2v2y)
/0 /0 2 3 dxdy

o 1)

_ 4718 <( 1)7/12 60 < \ﬁ’l’wr%lfJg(ﬁ)) (24)

- (1)~ TR ) )

Proof. Use equation (7) and form a second equation by replacing m — p and taking

their difference. Next set k = —1,a = 1l,a = V2,8 = V/3,m = 3/2,p = 2,v = 1/7 and
simplify.

Example 15.

le 3x) J1 (2y) (—1)7/12% (_{i/jL 1, dn—4i log(227)r+2i log(B))
Ll dody == (25)
\flog ) 36

Proof. Use equation (7) set k = —1,a = —2,m = 3/2,v = 1/3,,a = 2,8 = 3 and
simplify.
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Example 16.

rr Ve () s (B)
C vmyles (%) (26)

1am, 3 —dn [T w13 ilog(32)
— — Y1134 2B |2 | —je VB =, D 4 2199 )
5 VTte \/; (w 22T T o

Proof. Use equation (7) set k = —1/2,a = —3,m = 3/2,v = 1/V/5,,a = 1/V/7,8 =

5/4/11 and simplify.

5. Discussion

In this paper, we have presented a novel method for deriving a new double integral

involving the product of Bessel functions along with some interesting definite integrals
using contour integration. The results presented were numerically verified for both real
and imaginary and complex values of the parameters in the integrals using Mathematica
by Wolfram.
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