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Abstract. This article deals with the concepts of A,-sets and (A, p)-closed sets which are defined
by utilizing the notions of preopen sets and preclosed sets. We also introduce and characterize some
new low separation axioms. Characterizations of A,-Rg spaces are given. Moreover, we introduce
the concept of weakly (A, p)-continuous functions. In particular, several characterizations of weakly
(A, p)-continuous functions are established.
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1. Introduction

In 1982, Mashhour et al. [16] introduced the notion of preopen sets which is also known
under the name of locally dense sets [7] in the literature. Since then, this notion received
wide usage in general topology. Kar and Bhattachryya [12] introduced new separation
axioms pre-Tp, pre-T; and pre-T5 by using preopen sets due to Mashhour et al. [16]. Caldas
[3] and Jafari [11] introduced independently the notions of p-D-sets and a separation
axiom p-D; which is strictly between pre-Tj and pre-7;. Caldas et al. [4] introduced
two new classes of topological spaceS called pre-Ry and pre-R; spaces in terms of concept
of preopen sets and investigated some of their fundamental properties. Mashhour et al.
[15] introduced and studied the concept of supra topological spaces by dropping a finite
intersection condition of topological spaces. El-Shafei et al. [9] defined some concepts
on supra topological spaces using supra preopen sets and investigated main properties.
Al-shami et al. [2] introduced and investigated new separation axioms, namely supra semi
T;-spaces (i = 0,1,2,3,4). In [1], the present author introduce the version of complete
Hausdorffness and complete regularity on supra topological spaces and discussed their
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fundamental properties. Cammaroto and Noiri [6] defined A,,-sets and generalized A,,-
sets in an m-spaces (X, m) which is equivalent to a generalized topological spaces [14]
and investigated properties of several low separation axioms of topologies constructed
by the families of these sets. Ganster et al. [10] introduced the notions of a pre-A-set
and a pre-V-set in a topological space and studied the fundamental properties of pre-A-
sets and pre-V-sets. Caldas et al. [5] introduced and studied two new weak separation
axioms called Ap-Rp and Ap-R; spaces by using the notions of (A, #)-open sets and (A, 6)-
closure operators. The concept of weak continuity due to Levine [13] is one of the most
important weak forms of continuity in topological spaces. Rose [18] introduced the notion
of subweakly continuous functions and investigated the relationships between subweak
continuity and weak continuity. Popa and Noiri [17] introduced the concept of weakly
(1, m)-continuous functions as functions from a topological space into a set satisfying
some minimal conditions and investigated several characterizations of such functions. The
paper is organized as follows. In section 3, we obtain fundamental properties of A,-sets
and investigate low separation axioms of an Alexandorff spaces (X,A,). In section 4,
we introduce the concept of (A, p)-closed sets and investigate properties of several low
separation axioms of topologies constructed by the families of these sets. In section 5, we
investigate some characterizations of A,-Ry spaces. In the last section, we introduce the
concept of weakly (A, p)-continuous functions and investigate several characterizations of
such functions.

2. Preliminaries

Throughout the present paper, spaces (X, 7) and (Y, o) (or simply X and Y') always
mean topological spaces on which no separation axioms are assumed unless explicitly
stated. For a subset A of a topological space (X, 7), Cl(A) and Int(A) represent the
closure and the interior of A, respectively. A subset A of a topological space (X, 7) is said
to be preopen [16] (resp. preclosed [16]) if A C Int(Cl(A)) (resp. Cl(Int(A)) C A). By
PO(X, 1) and PC(X, ), we denote the collection of all preopen sets and the collection
of all preclosed sets of a topological space (X, 7), respectively. The intersection of all
preclosed sets containig A is called the preclosure [8] of A and is denoted by pCl(A).

Definition 1. A topological space (X, T) is said to be:

(1) pre-Ty [12] if, for each pair of distinct points of X, there exists a preopen set con-
taining one of the points but not the other;

(2) pre-Th [12] if, for each pair of distinct points x and y of X, there exists a pair of
preopen sets one containing x but not y and the other containing y but not x;

(3) pre-Ro [4] if every preopen set contains the preclosure of each of its singletons.

Definition 2. Let A be a subset of a topological space (X,7). A subset Ap(A) [10] is
defined as follows: Ap(A) =N{0 € PO(X,1)|A C O}.
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Lemma 1. [10] For subsets A, B and A;(i € I) of a topological space (X, T), the following
properties hold:

(1) AC A (A).

(2) If AC B, then Ay(A) C Ay(B).

(3) Ap(Ap(4)) = Ay(A).

(4) Ap(n{4; | i € I}) CN{Ap(4;) | i€ I}
(5) Ap(U{A; | i € I}) = U{A,(A)) | i e T}

3. A,-sets and a topological space (X, A,)

In this section, we obtain fundamental properties of Aj,-sets and investigate low sepa-
ration axioms of an Alexandorff space (X, Ap).

Definition 3. A subset A of a topological space (X, T) is called a Ay-set (pre-A-set [10])
if A= Ay(A). The family of all Ap-sets of (X, 7) is denoted by Ap(X,T) (or simply Ap).

Lemma 2. For a subset A of a topological space (X, T), the following properties hold:
(1) Ap(A) is a Ap-set.
(2) If A is preopen, then A is a Ap-set.
Proof. This follows readily from Lemma 1.
Lemma 3. [10] For subsets A and A;(i € I) of a topological space (X, T), the following
properties hold:
(1) O and X are pre-A-sets.
(2) Every union of pre-A-sets is a pre-A,-set.
(3) Every intersection of pre-A-sets is a pre-A-set.
Theorem 1. For a topological space (X, 1), the pair (X, Ay) is an Alezandroff space.

Proof. This is an immediate consequence of Lemma 3.

Theorem 2. Let (X,7) be a topological space. Then, A, = Ay,,.
Proof. By Lemma 2, PO(X,7) C Aj,. Let A be any subset of X. Then,

Ar, = {U | ACU,U €A} C{U|ACU,U € PO(X,7)} = Ay(A).

Thus, Ax,(A) € Ap(A). Now, we suppose that = & Ap,(A). Then, there exists U € A,
such that A C U and = ¢ U. Since = ¢ U, there exists V € PO(X,7) such that
U CVand x ¢ V. Therefore, z ¢ Ay(A). This shows that Ax,(A) DO Ap(A) and hence
Ap(A) = Ay, (A).
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Theorem 3. A topological space (X, T) is pre-Ry if and only if the topological space (X, Ap)
is Ry.

Proof. Let V.€ Ay and let z € V. Then, x € A,(V)=n{U |V CU,U € PO(X, )}
and x € U for any U € PO(X, 1) containing V. Since (X, 7) is pre-Ry, pCl({z}) C U for
every U € PO(X, 1) containing V. Thus,

pCl({z}) CN{U |V CU,U € POX,7)} = Ay(V) = V.

Since PO(X,7) C Ap, Ap-Cl({z}) C pCl({z}) C V, where Ap-Cl({z}) denotes the closure
of the singleton {z} in the topological space (X, Ap). This shows that (X, A,) is Ro.

Conversely, suppose that (X, A,) is Ry. Let V € A, and z € V. Since PO(X, 1) C A,
we have Ap-Cl({z}) C V. Since X — Ap-Cl({z}) € A,

X — AyCl({z}) = N{U | X — A,-Cl({z}) C U,U € PO(X,7)}.

Then, there exists U € PO(X,7) such that X — A,-Cl({z}) C U and = ¢ U. Thus,
x € X —U C Ay-Cl({z}) € V. Since X — U is preclosed, pCl({z}) € X —U C V.
Consequently, we obtain (X, 7) is pre-Ry.

Theorem 4. A topological space (X, ) is pre-Ty if and only if the topological space (X, Ap)
18 To.

Proof. This is obvious since PO(X, 1) C A,,.

Conversely, let « and y be any pair of distinct points of X. Since (X, A,) is Tp, there
exists V € A, such that either x € Vandy gV orxz g Vandy € V. Incasex € V
and y ¢ V, there exists U € PO(X,7) such that V. C U and y ¢ U. However, since
xeV,xeU. Incase x ¢ V and y € V, similarly there exists U € PO(X, ) such that
x ¢ U and y € U. Thus, (X,7) is pre-Tp.

Lemma 4. For a topological space (X, T), the following properties are equivalent:
(1) (X,7) is pre-Ty;
(2) For each x € X, the singleton {x} is preclosed in (X,T).
(8) For each x € X, the singleton {z} is a A,-set.

Proof. (1) = (2): Let y be any point of X and let x € X — {y}. Then, there exists a
preopen set V,, such that x € V,, and y ¢ V,,. Thus, X — {y} = Uzex —{y}Va and hence the
singleton {y} is preclosed in X.

(2) = (3): Let x be any point of X and let y € X — {z}. Then,

z € (X —{y}) € PO(X,7)

and Ap({z}) € X — {y}. Therefore, y ¢ A,({z}) and hence A,({z}) C {z}. Thus,
Ap({z}) = {z}. This shows that {z} is a Aj,-set.
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(3) = (1): Suppose that the singleton {z} is a Ap-set for each x € X. Let x and y
be any distinct points. Then, y ¢ A,({z}) and there exists a preopen set U, such that
x € Uy and y € U,. Similarly, x ¢ A,({y}) and there exists a preopen set U, such that
y € Uy and x ¢ U,,. This shows that (X, 7) is pre-T;.

Theorem 5. A topological space (X, ) is pre-T1 if and only if the topological space (X, Ap)
is discrete.

Proof. Suppose that (X, 7) is pre-T1. Let # € X. By Lemma 4, {z} is a A,-set and
hence {x} is open in (X, A,). Thus, every subset of X is open in (X, A,). This shows that
(X, A,) is discrete.

Conversely, suppose that a topological space (X, A,) is discrete. For any point = € X,
{x} is open in (X, A,) and hence {z} is a A,-set, by Lemma 4, we have (X, 7) is pre-T7.

Corollary 1. For a topological space (X, T), the following properties are equivalent:
(1) (X,7) is pre-Ty;
(2) (X,7) is pre-Ry and pre-Tpy;

(

(
(3) ( is Ry and Tp;

(

(

(4)
(5)

Proof. (1) = (2): By Lemma 4, every pre-T space is pre-Ry and pre-Tp.

(2) = (1): Since (X, 1) is pre-Tp, for any distinct point x, y of X, there exists a preopen
set U of X such that z € U and y ¢ U. Hence, pCl({z}) C U since (X, 7) is pre-Ry. Thus,
x ¢ X —pCl({z}) and hence y € X — U C X — pCl({z}) € PO(X, 7). This shows that
(X, 1) is pre-T7.

(2) & (3): This is an immediate consequence of Theorem 3 and Theorem 4.

(3) < (4): This proof is obvious.

(5) & (1): This is an immediate consequence of Theorem 5.

X, A,)
X, Ap) 18 Tl;
X, A,)

is discrete.

4. (A, p)-closed sets

In this section, we introduce the notion of (A,p)-closed sets in topological spaces.
Moreover, some properties of (A, p)-closed sets are discussed.

Definition 4. A subset A of a topological space (X, T) is called (A, p)-closed if A=TnNC,
where T is a Ap-set and C is a preclosed set. The collection of all (A, p)-closed sets in a
topological space (X, T) is denoted by ApC(X, T).

Theorem 6. For a subset A of a topological space (X, 1), the following properties are
equivalent:
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(1) A is (A, p)-closed;
(2) A=TnNpClA), where T is a A,-set;
(3) A= A,(A)NpCIA).

Proof. (1) = (2): Let A =T N C,where T is a Ap-set and C' is a preclosed set. Since
A C C, we have pCl(A) C C and hence A=TNC DT nNpCl(A) D A. Consequently, we
obtain A =T NpCIl(A).

(2) = (3): Let A =TnNpCl(A), where T is a Ap-set. Since A C T, A,(A) CA,(T) =T
and hence A C Ap(A) NpCl(A) C T NpCl(A) = A. Thus, A = A,(A) N pCI(A).

(3) = (1): Since Ap(A) is a Ap-set, pCI(A) is preclosed and A = A,(A) NpCl(A). This
shows that A is (A, p)-closed.

Definition 5. A subset A of a topological space (X,T) is said to be (A,p)-open if the
complement of A is (A,p)-closed. The collection of all (A, p)-open sets in a topological
space (X, 1) is denoted by ApO(X,T).

Theorem 7. For a subset A, (v € I') of a topological space (X, ), the following properties
hold:

(1) If Ay is (A, p)-closed for each v € T, then N{Ay | v € T'} is (A, p)-closed.
(2) If Ay is (A,p)-open for each v € ', then U{A, | v € I'} is (A, p)-open.

Proof. (1) Suppose that A, is (A, p)-closed for each v € I'. Then, for each 7, there
exist a Ap-set T, and a preclosed set C., such that A, =T, N C,. Thus,

MyerAy = Myer(Ty N Cy) = (MyerTy) N (NyerCy).

Since NyerC, is a preclosed set and by Lemma 3, we have N,er7y is a Ap-set. This shows
that N,crAy is (A, p)-closed.

(2) Let A, be (A,p)-open for each v € I'. Then, X — A, is (A,p)-closed, by (1), we
have X — U,erAy = Nyer(X — A,) is (A, p)-closed and hence U,cr A, is (A, p)-open.

Theorem 8. Let (X,7) be a pre-Ry space. For each x € X, {x} is (A,p)-closed if and
only if {x} is preclosed.

Proof. Suppose that {z} is a (A, p)-closed set. By Theorem 6,

{z} = Ap({z}) NpCl({z}).

For any preopen set U containing z, pCl({z}) C U and hence pCl({z}) C A,({z}). Thus,
{z} = Ap({z}) N pCl({z}) 2 pCl({x}). This shows that {z} is preclosed.

Conversely, suppose that {z} is a preclosed set. Since {z} C A,({z}), we have
Ap({z}) NpCl({z}) = Ap({z}) N {z} = {«}, by Theorem 6, {z} is (A, p)-closed.
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Theorem 9. A topological space (X,7) is pre-Ty if and only if for each x € X, the
singleton {x} is (A, p)-closed.

Proof. Suppose that (X, 1) is pre-Tp. For each = € X it is obvious that

{z} € Ap({z}) NpCl({z}).

If y # x, (i) there exists a preopen set V, such that y ¢ V, and = € V, or (ii) there
exists a preopen set Vj, such that ¢ V,, and y € V. In case of (i), y € Ap({z}) and

y & Ap({z}) N pCl({z}). Thus, {z} D Ap({z}) NpCl({z}). In case (i7), y & pCl({z}) and
y & Ap({z}) N pCl({x}). This shows that {z} DO A,({z}) N pCl({z}). Consequently, we
obtain {z} = Ap,({z}) N pCl({z}).

Conversely, suppose that (X, 7) is not pre-Ty. There exist two distinct points z, y such
that (i) y € V,, for every preopen set V,, containing = and (ii) = € Vj, for every preopen set
Vy containing y. From (i) and (i7), we obtain y € A,({z}) and y € pCl({z}), respectively.
Therefore, we have y € Ap({z}) N pCl({z}). By Theorem 6, {z} = A,({z}) N pCl({z})
since {z} is (A, p)-closed. This is contrary to = # y.

Definition 6. Let A be a subset of a topological space (X, 7). A point x € X is called
a (A, p)-cluster point of A if ANU # O for every (A,p)-open set U of X containing x.

The set of all (A, p)-cluster points of A is called the (A,p)-closure of A and is denoted by
AP

Lemma 5. For subsets A, B of a topological space (X, T), the following properties hold:
(1) AC ANP) and [AAP)]|(Ap) = A(AP),
(2) If AC B, then AMP) C BAP),
(3) AMP) ={F|ACF and F is (A, p)-closed}.
(4) AWP) s (A, p)-closed.
(5) A is (A, p)-closed if and only if A= ALP),
Remark 1. Every Ay,-set is (A, p)-closed.
The converse of Remark 1 is not true in general as shown by the following example.

Example 1. Let X = {—2,—1} with a topology 7 = {0,{—2},X}. Then, {—1} is a
(A, p)-closed set, but {—1} is not a Ap-set.

Lemma 6. For a subset A of a topological space (X, T), the following properties hold:
(1) If A is preclosed, then A is (A, p)-closed.
(2) Ais (A, p)-closed if and only if A= A,(A) N ANP),
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Proof. (1) It is sufficient to observe that A = X N A, where the whole set X is a Ap-set.

(2) Let A be a (A,p)-closed set. Then, there exist a A,-set T and a preclosed set C
such that A = TN C. Since A C T, we have A C A,(A) C A(T) = T. Since C is
preclosed, by (1), C is (A, p)-closed. Since A C C, A C AWp) ¢ ¢(AP) = ¢ and hence

ACA(ANANY CcTNC = A,

Thus, A = A,(A) N AP,

Conversely, let A = A,(A) N AAP). Since Ay(A) is a Ap-set, by Remark 1, A,(A) is
(A, p)-closed. Since AP is (A, p)-closed, by Theroem 7(1), Ap(A) NANP) is (A, p)-closed
and hence A is (A, p)-closed.

The following example shows that the converse of Lemma 6(1) is not true in general.

Example 2. Let X = {—2,—1,0,1,2} with a topology 7 = {0,{—2},{2},{-2,2}, X}.
Then, {—2,2} is (A, p)-closed, but {—2,2} is not preclosed.

Definition 7. Let A be a subset of a topological space (X, ). A subset Ay ,)(A) is defined
as follows: Ay ) (A) = {U € A,O(X,7) | ACU}.

Lemma 7. For subsets A, B of a topological space (X, T), the following properties hold:
(1) AC Aap)(A).
(2) If AC B, then A, ,)(A) € A py(B).
(3) Map)[Aap (A)] = Ay (A);
(4) If A is (A, p)-open, then Ay ,)(A) = A.

Lemma 8. Let (X,7) be a topological space and let v,y € X. Then, y € A, ({x}) if
and only if x € {y}Ap),

Proof. Let y & Aap)({z}). Then, there exists a (A, p)-open set V' containing = such
that y € V. Hence, = ¢ {y}(A’p). The converse is similarly shown.

A subset N, of a topological space (X, 7) is said to be (A, p)-neighbourhood of a point
x € X if there exists a (A, p)-open set U such that z € U C N,.

Lemma 9. A subset A of a topological space (X,T) is (A, p)-open if and only if A is
(A, p)-neighbourhood of each x € A.

Definition 8. Let A be a subset of a topological space (X, 7). A subset (x), is defined as
follows: (x)p = Ap py({z}) N {a} (),

Theorem 10. For a topological space (X, T), the following properties hold:
(1) Apap(A) ={r e X | AN {x}AP) L O} for each subset A of X.
(2) For each v € X, Aipp)((x)p) = Agapy({7})-
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(3) For each x € X, ((x),) M) = {x}(Ap),
(4) If U is (A, p)-open and x € U, then (z), C U.
(5) If F is (A, p)-closed and x € F, then (x), C F.

Proof. (1) Suppose that A N {z}(A) = (. Then, we have z ¢ X — {z}(*P) which
is a (A,p)-open set containing A. Therefore, = ¢ A p)(A). Consequently, we have
Apap(A) C{z e X | AN {x}AP) £ (). Next, let © € X such that AN {z}AP) £ (
and suppose that z ¢ A, ,)(A). Then, there exists a (A, p)-open set U containing A and
¢ U. Let y € An{z}™P). Hence, U is a (A, p)-neighbourhood of y which does not
contain z. By this contradiction x € A, ;) (A).

(2) Let € X. Then, we have {z} C {z}(*P) N Aap({r}) = (z)p. By Lemma
7, Aap({z}) € A@p((z)p). Next, we show the opposite implication. Suppose that
y & Aap)({7}). Then, there exists a (A, p)-open set V such that x € V and y ¢ V. Since
()p € Aap({z}) € Aap) (V) =V, we have Ay ) ((z)p) € V. Since y € V, we have
Yy € A(A’p)(<a:>p). Thus, A(Avp)((x>p) - A(A,p)({l‘}) and hence A(A’p)({l‘}) = A(Ap)((x)p).

(3) By the definition of (z),, we have {2} C (z), and {z}(*P) C ((z),)™P) by Lemma
5. On the other hand, we have (x), C {x}(*?) and ((x),)*?) C ({a}(AP))(Ap) = {3} (Ap),
Thus, ({(z),)*P) = {z}(AP),

(4) Let U be a (A, p)-open set and let z € U. By Lemma 7, A5 ,,({z}) € U and hence
(x)p € U.

(5) Let F be a (A, p)-closed set and let x € F. By Lemma 5, we have

(@hp = {2} 1 Aga ) ({a}) € {2} € PP = .

Lemma 10. For any points x and y in a topological space (X, T), the following properties
are equivalent:

(1) Ay ({2}) # A ({y});

(2) {2} £ [y},

Proof. (1) = (2): Suppose that A py({z}) # Aap)({y})- There exists a point z € X
such that z € Ay, ({7}) and 2 € Ap ) ({y}) or 2 € Ay, ({y}) and z € Ay ) ({7}). We
prove only the first case being the second analogous. From z € Ay ) ({z}) it follows that
{x} N {z}AP) £ () which implies 2 € {z}("P). By 2 ¢ Aapy{u}), {yp N {z}AP) = ).
Since x € {z}AP) {z}(AP) C {2}0P) and {y} N {z}(MP) = ). Therefore, it follows that
{ay ) £ {y} AP Thus, An ) ({2}) # Aqa ) ({y}) implies that {x}(42) 2 {y} (),

(2) = (1): Suppose that {z}AP) £ {y}(AP) Then, there exists a point z € X such
that z € {x}MP) and 2 ¢ {y} M) or 2 € {y} M) and 2 ¢ {2}(MP). We prove only the first
case being the second analogous. It follows that there exists a (A, p)-open set containing
z and therefore z but not y, namely, y & A(x ,)({7}) and hence A py({z}) # Aap)({Y})-
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Lemma 11. For any points x and y in a topological space (X, T), the following properties
hold:

(1) y € Anpy({x}) if and only if x € {y}(/\ﬁp)’-
(2) Aap({r}) = Aap({y}) if and only if {x}AP) = {1 (Ap),

Proof. (1) Let z & {y}(*P). Then, there exists a (A, p)-open set U such that z € U
and y ¢ U. Therefore, y & A, ,)({7}). The converse is similarly shown.
(2) Suppose that Ay ;) ({7}) = Aap)({y}) for any points z and y in X. Since

z € A p)({}),

v € Appy({y}) and by (1), y € {z}MP) By Lemma 5, {y}MP) C {2}(AP), Similarly, we
have {z}(*?) C {y}(AP) and hence {z}(AP) = {31 (Ap),

Conversely, suppose that {z}(8?) = {y}(AP) Since z € {x}MP) & € {y}P) and
by (1), y € Ay ({z}). By Lemma 7, Ay ({}) € Ay (Aap({2}) = Ay ({2}).
Similarly, we have A ) ({7}) € A ({y}) and hence Ay ) ({7}) = A ) ({y})-

5. Characterizations of A,-R, spaces

In this section, we introduce the concept of A,-Ry spaces. Moreover, some characteri-
zations of A,-Ry spaces are investigated.

Definition 9. A topological space (X, 1) is called a Ap-Ry space if, for each (A,p)-open
set U and each x € U, {x}(MP) C U.

Theorem 11. For a topological space (X, T), the following properties are equivalent:
(1) (X,7) is Ap-Ro;

(2) for each (A,p)-closed set F' and each x € X — F, there exists a (A, p)-open set U
such that FF CU and x € U;

(3) for each (A, p)-closed set F' and each x € X — F, F N {z}("P) = ();
(4) for cach 2,y € X, {z}&9) = [y}39) or {2}49) 0 {y}40) =,

Proof. (1) = (2): Let F be a (A,p)-closed set and let x € X — F. Then, we have
{z}AP) C X — F. Let U = X — {x}(AP) then U is a (A, p)-open set such that FF C U and
& U.

(2) = (3): Let F be a (A, p)-closed set and let z € X — F. There exists a (A, p)-open
set U such that F C U and z ¢ U. Thus, U N {z}(*P) = § and hence F N {z}(*») = ¢,

(3) = (4): Let z,y be distinct points of X. Suppose that {z}(AP) £ {y}(AP) By
(3), = € {y}*) and y € {2}AP). Thus, {x}AP) C {y}AP) C {2}AP) and hence
{x}(/\yp) = {y} ),
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(4) = (1): Let U be a (A,p)-open set and let z € U. For each y ¢ U, we have
U N {y}®P) = () and hence = ¢ {y}*P). Therefore, {y}AP) #£ {}(AP) By (4),

{2 AP Ay} Ap) — ¢,

Since X — U is (A, p)-closed, y € {y}™P) € X — U and Uyex_p{y}*?) = X — U. Thus,
{z}MP) N (X = U) = {2} 0 [Uyex—ov{y} PP = Uyex v [{z} @) N {y}AP)] = § and
hence {x}AP) C U. This shows that (X,7) is A,-Ro.

Corollary 2. A topological space (X,7) is Ap-Ro if and only if, for each xz,y € X,
{$}(Avp) ?é {y}(Avp) Zmplzes {x}(Avp) M {y}(Avp) = @

Proof. This is obvious by Theorem 11.

Conversely, let U be a (A, p)-open set and let 2 € U. If y & U, then U N {y}(*») = ().
Thus, z & {y}*P) and {z}AP) £ {31(AP) By the hypothesis, {z}*?) N {y}AP) = () and
hence y & {x}(MP). Therefore, {x}(AP) C U. Thus, (X,7) is Ay-Ro.

Theorem 12. A topological space (X,T) is Ap-Ro if and only if, for each z,y € X,
Ay ({z}) # Ay ({y}) implies Aa p)({2}) 0 A ({y}) = 0.

Proof. Suppose that A ) ({2}) N A ({y}) # 0. Let 2 € Ay ({z}) N A {y})-
Then, 2z € Ay p)({7}) and by Lemma 11, x € {2}AP) Thus, z € {2} 0 {2}AP) and
by Corollary 2, {z}(MP) = {2}(AP) Similarly, we have {z}(*?) = {y}(AP) and by Lemma

1L, A py({2}) = Ay ({9))-
Conversely, we shows the sufficiency by using Corollary 2. Suppose that

@} 2 (A,

By Lemma 11, Ay py({#}) # Aap)({y}) and hence Ay ) ({z}) N Agap)({y}) = 0. There-
fore, {x}P) N {y}AP) = . In fact, assume z € {x}AP) N {y}AP) Then, 2 € {2}AP)
implies z € Ay p)({2}) and hence z € A ;) ({2}) N Ay ({z}). By the hypothesis,
Aap({2}) = Apap({x}) and by Lemma 11, {2} = (z}(AP) Similarly, we have
{23AP) = [} (AP) and hence {z}(MP) = {y}(AP), This contradicts that {x}(AP) £ {3/} (AP),
Thus, {z}(*P) 0 {y}(AP) = (). This shows that (X,7) is A,-Ro.

Theorem 13. For a topological space (X, T), the following properties are equivalent:
(1) (X,7) is Ap-Ro;
(2) z € {y} AP if and only if y € {x} AP,

Proof. (1) = (2): Suppose that (X,7) is Ap-Ro. Let 2 € {yg}(*?). By Lemma 11,
y € App)({z}) and hence Ay py({x}) N A p)({y}) # 0. By Theorem 12, we have

Aap({e}) = Aap{y})
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and hence v € Ay p)({y}). Thus, y € {z}(AP) by Lemma 11. The converse is similarly
shown.

(2) = (1): Let U be a (A, p)-open set and let z € U. If y ¢ U, then {y}*P) N U = 0.
Thus, z ¢ {y}*P) and hence y ¢ {z}*P). This implies that {z}(AP) C U. Therefore,
(X, 7’) is Ap—R().

Theorem 14. For a topological space (X, T), the following properties are equivalent:
(1) (X,7) is Ap-Ro;

(2) for each nonempty subset A of X and each (A,p)-open set U such that ANU # 0,
there exists a (A, p)-closed set F such that ANF # 0 and F CU;

(3) F'= Ay (F) for each (A, p)-closed set F';

(4) {a} ) = A ) ({x}) for each x € X.

Proof. (1) = (2): Let A be a nonempty subset of X and let U € A,O(X, 7) such that
ANU # (. Then, there exists # € ANU and hence {z}(*P) C U. Put F = {z}*?)| then
Fis (A,p)-closed, ANF #( and F CU.

(2) = (3): Let F be a (A,p)-closed set. By Lemma 7, we have F' C Ay ) (F). Next,
we show F' 2 Ay ) (F). Let ¢ F. Then, v € (X — F) € A,O(X,7) and by (2), there
exists a (A, p)-closed set K such that z € K and K C X —F. Now, put U = X — K. Then,
FCUeMNOX,7)and x ¢ U. Thus, z & A ) (F). This shows that F' 2 Ay ) (F).

(3) = (4): Let x € X and let y & Ay ) ({x}). There exists a (A, p)-open set U such
that € U and y € U. Therefore, {y}(»?) N U = §. By (3), we have

Aap (¥ nU =0.

Since = & A(Am)({y}(A’p)), there exists a (A, p)-open set G such that {y}(*?) C G and
z ¢ G. Hence, {x}*?) NG = (). Since y € G, we have y ¢ {z}(™P) and hence
(@} € Ay (). Moreover, {2} € Ay () € A ({2} (49) = {2}
Consequently, we obtain {z}(AP) = Aap({}).

(4) = (5): The proof is obvious.

(5) = (1): Let U € A,O(X,7) and let z € U. If y ¢ U, then {y}*) NU = § and
x & {y}(A’p). By Lemma 11, y ¢ A(Am)({x}) and by (5), y & {x}(A’p). Thus, {x}(A’p) cU
and hence (X, 7) is A,-Rp.

Corollary 3. A topological space (X, T) is Ap-Ro if and only if {x}Ap) C A py({}) for
each z € X.

Proof. This is obvious by Theorem 14.

Conversely, let z € {y}(»P). By Lemma 11, we have y € Aap)({x}) and hence
y € {x}MP), Similarly, if y € {£}*P), then z € {y}MP). It follows from Theorem 13 that
(X, T) is Ap—Ro.
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Theorem 15. For a topological space (X, T), the following properties are equivalent:

(1) (X,7) is Ap-Ro;

(2) (x)p = {x}Y™P) for each v € X;

(3) (x)p is (A, p)-closed for each xz € X.

Proof. (1) = (2): By Theorem 14, {z}(AP) = Aap)({z}) for each z € X and hence

{x} P = {2}AP) 0 Ay ({2}) = ()

(2) = (1): Since {z}MP) = (z),, for each z € X, we have {z}(MP) C A py({x}). By
Corollary 3, (X, 7) is Ap-Ro.

(2) < (3): This is a consequence of Lemma 7.

6. Characterizations of weakly (A, p)-continuous functions

In this section, we introduce the notion of weakly (A, p)-continuous functions and
obtain several characterizations of weakly (A, p)-continuous functions.

Definition 10. Let A be a subset of a topological space (X, 7). The union of all (A, p)-open
sets contained in A is called the (A, p)-interior of A and is denoted by Ay p)-

Lemma 12. Let A and B be subsets of a topological space (X, 7). For the (A, p)-interior,
the following properties hold:

(1) Ap) €A and [Ax p)lap) = Arp)-

(2) If AC B, then Ax,) C Biap)-

(3) Ay =U{G| G C A and G is (A, p)-open}.
(4) A is (A, p)-open.

(5) A is (A, p)-open if and only if Ay, = A.
(6) [X = AP = X — Ay

Definition 11. A function f : (X,7) — (Y, 0) is said to be weakly (A, p)-continuous at
a point x € X if, for each (A,p)-open set V' containing f(x), there exists a (A, p)-open
set U containing = such that f(U) C VAP A function f: (X,7) — (Y,0) is said to be
(A, p)-continuous if f has this property at each point x € X.

Theorem 16. A function f: (X,7) — (Y, 0) is weakly (A, p)-continuous at x € X if and
only if for each (A,p)-open set V' containing f(z), x € [f_l(V(A’p))](AJD).
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Proof. Let V be a (A, p)-open set containing f(x). Then, there exists a (A, p)-open
set U containing z such that f(U) € V&) and hence z € U C f~H(VAP). Thus,
v e [ VA,

Conversely, let V' be a (A, p)-open set containing f(x). By the hypothesis, we have
x € [f_l(V(A’p))](Avp). There exists a (A, p)-open set U such that z € U C f~1(VAP),
hence f(U) C VAP). This shows that f is weakly (A, p)-continuous at = € X.

Theorem 17. A function f : (X,7) — (Y,0) is weakly (A, p)-continuous if and only if
fi(v) c [ffl(V(A’p))](Am) for every (A, p)-open set V of Y.

Proof. Let V be any (A,p)-open set of Y and let z € f~'(V). Then f(z) € V.
Since f is weakly (A, p)-continuous at x, by Theorem 16, z € [f_l(V(A’p))](Ayp) and hence

FHV) ST V).

Conversely, let x € X and let V be any (A, p)-open set of Y containing f(xz). Then, we
have z € f~4(V) C [f_l(V(A’p))](Ayp) and hence x € [f_l(V(A’p))](A’p). Thus, f is weakly
(A, p)-continuous by Theorem 16.

Theorem 18. A function f : (X,7) — (Y,0) is weakly (A, p)-continuous if and only if
[f=1(WV)AP) C =L (VAP for every (A, p)-open set V of Y.

Proof. Let V be any (A,p)-open subset of Y and let € f~1(V). There exists a
(A, p)-open set U containing 2 such that f(U) C VAP, Since x € U C f~H(VAP), we
have z € [f_l(V(A’p))](Am) and hence f~1(V) C [f_l(V(Avp))](AJJ).

Conversely, let 2 € X and let V' be any (A, p)-open set containing f(z). Since

vAly — v =g,
f(z) ¢ Y — VAP]AP) and hence z ¢ f~1([Y — VAP))(AP)). By the hypothesis,
& [fTH Y — v e — 1 x — 1y Ay (Ap)

and there exists a (A, p)-open set U containing  such that U N [X — f~1(VAp)] = ¢.
Thus, f(U) C VAP), This shows that f is is weakly (A, p)-continuous.

Theorem 19. For a function f: (X,7) — (Y,0), the following properties are equivalent:
(1) f is weakly (A, p)-continuous;
(2) f~YU) C [f_l(U(A’p))](A,p) for every (A,p)-open subset U of Y;
(3) [ffl(F(A,p))](A’p) C f~Y(F) for every (A,p)-closed subset F of Y ;
(4) [f_l([A(A’p)](A’p))](A’p) C f_l(A(A’p)) for every subset A of Y;

(5) ffl(A(Avp)) - [ffl([A(Avp)](A’p))](mp) for every subset A of Y;
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(6) [f~HU)]AP) C =1 UAP)) for every (A, p)-open subset U of Y.

Proof. (1) = (2): It follows from Theorem 17.

(2) = (3): Let F be any (A, p)-closed subset of Y. Then, Y — F is (A, p)-open, by (2),
Y = F) C 1Y = P10 = Y = Fap)liag = X = [F 7 (Flap) ).
Thusv [fil(F(A,p)”(A’p) - fﬁl(F>'

(3) = (4): Let A be any subset of Y. Since AMP) is (A, p)-closed, by (3),

[ AR )] €t (A)),
(4) = (5): Let A be any subset of Y. By (4), we have
FHAn) =X — 1Y — A|4»)
C X =[Ny = AJ AP g )P
= [ (Aa ) ap)-

Thus, we get the result.

(5) = (6): Let U be any (A, p)-open subset of Y. Suppose that z ¢ f~1(U*?)). Then,
f(z) ¢ UMP) and so there exists a (A, p)-open set V containing = such that U NV = §.
Thus, U NV®AP) = . By (5), z € f~1(V) C [f_l(V(A’p))](AJ)). There exists a (A, p)-
open set W containing x such that z € W C f~1(VA»). Since U N VAP) = () and
fW) € VAP wwe have W N f~1(U) = 0 and hence z ¢ [f~1(U)]*P). This shows that
[fH@)Ae C i),

(6) = (1): This is obvious from Theorem 18.

Definition 12. A subset A of a topological space (X, T) is said to be:
(i) s(A,p)-open if A C [Ayy)|*P);
(ii) p(A,p)-open if A C[ALP)](y )
(iii) B(A,p)-open if A C [[ANP] ]AP);
(iv) r(A,p)-open if A= [A(A’p)](Am).

The complement of a s(A, p)-open (resp. p(A, p)-open, B(A, p)-open, r(A, p)-open) set
is called s(A, p)-closed (resp. p(A,p)-closed, 5(A, p)-closed, r(A, p)-closed).

Theorem 20. For a function f: (X,7) — (Y,0), the following properties are equivalent:
(1) f is weakly (A, p)-continuous;
(2) [f_l(F(A,p))](A’p) C f7YF) for every r(A, p)-closed subset F of Y;

(3) [f7H U a o)) P C f7HU D)) for every B(A, p)-open subset U of Y';



C. Boonpok, C. Viriyapong / Eur. J. Pure Appl. Math, 15 (2) (2022), 415-436 430
(4) [f_l([U(A’p)](A7p))](A’p) C f_l(U(A’i”)) for every s(A, p)-open subset U of Y.

Proof. (1) = (2): Let I be any r(A, p)-closed subset of Y. Then, F, ;) is (A, p)-open,
by Theorem 19, [ffl(F(Am))](A’p) - ffl([F(A,p)](A’p)). Since F' is (A, p)-closed, we have

[ Ea )] C o (Fa ™) = 1)

(2) = (3): Let U be any B(A, p)-open set. Then, UMP) C [[U(A’p)](Am)](A’p) c unp
and hence UMP) is (A, p)-closed. By (2), [f_l([U(Avp)](A,p))](AW) C fH U,

(3) = (4): The proof is obvious.

(4) = (1): Let U be any (A, p)-open subset of Y. Then, we have U is s(A, p)-open and
by (4), [f~HU)NP) C [f~H U] AP)A2) C =L UAP). Thus, f is weakly (A,p)-
continuous by Theorem 19.

Theorem 21. For a function f: (X,7) — (Y,0), the following properties are equivalent:
(1) f is weakly (A, p)-continuous;
(2) [f (U )82 C f=HUAP)) for every p(A, p)-open subset U of Y ;
(3) [f~H))AP) C f=HUAP)) for every p(A,p)-open subset U of Y';
(4) f~1(U) C [ffl(U(A’p))](A,p) for every p(A,p)-open subset U of Y.
Proof. (1) = (2): Let U be any p(A, p)-open subset of Y. Then, we have

U — [[u@ey 1A

(Asp)

and hence UMP) is (A, p)-closed. By Theorem 20, [f_l([U(Am)](A’p))](A’p) C f~Hu®p),
(2) = (3): Let U be any p(A, p)-open subset of Y. Then, U C [U(A’p)](A,p) and by (2),
we have [f~1(U)|M) C [fH([UAP) )P C f=H (U AP,
(3) = (4): Let U be any p(A, p)-open subset of Y. By (3), we have
FH0) € UM p)
=X — 7Yy — uA»)Ap)y
=X — [Ny — udp))(Ap)
= [ UDP)] a0

(4) = (1): Since every (A,p)-open set is p(A,p)-open, by (4) and Theorem 19, it
follows that f is weakly (A, p)-continuous.

Theorem 22. For a function f: (X,7) — (Y,0), the following properties are equivalent:
(1) f is weakly (A, p)-continuous;
(2) [f‘l([A(AW)](A’},))](A’I’) - f_l(A(A’p)) for every subset A of Y;
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(3) [f_l(F(A,p))](A’p) C f7Y(F) for every r(A,p)-closed subset F of Y;
(4) [f~HU)@») C =Y UAP)) for every (A, p)-open subset U of Y;
(5) f~H1U) C [f_l(U(A’p))](Ayp) for every (A, p)-open subset U of Y;
(6) [f_l(U)](A’p) - f_l(U(A7p)) for every p(A, p)-open subset U of Y;

(7) f~HU) C [f_l(U(A’p))](A,p) for every p(A, p)-open subset U of Y.

Proof. (1) = (2): Let A be any subset of Y and let z € X — f~1(ANP). Then,
f(z) € Y — AAP) and there exists a (A, p)-open set U containing f(z) such that UNA = ()
and hence UMP) N [A(A@)](A’p) = (). Since f is weakly (A,p)-continuous, there exists a
(A, p)-open set W containing z such that f(W) C UMP), Then W N f_l([A(A’p)](Ap)) =0
and hence z € X — [f_l([A(A’p)](Am))](A’p). This shows that

77 (AGP) )N € fH (A0,
(2) = (3): Let F be any r(A, p)-closed subset of Y. By (2), we have
T Eap)I = [ IFa ) Pl ap)I™ S f T (Fag) ™) = £71(F).

(3) = (4): L t U be any (A, p)-open subset of Y. Since UMP) is (A, p)-closed and by
(3), LFH @) C [fH AP a )] C fHU D),

(4) = (5): Let U be any (A, p) -open subset of Y. Since Y — UAP) is (A, p)-open, by
(4), X = [fHUR ) = [FHY = UAPA2) C o1y — ] ’p)) CX—fHU)

and hence f~1(U) C [f—1<U< )] (Ap)-

(5) = (1): Let x € X and let U be any (A, p)-open subset of Y containing f(x). By (5)
z e f7HU) C[fFHUN) gy Put W= [f7HTAP)] ). Thus, f(W) € UNP) and
hence f is weakly (A, p)-continuous at x. This shows that f is weakly (A, p)-continuous.

(1) = (6): Let U be any p(A, p)-open subset of Y and let z € X — f~1(UXP)). There
exists a (A, p)-open set V containing f(z) such that V NU = @ and hence [V NU|AMP) = §.
Since U is (A, p)-open, we have U N VAP C [UNV]AP) = ). Since f is weakly (A, p)-
continuous and V' is a (A, p)-open set containing f(z), there exists a (A, p)-open set W
containing x such that f(W) C VA2) Then, f(W)NU = () and hence W N f~1(U) = 0.
Thus, z € X — [f~5(U)]®P). This shows that [f~1(U)]MP) € f=HUOP),

(6) = (7): Let U be any p(A, p)-open subset of Y. Since Y — UAP) is (A, p)-open and
by (6), we have

X = [f U ap = (1Y UD€ fH([y — o)) € X — f7H(U)

and hence f~Y(U) C [f~Y(U® ’p))](Ap).

(7) = (1): Let x € X and let V be any (A, p) -open subset of Y’ contalmng f(z). Then,
V is p(A,p)-open, by (7), z € f71(V) C [f7H (VM) ap). Put U = [f~H(VP)]A2),
Then, f(U) € VAP and hence f is weakly (A,p)-continuous at x. Thus, f is weakly
(A, p)-continuous.
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Definition 13. A topological space (X,T) is said to be Ay-Ts if, for any disjoint pair of
points x and y in X, there exist (A, p)-open sets U and V such that x € U,y € V and
Uunv=40.

Definition 14. A topological space (X, T) is said to be Ay-Urysohn if, for each distinct
points x,y € X, there exist (A,p)-open sets U and V containing x and y, respectively,
such that UAP) 0V (Ap) = ¢,

Theorem 23. If f: (X,7) = (Y,0) is a weakly (A, p)-continuous injection and (Y, o) is
A,-Urysohn, then (X, 1) is Ap-Ts.

Proof. Let x,y be distinct points of X. Then, f(x) # f(y). Since (Y, o) is A,-Urysohn,
there exist (A, p)-open sets U and V containing f(z) and f(y), respectively, such that
UNP) Yy (AP) = (. Since f is weakly (A, p)-continuous, there exist (A, p)-open sets G and
W containing z and y, respectively, such that f(G) C UXP) and f(W) € VAP, This
shows that GNW = 0. Thus, (X,7) is Ap-Tp.

Theorem 24. If f : (X,7) = (Y, 0) is weakly (A.p)-continuous and (Y, o) is Ap-To, then
f has (A, p)-closed point inverses.

Proof. Let y € Y. We show that f~1(y) = {z € X | f(z) = y} is (A, p)-closed, or
equivalently G = {z € X | f(x) # y} is (A, p)-open. Let z € G. Since f(x) # y and (Y, 0)
is Ap-T», there exist disjoint (A, p)-open sets U and V such that f(z) € U and y € V.
Since UNV =0, UNP) NV = () and hence y ¢ UXP) . Since f is weakly (A, p)-continuous,
there exists a (A, p)-open set W containing x such that f(W) C UAP) . Now, suppose
that W is not contained in G. Then, there exists a point z € W such that f(z) = y. Since
fW) Cc UAP) y = f(2) € UMP), This is a contradiction. Therefore, W C G and by
Lemma 9, G is (A, p)-open.

Theorem 25. Let (X, 7) be a topological space. If for each pair of distinct points x1 and
xg in X, there exists a function f: (X,7) — (Y,0) such that

(1) (Y,0) is Ap-Urysohn,

(2) f(z1) # f(x2) and
(3) f is weakly (A, p)-continuous at 1 and x2, then (X, 7) is Ay-To.

Proof. Let x1,z9 be any distinct points of X. By the hypothesis, there exists a
function f : (X,7) — (Y, o) which satisfies the conditions (1), (2) and (3). Let y; = f(z:)
for i = 1,2. Then, y1 # y2. Since (Y, 0) is Ap-Urysohn, there exist (A, p)-open sets V; in
(Y, o) containing y; such that Vl(A’p) N Vz(A’p) = (). Since f is weakly (A, p)-continuous at
x1 and xg, for i = 1,2, there exist (A, p)-open sets U; in (X, 7) containing x; such that
() C V;(A’p). Hence, we get Uy N Uy = (). This shows that (X, 7) is Ap-To.
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Corollary 4. If f: (X,7) — (Y,0) is a weakly (A, p)-continuous injection and (Y, o) is
Ap-Urysohn, then (X, T) is Ap-Ts.

Definition 15. Let A be a subset of a topological space (X, 7). The (A, p)-closure of A,
AYNP) s defined as follows:

AP — fp e X | AN UNP) £ 0 for each (A, p)-open set U containing .

A subset A of a topological space (X,7) is called 8(A, p)-closed if A = A?AP) The
complement of a O(A, p)-closed set is said to be §(A, p)-open.

Lemma 13. Let A be a subset of a topological space (X, 7). Then, x € ANP) if and only
if UNA#0 for every (A, p)-open set U containing x.

Lemma 14. For a subset A of a topological space (X, T), the following properties hold:
(1) If A is (A, p)-open in (X, T), then AAMP) = A9(Ap),
(2) AYAP) s (A, p)-closed for every subset A of X.

Proof. (1) In general, we have AAP) C A9AP) Suppose that z ¢ AMP). By Lemma
13, there exists a (A, p)-open set U containing z such that U N A = 0; hence AN Ulr) =g
since A is (A, p)-open. Thus, z ¢ A?AP) Consequently, we obtain ANP) = A0(AP),

(2) Let € X — A?AP) Then, we have ¢ A’™P). There exists a (A, p)-open
set U, containing x such that A N UQEA’p ) — 0 and hence U, N A?AP) = (). Therefore,

z €U, CX— AP Thus, X — A%AP) = U,y 4e0mU, and hence X — A%AP) g
(A, p)-open. This shows that AP is (A, p)-closed.
Theorem 26. For a function f: (X,7) — (Y,0), the following properties are equivalent:
(1) f is weakly (A, p)-continuous;
(2) FIANP)Y C [f(A)ONP) for every subset A of X ;
(3) [f~H(B)AP) C =1 (BIAP)Y for every subset B of Y;
(4) [f~1(W)]Ap) C =1V AP for every (A, p)-open subset V of Y.

Proof. (1) = (2): Let A be any subset of X. Let z € AP) and V be any (A, p)-open
set containing f(x). Since f is weakly (A, p)-continuous, there exists a (A, p)-open set U
containing z such that f(U) C VAP), Since z € AMP)| we have UNA # (). Tt follows that
0+ FU)N f(A) C VAP N f(A) and hence VAP N f(A) # (. Thus, f(z) € [f(A)]PNP),
Consequently, we obtain f(AXP)) C [f(A))/AP),

(2) = (3): Let B be any subset of Y. By (2), we have

JAFH BN € [f(HB)) P € B

and hence [ffl(B)](A,p) C f*l(BH(A,p)>.
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(3) = (4): Let V be any (A, p)-open subset of Y. By Lemma 14, V(A») = y0(Ap),
Thus, the proof is obvious.

(4) = (1): Let V be any (A, p)-open set containing f(z). Since VN[V — VAP = 0,
we have f(z) ¢ [V — VAP)](AP) and hence = ¢ f~1([Y — VAP)AP)) Since YV — V(AJ’)
is (A, p)-open, by (4), = & [fH([Y — VPP and there exists a (A, p)-open set U
containing = such that UN f~1(Y — VAP = (): hence f(U)N[Y —VAP)] = (). This shows
that f(U) C VAP, Thus, f is weakly (A, p)-continuous.

Definition 16. A topological space (X, T) is said to be Ap-reqular if, for each (A, p)-closed
set F' and each x ¢ F, there exist disjoint (A, p)-open sets U and V' such that x € U and
FCV.

Lemma 15. A topological space (X, T) is Ay-reqular if and only if for each x € X and
each (A,p)-open set U containing x, there exists a (A, p)-open set V such that x € V C
Ve C .

Proof. Let z € X and let U be a (A, p)-open set containing x. Then, z ¢ X — U and
X — U is (A,p)-closed. There exist disjoint (A, p)-open sets V and W such that z € V
and X —U C W. Thus, V C X — W C U. Since X — W is (A, p)-closed, we have
VAP C X —~W CU and hence 2 € V C VAP C U

Conversely, let F' be a (A, p)-closed set and let = ¢ F'. Then, x € X — F. Since X — F
is (A, p)-open, there exists a (A, p)-open set V such that z € V C V) C X — F and
hence FF C X — VAP). This shows that (X, 7) is A,-regular.

Lemma 16. Let (X, 7) be a Ap-reqular space. Then, the following properties hold:
(1) AAP) = A9AP) for every subset A of X.
(2) Every (A,p)-open set is O(A, p)-open.

Proof. (1) In general, we have AMP) C AYAP) for every subset A of X. Next, we
show that A%AP) € AAP) Let 2 € AMP) and U be any (A, p)-open set containing .
By Lemma 15, there exists a (A,p)-open set V such that z € V C V&) C U. Since
z € AP it follows that AN VAP £ @ and hence U N A # . Thus, z € AAP),
Consequently, we obtain A?(AP) C A(AP),

(2) Let V be a (A, p)-open set. By (1), we have X —V = [X — V](AP) = [X — V]0(Ap)
and hence X — V is §(A, p)-closed. Thus, V is 6(A, p)-open.

Theorem 27. Let (Y,0) be a Ay-reqular space. For a function f : (X,7) = (Y,0), the
following properties are equivalent:

(1) f~HBYAP) s O(A, p)-closed in X for every subset B of Y';
(2) f is weakly (A, p)-continuous;
(3) f7Y(F) is (A,p)-closed in X for every O(A, p)-closed subset F' of Y ;
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(4) V) is (A, p)-open in X for every O(A,p)-open subset V of Y.
Proof. (1) = (2): Let B be any subset of Y. Then,
B € [ (BIAD)0) = ()

by Theorem 26, f is is weakly (A, p)-continuous.
(2) = (3): Let F be any 0(A, p)-closed subset of Y. By Theorem 26, we have

IO C FHEA) = )

and hence f~1(F) is (A, p)-closed in X.

(3) = (4): Let V be any 6(A, p)-open subset of Y. Then, Y — V is 6(A, p)-closed, by
(3), X — f~Y(V) = F~Y(Y — V) is (A, p)-closed in X. Thus, f~(V) is (A, p)-open.

(4) = (1): Let B be any subset of Y. By Lemma 14, BYA?) is (A, p)-closed in Y and
by Lemma 16, Y — BYAP) is §(A, p)-open in Y. Thus, by (4), we have

X — fHBIAP)Y = pLy — o)y

is (A, p)-open in X and hence f~1(B?AP)) is §(A, p)-closed.

7. Conclusion

Closedness and openness are fundamental with respect to the investigation of gen-
eral topological spaces. Various types of generalizations of closed sets and open sets in
topological spaces have been researched by many mathematicians. This article is de-
voted to introducing and discussing the concepts of (A, p)-closed sets and (A, p)-open sets.
Moreover, some characterizations of A,- Ry spaces are explored. Additionally, several char-
acterizations of weakly (A, p)-continuous functions are established. The ideas and results
of this article may motivate further research.
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