EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 15, No. 2, 2022, 572-588 ISSN 1307-5543 – ejpam.com Published by New York Business Global

(Λ, sp) -open sets in topological spaces

Chawalit Boonpok¹, Jeeranunt Khampakdee^{1,*}

¹ Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand

Abstract. This paper is concerned with the concepts of $s(\Lambda, sp)$ -open sets, $p(\Lambda, sp)$ -open sets, $\alpha(\Lambda, sp)$ -open sets, $\beta(\Lambda, sp)$ -open sets and $\beta(\Lambda, sp)$ -open sets. Some properties of $\beta(\Lambda, sp)$ -open sets, $\beta(\Lambda, sp)$ -open sets and $\beta(\Lambda, sp)$ -open sets are discussed. In particular, the relationships between $\beta(\Lambda, sp)$ -open sets, $\beta(\Lambda, sp)$ -open sets and other related sets are established. Moreover, several characterizations of λ_{sp} -extremally disconnected spaces are investigated.

2020 Mathematics Subject Classifications: 54A05, 54G05

Key Words and Phrases: (Λ, sp) -closed set, (Λ, sp) -open set, Λ_{sp} -extremally disconnected space

1. Introduction

Semi-open sets, preopen sets, α -open sets, b-open sets and β -open sets play an important for the study and investigation in topological spaces. In 1963, Levine [6] introduced the concept of semi-open sets in topological spaces. After the work of Levine on semiopen sets, several mathematicians turned their attention to the generalizations of various concepts of topology by considering semi-open sets instead of open sets. While open sets are replaced by semi-open sets, new results are obtained in some occasions and in other occasions substantial generalizations are exhibited. In this direction, in 1975, Maheshwari and Prasad [7], used semi-open sets to define and investigate three new separation axioms called semi- T_0 , semi- T_1 and semi- T_2 . Later, in 1987, Bhattacharya and Lahiri [2] generalized the concept of closed sets to semi-generalized closed sets with the help of semi-openness. The notion of α -open sets (originally called α -sets) in topological spaces was introduced by Njåstad [10] in 1965. By using α -open sets, Mashhour et al. [9] defined and studied the notions of α -continuity and α -openness in topological spaces. In 1982, Mashhour et al. [8] introduced and investigated the concepts of preopen sets and precontinuous functions in topological spaces. In 1983, Abd El-Monsef et al. [4] introduced a weak form of open sets called β -open sets. The concept of β -open sets is equivalent to that

DOI: https://doi.org/10.29020/nybg.ejpam.v15i2.4276

Email addresses: chawalit.b@msu.ac.th (C. Boonpok), jeeranunt.k@msu.ac.th (J. Khampakdee)

572

^{*}Corresponding author.

of semi-preopen sets [1]. In 1996, Andrijević [1] introduced a class of generalized open sets in a topological space, the so-called *b*-open sets. The class of *b*-open sets is contained in the class of β -open sets and contains all semi-open sets and preopen sets.

The concept of extremally disconnected topological spaces was first introduced by Gillman and Jerison [5]. A topological space is called extremally disconnected if the closure of every open set is open. Sivaraj [13] investigated some characterizations of extremally disconnected spaces by utilizing semi-open sets due to Levine [6]. Noiri [11] obtained several characterizations of extremally disconnected spaces by utilizing preopen sets and semi-preopen sets. In 2004, Noiri and Hatir [12] introduced the notion of Λ_{sp} -sets in terms of the concept of β -open sets and investigated the notion of Λ_{sp} -closed sets by using Λ_{sp} -sets. In [3], the author introduced the concepts of (Λ, sp) -open sets and (Λ, sp) -closed sets which are defined by utilizing the notions of Λ_{sp} -sets and β -closed sets. The purpose of the present paper is to investigate some properties of $s(\Lambda, sp)$ -open sets, $s(\Lambda, sp)$

2. Preliminaries

Throughout the paper, spaces (X, τ) and (Y, σ) (or simply X and Y) always mean topological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a topological space (X, τ) . The closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively. A subset A is said to be β -open [4] if $A \subseteq Cl(Int(Cl(A)))$. The complement of a β -open set A is called β -closed. The family of all β -open sets of a topological space (X, τ) is denoted by $\beta(X, \tau)$. A subset $\Lambda_{sp}(A)$ [12] is defined as follows: $\Lambda_{sp}(A) = \cap \{U \mid A \subseteq U, U \in \beta(X, \tau)\}$.

Lemma 1. [12] For subsets A, B and $A_{\alpha}(\alpha \in \nabla)$ of a topological space (X, τ) , the following hold:

- (1) $A \subseteq \Lambda_{sp}(A)$.
- (2) If $A \subseteq B$, then $\Lambda_{sp}(A) \subseteq \Lambda_{sp}(B)$.
- (3) $\Lambda_{sp}(\Lambda_{sp}(A)) = \Lambda_{sp}(A)$.
- (4) If $U \in \beta(X, \tau)$, then $\Lambda_{sp}(U) = U$.
- (5) $\Lambda_{sp}(\cap \{A_{\alpha} | \alpha \in \nabla\}) \subseteq \cap \{\Lambda_{sp}(A_{\alpha}) | \alpha \in \nabla\}.$
- (6) $\Lambda_{sn}(\cup \{A_{\alpha} | \alpha \in \nabla\}) = \cup \{\Lambda_{sn}(A_{\alpha}) | \alpha \in \nabla\}.$

A subset A of a topological space (X, τ) is called a Λ_{sp} -set [12] if $A = \Lambda_{sp}(A)$. The family of all Λ_{sp} -sets of a topological space (X, τ) is denoted by $\Lambda_{sp}(X, \tau)$ (or simply Λ_{sp}).

Lemma 2. [12] For subsets A and $A_{\alpha}(\alpha \in \nabla)$ of a topological space (X, τ) , the following hold:

- (1) $\Lambda_{sp}(A)$ is a Λ_{sp} -set.
- (2) If A is β -open, then A is a Λ_{sp} -set.
- (3) If A_{α} is a Λ_{sp} -set for each $\alpha \in \nabla$, then $\cap_{\alpha \in \nabla} A_{\alpha}$ is a Λ_{sp} -set.
- (4) If A_{α} is a Λ_{sp} -set for each $\alpha \in \nabla$, then $\bigcup_{\alpha \in \nabla} A_{\alpha}$ is a Λ_{sp} -set.

A subset A of a topological space (X,τ) is called (Λ,sp) -closed [3] if $A=T\cap C$, where T is a Λ_{sp} -set and C is a β -closed set. The complement of a (Λ,sp) -closed set is called (Λ,sp) -open. The family of all (Λ,sp) -open (resp. (Λ,sp) -closed) sets of a topological space (X,τ) is denoted by $\Lambda_{sp}O(X,\tau)$ (resp. $\Lambda_{sp}C(X,\tau)$). Let A be a subsets of a topological space (X,τ) . A point $x \in X$ is called a (Λ,sp) -cluster point [3] of A if $A \cap U \neq \emptyset$ for every (Λ,sp) -open set U of X containing x. The set of all (Λ,sp) -cluster points of A is called the (Λ,sp) -closure of A and is denoted by $A^{(\Lambda,sp)}$.

Lemma 3. [3] Let A and B be subsets of a topological space (X, τ) . For the (Λ, sp) -closure, the following properties hold:

- (1) $A \subseteq A^{(\Lambda,sp)}$ and $[A^{(\Lambda,sp)}]^{(\Lambda,sp)} = A^{(\Lambda,sp)}$.
- (2) If $A \subseteq B$, then $A^{(\Lambda,sp)} \subseteq B^{(\Lambda,sp)}$.
- (3) $A^{(\Lambda,sp)}$ is (Λ,sp) -closed.
- (4) A is (Λ, sp) -closed if and only if $A^{(\Lambda, sp)} = A$.

Let A be a subset of a topological space (X, τ) . The union of all (Λ, sp) -open sets contained in A is called the (Λ, sp) -interior [3] of A and is denoted by $A_{(\Lambda, sp)}$.

Lemma 4. [3] For subsets A and B of a topological space (X, τ) , the following properties hold:

- (1) $A_{(\Lambda,sp)} \subseteq A$ and $[A_{(\Lambda,sp)}]_{(\Lambda,sp)} = A_{(\Lambda,sp)}$.
- (2) If $A \subseteq B$, then $A_{(\Lambda,sp)} \subseteq B_{(\Lambda,sp)}$.
- (3) $A_{(\Lambda,sp)}$ is (Λ,sp) -open.
- (4) A is (Λ, sp) -open if and only if $A_{(\Lambda, sp)} = A$.
- (5) $[X A]^{(\Lambda, sp)} = X A_{(\Lambda, sp)}.$
- (6) $[X A]_{(\Lambda, sp)} = X A^{(\Lambda, sp)}$.

3. Generalized (Λ, sp) -open sets

In this section, we investigate some properties of $s(\Lambda, sp)$ -open sets, $p(\Lambda, sp)$ -open sets, $\alpha(\Lambda, sp)$ -open sets, $\beta(\Lambda, sp)$ -open sets and $b(\Lambda, sp)$ -open sets.

Definition 1. [3] A subset A of a topological space (X, τ) is said to be:

- (i) $s(\Lambda, sp)$ -open if $A \subseteq [A_{(\Lambda, sp)}]^{(\Lambda, sp)}$;
- (ii) $p(\Lambda, sp)$ -open if $A \subseteq [A^{(\Lambda, sp)}]_{(\Lambda, sp)}$;
- (iii) $\alpha(\Lambda, sp)$ -open if $A \subseteq [[A_{(\Lambda, sp)}]^{(\Lambda, sp)}]_{(\Lambda, sp)}$;
- (iv) $\beta(\Lambda, sp)$ -open if $A \subseteq [[A^{(\Lambda, sp)}]_{(\Lambda, sp)}]^{(\Lambda, sp)}$.

The family of all $s(\Lambda, sp)$ -open (resp. $p(\Lambda, sp)$ -open, $\alpha(\Lambda, sp)$ -open, $\beta(\Lambda, sp)$ -open) sets in a topological space (X, τ) is denoted by $s\Lambda_{sp}O(X, \tau)$ (resp. $p\Lambda_{sp}O(X, \tau)$, $\alpha\Lambda_{sp}O(X, \tau)$, $\beta\Lambda_{sp}O(X, \tau)$). The complement of a $s(\Lambda, sp)$ -open (resp. $p(\Lambda, sp)$ -open, $\alpha(\Lambda, sp)$ -open, $\beta(\Lambda, sp)$ -open) set is called $s(\Lambda, sp)$ -closed (resp. $p(\Lambda, sp)$ -closed, $\alpha(\Lambda, sp)$ -closed, $\beta(\Lambda, sp)$ -closed). The family of all $s(\Lambda, sp)$ -closed (resp. $p(\Lambda, sp)$ -closed, $\alpha(\Lambda, sp)$ -closed, $\beta(\Lambda, sp)$ -closed) sets in a topological space (X, τ) is denoted by $s\Lambda_{sp}C(X, \tau)$ (resp. $p\Lambda_{sp}C(X, \tau)$, $\alpha\Lambda_{sp}C(X, \tau)$, $\beta\Lambda_{sp}C(X, \tau)$).

Proposition 1. For a topological space (X, τ) , the following properties hold:

- (1) $\Lambda_{sp}O(X,\tau) \subseteq \alpha\Lambda_{sp}O(X,\tau) \subseteq s\Lambda_{sp}O(X,\tau) \subseteq \beta\Lambda_{sp}O(X,\tau)$.
- (2) $\alpha \Lambda_{sp} O(X, \tau) \subseteq p \Lambda_{sp} O(X, \tau) \subseteq \beta \Lambda_{sp} O(X, \tau)$.
- (3) $\alpha \Lambda_{sp} O(X, \tau) = s \Lambda_{sp} O(X, \tau) \cap p \Lambda_{sp} O(X, \tau).$

Proof. (1) Let $V \in \Lambda_{sp}O(X,\tau)$. Then, we have $V = V_{(\Lambda,sp)} \subseteq [[V_{(\Lambda,sp)}]^{(\Lambda,sp)}]_{(\Lambda,sp)} \subseteq [V^{(\Lambda,sp)}]_{(\Lambda,sp)} \subseteq [[V^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)}$. Thus, $\Lambda_{sp}O(X,\tau) \subseteq \alpha\Lambda_{sp}O(X,\tau) \subseteq s\Lambda_{sp}O(X,\tau) \subseteq \beta\Lambda_{sp}O(X,\tau)$.

- (2) Let $V \in \alpha\Lambda_{sp}O(X,\tau)$. Then, $V \subseteq [V^{(\Lambda,sp)}]_{(\Lambda,sp)} \subseteq [[V^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)}$ and hence $\alpha\Lambda_{sp}O(X,\tau) \subseteq p\Lambda_{sp}O(X,\tau) \subseteq \beta\Lambda_{sp}O(X,\tau)$.
 - (3) By (1) and (2), we have $\alpha \Lambda_{sp}O(X,\tau) \subseteq s\Lambda_{sp}O(X,\tau) \cap p\Lambda_{sp}O(X,\tau)$. Let

$$V \in s\Lambda_{sn}O(X,\tau) \cap p\Lambda_{sn}O(X,\tau).$$

Then, $V \in s\Lambda_{sp}O(X,\tau)$ and $V \in p\Lambda_{sp}O(X,\tau)$. Therefore, $V \subseteq [V_{(\Lambda,sp)}]^{(\Lambda,sp)}$ and $V \subseteq [V^{(\Lambda,sp)}]_{(\Lambda,sp)}$. Thus, $V \subseteq [V^{(\Lambda,sp)}]_{(\Lambda,sp)} \subseteq [[V_{(\Lambda,sp)}]^{(\Lambda,sp)}]_{(\Lambda,sp)}$ and hence $V \in \alpha\Lambda_{sp}O(X,\tau)$. Consequently, we obtain $s\Lambda_{sp}O(X,\tau) \cap p\Lambda_{sp}O(X,\tau) \subseteq \alpha\Lambda_{sp}O(X,\tau)$. This shows that $\alpha\Lambda_{sp}O(X,\tau) = s\Lambda_{sp}O(X,\tau) \cap p\Lambda_{sp}O(X,\tau)$.

Definition 2. A subset A of a topological space (X, τ) is said to be $r(\Lambda, sp)$ -open if $A = [A^{(\Lambda, sp)}]_{(\Lambda, sp)}$. The complement of a $r(\Lambda, sp)$ -open set is said to be $r(\Lambda, sp)$ -closed.

The family of all $r(\Lambda, sp)$ -open (resp. $r(\Lambda, sp)$ -closed) sets in a topological space (X, τ) is denoted by $r\Lambda_{sp}O(X, \tau)$ (resp. $r\Lambda_{sp}C(X, \tau)$).

Proposition 2. Let A be a subset of a topological space (X, τ) , the following properties hold:

- (1) A is $r(\Lambda, sp)$ -open if and only if $A = F_{(\Lambda, sp)}$ for some (Λ, sp) -closed set F.
- (2) A is $r(\Lambda, sp)$ -closed if and only if $A = U^{(\Lambda, sp)}$ for some (Λ, sp) -open set U.

Proposition 3. Let A be a subset of a topological space (X, τ) , the following properties hold:

- (1) A is $s(\Lambda, sp)$ -closed if and only if $[A^{(\Lambda, sp)}]_{(\Lambda, sp)} \subseteq A$.
- (2) A is $p(\Lambda, sp)$ -closed if and only if $[A_{(\Lambda, sp)}]^{(\Lambda, sp)} \subseteq A$.
- (3) A is $\alpha(\Lambda, sp)$ -closed if and only if $[[A^{(\Lambda, sp)}]_{(\Lambda, sp)}]^{(\Lambda, sp)} \subseteq A$.
- (4) A is $\beta(\Lambda, sp)$ -closed if and only if $[[A_{(\Lambda, sp)}]^{(\Lambda, sp)}]_{(\Lambda, sp)} \subseteq A$.

Proposition 4. For a subset A of a topological space (X, τ) , the following properties are equivalent:

- (1) A is $r(\Lambda, sp)$ -open.
- (2) A is (Λ, sp) -open and $s(\Lambda, sp)$ -closed.
- (3) A is $\alpha(\Lambda, sp)$ -open and $s(\Lambda, sp)$ -closed.
- (4) A is $p(\Lambda, sp)$ -open and $s(\Lambda, sp)$ -closed.
- (5) A is (Λ, sp) -open and $\beta(\Lambda, sp)$ -closed.
- (6) A is $\alpha(\Lambda, sp)$ -open and $\beta(\Lambda, sp)$ -closed.

Proof. $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$: Obvious.

- $(4) \Rightarrow (5)$: Let A be (Λ, sp) -open and $s(\Lambda, sp)$ -closed. Then, $A \subseteq [A^{(\Lambda, sp)}]_{(\Lambda, sp)}$ and $[A^{(\Lambda, sp)}]_{(\Lambda, sp)} \subseteq A$. This implies that $A = [A^{(\Lambda, sp)}]_{(\Lambda, sp)}$. Therefore, A is $r(\Lambda, sp)$ -open and hence A is (Λ, sp) -open. Since every $s(\Lambda, sp)$ -closed set is $\beta(\Lambda, sp)$ -closed. Thus, A is (Λ, sp) -open and $\beta(\Lambda, sp)$ -closed.
 - $(5) \Rightarrow (6)$: The proof is obvious.
- (6) \Rightarrow (1): Let A be $\alpha(\Lambda, sp)$ -open and $\beta(\Lambda, sp)$ -closed. Then, $A \subseteq [[A_{(\Lambda, sp)}]^{(\Lambda, sp)}]_{(\Lambda, sp)}$ and $[[A_{(\Lambda, sp)}]^{(\Lambda, sp)}]_{(\Lambda, sp)} \subseteq A$. Thus, $A = [[A_{(\Lambda, sp)}]^{(\Lambda, sp)}]_{(\Lambda, sp)}$ and hence

$$A_{(\Lambda, sp)} = [[A_{(\Lambda, sp)}]^{(\Lambda, sp)}]_{(\Lambda, sp)} = A.$$

Therefore, $[A^{(\Lambda,sp)}]_{(\Lambda,sp)} = [[A_{(\Lambda,sp)}]^{(\Lambda,sp)}]_{(\Lambda,sp)} = A$. This shows that A is $r(\Lambda,sp)$ -open.

Corollary 1. For a subset A of a topological space (X,τ) , the following properties are equivalent:

- (1) A is $r(\Lambda, sp)$ -closed.
- (2) A is (Λ, sp) -closed and $s(\Lambda, sp)$ -open.
- (3) A is $\alpha(\Lambda, sp)$ -closed and $s(\Lambda, sp)$ -open.
- (4) A is $p(\Lambda, sp)$ -closed and $s(\Lambda, sp)$ -open.
- (5) A is (Λ, sp) -closed and $\beta(\Lambda, sp)$ -open.
- (6) A is $\alpha(\Lambda, sp)$ -closed and $\beta(\Lambda, sp)$ -open.

Proposition 5. For a subset A of a topological space (X, τ) , the following properties hold:

(1)
$$[[[A_{(\Lambda,sp)}]^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)} = [A_{(\Lambda,sp)}]^{(\Lambda,sp)}.$$

(2)
$$[[[A^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)}]_{(\Lambda,sp)} = [A^{(\Lambda,sp)}]_{(\Lambda,sp)}.$$

Definition 3. A subset A of a topological space (X, τ) is called (Λ, sp) -clopen if A is both (Λ, sp) -open and (Λ, sp) -closed.

Proposition 6. For a subset A of a topological space (X, τ) , the following properties are equivalent:

- (1) A is (Λ, sp) -clopen.
- (2) A is $r(\Lambda, sp)$ -open and $r(\Lambda, sp)$ -closed.
- (3) A is (Λ, sp) -open and $\alpha(\Lambda, sp)$ -closed.
- (4) A is (Λ, sp) -open and $p(\Lambda, sp)$ -closed.
- (5) A is $\alpha(\Lambda, sp)$ -open and $p(\Lambda, sp)$ -closed.
- (6) A is $\alpha(\Lambda, sp)$ -open and (Λ, sp) -closed.
- (7) A is $p(\Lambda, sp)$ -open and (Λ, sp) -closed.
- (8) A is $\beta(\Lambda, sp)$ -open and $\alpha(\Lambda, sp)$ -closed.

Proof.
$$(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5)$$
: Obvious.

 $(5) \Rightarrow (6)$: Let A be $\alpha(\Lambda, sp)$ -open and $p(\Lambda, sp)$ -closed. Then, $A \subseteq [[A_{(\Lambda, sp)}]^{(\Lambda, sp)}]_{(\Lambda, sp)}$ and $[[A_{(\Lambda, sp)}]^{(\Lambda, sp)}]_{(\Lambda, sp)} \subseteq A$. Thus, $A = [[A_{(\Lambda, sp)}]^{(\Lambda, sp)}]_{(\Lambda, sp)}$ and hence

$$A^{(\Lambda,sp)} = [[[A_{(\Lambda,sp)}]^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)}.$$

By Proposition 5, $A^{(\Lambda,sp)} = [A_{(\Lambda,sp)}]^{(\Lambda,sp)}$. Since $[A_{(\Lambda,sp)}]^{(\Lambda,sp)} \subseteq A$, we have $A^{(\Lambda,sp)} \subseteq A$ and hence $A^{(\Lambda,sp)} = A$. This shows that A is (Λ,sp) -closed.

- $(6) \Rightarrow (7) \Rightarrow (8)$: Obvious.
- (8) \Rightarrow (1): Let A be $\beta(\Lambda, sp)$ -open and $\alpha(\Lambda, sp)$ -closed. Then, $A \subseteq [A^{(\Lambda, sp)}]_{(\Lambda, sp)}$ and $[[A^{(\Lambda, sp)}]_{(\Lambda, sp)}]^{(\Lambda, sp)} \subseteq A$. Thus, $A^{(\Lambda, sp)} \subseteq [[A^{(\Lambda, sp)}]_{(\Lambda, sp)}]^{(\Lambda, sp)} \subseteq A$ and hence $A^{(\Lambda, sp)} \subseteq A$. Therefore, A is (Λ, sp) -closed. Since $[[A^{(\Lambda, sp)}]_{(\Lambda, sp)}]^{(\Lambda, sp)} \subseteq A$, we have

$$[[[A^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)}]_{(\Lambda,sp)} \subseteq A^{(\Lambda,sp)},$$

by Proposition 5, $A \subseteq [A^{(\Lambda,sp)}]_{(\Lambda,sp)} \subseteq A^{(\Lambda,sp)}$ and hence $A \subseteq A_{(\Lambda,sp)}$. Thus, A is (Λ,sp) -open. Therefore, A is (Λ,sp) -clopen.

Definition 4. A subset A of a topological space (X, τ) is said to be:

- (i) $\alpha(\Lambda, sp)$ -regular if $A = [[A_{(\Lambda, sp)}]^{(\Lambda, sp)}]_{(\Lambda, sp)}$;
- (ii) $\beta(\Lambda, sp)$ -regular if $A = [[A^{(\Lambda, sp)}]_{(\Lambda, sp)}]^{(\Lambda, sp)}$.

Proposition 7. Let A be a subset of a topological space (X, τ) . Then, A is $r(\Lambda, sp)$ -open if and only if A is $\alpha(\Lambda, sp)$ -regular.

Proof. Suppose that A is a $r(\Lambda, sp)$ -open set. Then, $A = [A^{(\Lambda, sp)}]_{(\Lambda, sp)}$. This implies that A is (Λ, sp) -open and so $A = [[A_{(\Lambda, sp)}]^{(\Lambda, sp)}]_{(\Lambda, sp)}$. Thus, A is $\alpha(\Lambda, sp)$ -regular.

Conversely, suppose that A is an $\alpha(\Lambda, sp)$ -regular set. Then, $A = [[A_{(\Lambda, sp)}]^{(\Lambda, sp)}]_{(\Lambda, sp)}$. Therefore, $A = [[[[A_{(\Lambda, sp)}]^{(\Lambda, sp)}]^{(\Lambda, sp)}]_{(\Lambda, sp)} = [[A_{(\Lambda, sp)}]^{(\Lambda, sp)}]_{(\Lambda, sp)} = A$ and hence $A = [A^{(\Lambda, sp)}]_{(\Lambda, sp)}$. Thus, A is (Λ, sp) -open.

Proposition 8. Let A be a subset of a topological space (X, τ) . Then, A is $r(\Lambda, sp)$ -closed if and only if A is $\beta(\Lambda, sp)$ -regular.

Proof. Suppose that A is a $r(\Lambda, sp)$ -closed set. Then, we have $A = [A_{(\Lambda, sp)}]^{(\Lambda, sp)}$ and so A is (Λ, sp) -closed. Therefore, $A = [A_{(\Lambda, sp)}]^{(\Lambda, sp)} = [[A^{(\Lambda, sp)}]_{(\Lambda, sp)}]^{(\Lambda, sp)}$. This shows that A is $\beta(\Lambda, sp)$ -regular.

Conversely, suppose that A is a $\beta(\Lambda, sp)$ -regular set. Then, $A = [[A^{(\Lambda, sp)}]_{(\Lambda, sp)}]^{(\Lambda, sp)} = [A_{(\Lambda, sp)}]^{(\Lambda, sp)}$. Thus, A is $r(\Lambda, sp)$ -closed.

Proposition 9. For a subset A of a topological space (X, τ) , the following properties are equivalent:

- (1) A is $\beta(\Lambda, sp)$ -regular.
- (2) A is $\beta(\Lambda, sp)$ -open and (Λ, sp) -closed.
- (3) A is $\beta(\Lambda, sp)$ -open and $\alpha(\Lambda, sp)$ -closed.

Proposition 10. For a subset A of a topological space (X, τ) , the following properties are equivalent:

- (1) A is $\alpha(\Lambda, sp)$ -regular.
- (2) A is $\alpha(\Lambda, sp)$ -open and $\beta(\Lambda, sp)$ -closed.

Definition 5. A subset A of a topological space (X,τ) is said to be $b(\Lambda,sp)$ -open if $A \subseteq [A_{(\Lambda,sp)}]^{(\Lambda,sp)} \cup [A^{(\Lambda,sp)}]_{(\Lambda,sp)}$. The complement of a $b(\Lambda,sp)$ -open set is said to be $b(\Lambda,sp)$ -closed.

The family of all $b(\Lambda, sp)$ -open (resp. $b(\Lambda, sp)$ -closed) sets in a topological space (X, τ) is denoted by $b\Lambda_{sp}O(X, \tau)$ (resp. $b\Lambda_{sp}C(X, \tau)$).

Remark 1. It is easy to see that for a topological space (X, τ) ,

$$s\Lambda_{sp}O(X,\tau) \cup p\Lambda_{sp}O(X,\tau) \subseteq b\Lambda_{sp}O(X,\tau) \subseteq \beta\Lambda_{sp}O(X,\tau).$$

Proposition 11. Let A be a subset of a topological space (X, τ) . If $A = B \cup C$, where A is $s(\Lambda, sp)$ -open and C is $p(\Lambda, sp)$ -open, then A is $b(\Lambda, sp)$ -open.

The following result is an immediate consequence of Proposition 5 and Remark 1.

Corollary 2. For a subset A of a topological space (X,τ) , the following properties are equivalent:

- (1) A is $r(\Lambda, sp)$ -open.
- (2) A is (Λ, sp) -open and $b(\Lambda, sp)$ -closed.
- (3) A is $\alpha(\Lambda, sp)$ -open and $b(\Lambda, sp)$ -closed.

Lemma 5. Let A be a subset of a topological space (X, τ) . If A is $s(\Lambda, sp)$ -closed and $\beta(\Lambda, sp)$ -open, then A is $s(\Lambda, sp)$ -open.

Proof. Since A is $s(\Lambda, sp)$ -closed, it follows from Proposition 3 that $[A^{(\Lambda, sp)}]_{(\Lambda, sp)} \subseteq A$. Since A is $\beta(\Lambda, sp)$ -open, $[A^{(\Lambda, sp)}]_{(\Lambda, sp)} \subseteq A \subseteq [[A^{(\Lambda, sp)}]_{(\Lambda, sp)}]^{(\Lambda, sp)}$. Thus, $[A^{(\Lambda, sp)}]_{(\Lambda, sp)} \subseteq A^{(\Lambda, sp)}$. Therefore, $[[A^{(\Lambda, sp)}]_{(\Lambda, sp)}]^{(\Lambda, sp)} \subseteq [A_{(\Lambda, sp)}]^{(\Lambda, sp)}$ and hence A is $s(\Lambda, sp)$ -open.

Proposition 12. Let A be a subset of a topological space (X, τ) . If A is $b(\Lambda, sp)$ -open, then $A^{(\Lambda, sp)}$ is $r(\Lambda, sp)$ -closed.

Proof. Since A is $b(\Lambda, sp)$ -open, we have $A \subseteq [A_{(\Lambda, sp)}]^{(\Lambda, sp)} \cup [A^{(\Lambda, sp)}]_{(\Lambda, sp)}$ and hence

$$A^{(\Lambda,sp)} \subseteq [[A_{(\Lambda,sp)}]^{(\Lambda,sp)} \cup [A^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)}$$

$$\subseteq [[A_{(\Lambda,sp)}]^{(\Lambda,sp)}]^{(\Lambda,sp)} \cup [[A^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)}$$

$$= [[A^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)} \subseteq A^{(\Lambda,sp)}.$$

Thus, $A^{(\Lambda,sp)}=[[A^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)}$. This shows that $A^{(\Lambda,sp)}$ is $r(\Lambda,sp)$ -closed.

Corollary 3. For a subset A of a topological space (X,τ) , the following properties hold:

- (1) If A is $s(\Lambda, sp)$ -open, then $A^{(\Lambda, sp)}$ is $r(\Lambda, sp)$ -closed.
- (2) If A is $p(\Lambda, sp)$ -open, then $A^{(\Lambda, sp)}$ is $r(\Lambda, sp)$ -closed.
- (3) If A is $\alpha(\Lambda, sp)$ -open, then $A^{(\Lambda, sp)}$ is $r(\Lambda, sp)$ -closed.

Proposition 13. For a subset A of a topological space (X, τ) , the following properties are equivalent:

- (1) $A \in \beta \Lambda_{sp} O(X, \tau)$.
- (2) $A^{(\Lambda,sp)} \in r\Lambda_{sp}C(X,\tau)$.
- (3) $A^{(\Lambda,sp)} \in \beta \Lambda_{sp} O(X,\tau)$.
- (4) $A^{(\Lambda,sp)} \in s\Lambda_{sp}O(X,\tau)$.
- (5) $A^{(\Lambda,sp)} \in b\Lambda_{sn}O(X,\tau)$.

Proof. (1) \Rightarrow (2): Let $A \in \beta \Lambda_{sp}O(X,\tau)$. Then, we have $A \subseteq [[A^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)}$ and hence $A^{(\Lambda,sp)} \subseteq [[A^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)} \subseteq A^{(\Lambda,sp)}$. Thus, $A^{(\Lambda,sp)} = [[A^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)}$. Therefore, $A^{(\Lambda,sp)} \in r\Lambda_{sp}C(X,\tau)$.

- $(2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5)$: Obvious.
- $(5) \Rightarrow (1)$: Let $A^{(\Lambda,sp)} \in b\Lambda_{sp}O(X,\tau)$. Then,

$$\begin{split} A^{(\Lambda,sp)} &\subseteq [[A^{(\Lambda,sp)}]^{(\Lambda,sp)}]_{(\Lambda,sp)} \cup [[A^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)} \\ &= [A^{(\Lambda,sp)}]_{(\Lambda,sp)} \cup [[A^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)} \\ &= [[A^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)} \end{split}$$

and hence $A \subseteq [[A^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)}$. Thus, $A \in \beta \Lambda_{sp} O(X,\tau)$.

Corollary 4. For a subset A of a topological space (X,τ) , the following properties are equivalent:

- (1) $A \in \beta \Lambda_{sp}C(X, \tau)$.
- (2) $A_{(\Lambda,sn)} \in r\Lambda_{sn}O(X,\tau)$.
- (3) $A_{(\Lambda.sp)} \in \beta \Lambda_{sp} C(X, \tau)$.
- (4) $A_{(\Lambda,sp)} \in s\Lambda_{sp}C(X,\tau)$.
- (5) $A_{(\Lambda,sp)} \in b\Lambda_{sp}C(X,\tau)$.

Definition 6. A subset A of a topological space (X, τ) is called $rs(\Lambda, sp)$ -open if there exists a $r(\Lambda, sp)$ -open set U such that $U \subseteq A \subseteq U^{(\Lambda, sp)}$. The complement of a $rs(\Lambda, sp)$ -open set is called $rs(\Lambda, sp)$ -closed.

The family of all $rs(\Lambda, sp)$ -open (resp. $rs(\Lambda, sp)$ -closed) sets in a topological space (X, τ) is denoted by $rs\Lambda_{sp}O(X, \tau)$ (resp. $rs\Lambda_{sp}C(X, \tau)$).

Remark 2. It is clear that every $r(\Lambda, sp)$ -open set is $rs(\Lambda, sp)$ -open.

Proposition 14. For a subset A of a topological space (X, τ) , the following properties are equivalent:

- (1) A is $rs(\Lambda, sp)$ -open.
- (2) A is $s(\Lambda, sp)$ -open and $s(\Lambda, sp)$ -closed.
- (3) A is $b(\Lambda, sp)$ -open and $s(\Lambda, sp)$ -closed.
- (4) A is $\beta(\Lambda, sp)$ -open and $s(\Lambda, sp)$ -closed.
- (5) A is $s(\Lambda, sp)$ -open and $\beta(\Lambda, sp)$ -closed.
- (6) A is $s(\Lambda, sp)$ -open and $\beta(\Lambda, sp)$ -closed.

Proof. (1) \Rightarrow (2): Suppose that A is a $rs(\Lambda, sp)$ -open set. There exists a $r(\Lambda, sp)$ -open set U such that $U \subseteq A \subseteq U^{(\Lambda, sp)}$. Then, $U \subseteq A_{(\Lambda, sp)}$ and hence $A \subseteq U^{(\Lambda, sp)} \subseteq [A^{(\Lambda, sp)}]_{(\Lambda, sp)}$. Therefore, A is $s(\Lambda, sp)$ -open. On the other hand, since $U^{(\Lambda, sp)} = A^{(\Lambda, sp)}$ and U is $r(\Lambda, sp)$ -open, $[A^{(\Lambda, sp)}]_{(\Lambda, sp)} = [U^{(\Lambda, sp)}]_{(\Lambda, sp)} = U \subseteq A$. Thus, by Proposition 3, A is $s(\Lambda, sp)$ -closed.

- $(2) \Rightarrow (3)$ and $(3) \Rightarrow (4)$: The proofs are obvious.
- (4) \Rightarrow (5): Follows from Lemma 5 and since $s\Lambda_{sp}O(X,\tau)\subseteq b\Lambda_{sp}O(X,\tau)$.
- $(5) \Rightarrow (6)$: The proof is obvious.
- (6) \Rightarrow (1): Since A is $s(\Lambda, sp)$ -open and $\beta(\Lambda, sp)$ -closed, it follows from Lemma 5 that A is $s(\Lambda, sp)$ -closed. Thus, by Proposition 3, $[A^{(\Lambda, sp)}]_{(\Lambda, sp)} \subseteq A \subseteq [A_{(\Lambda, sp)}]^{(\Lambda, sp)} \subseteq [[A^{(\Lambda, sp)}]_{(\Lambda, sp)}]^{(\Lambda, sp)}$. Let $U = [A^{(\Lambda, sp)}]_{(\Lambda, sp)}$. Then, U is $r(\Lambda, sp)$ -open and hence $U \subseteq A \subseteq U^{(\Lambda, sp)}$. Thus, A is $rs(\Lambda, sp)$ -open.

Remark 3. It is clear from Proposition 14 that if A is a $rs(\Lambda, sp)$ -open set of a topological space (X, τ) , then X - A is $rs(\Lambda, sp)$ -open.

Proposition 15. Let (X, τ) be a topological space and $x \in X$. Then, $\{x\}$ is (Λ, sp) -open if and only if $\{x\}$ is $s(\Lambda, sp)$ -open.

Proof. The necessity is clear. Suppose that $\{x\}$ is $s(\Lambda, sp)$ -open. Then, $\{x\} \subseteq [\{x\}_{(\Lambda, sp)}]^{(\Lambda, sp)}$. Now $\{x\}_{(\Lambda, sp)}$ is either $\{x\}$ or \emptyset . Since $\emptyset^{(\Lambda, sp)} = \emptyset$ and $\{x\} \subseteq [\{x\}_{(\Lambda, sp)}]^{(\Lambda, sp)}$, $\{x\}_{(\Lambda, sp)} \neq \emptyset$. Therefore, $\{x\}_{(\Lambda, sp)} = \{x\}$ and by Lemma 4, $\{x\}$ is (Λ, sp) -open.

Lemma 6. Let (X, τ) be a topological space and $A \subseteq X$. If $U \in \Lambda_{sp}O(X, \tau)$ and $U \cap A = \emptyset$, then $U \cap A^{(\Lambda, sp)} = \emptyset$.

Proposition 16. Let (X,τ) be a topological space and $x \in X$. Then, the following properties are equivalent:

- (1) $\{x\}$ is $p(\Lambda, sp)$ -open.
- (2) $\{x\}$ is $b(\Lambda, sp)$ -open.
- (3) $\{x\}$ is $\beta(\Lambda, sp)$ -open.

Proof. (1) \Rightarrow (2) and (2) \Rightarrow (3) follows from Remark 1.

 $(3)\Rightarrow (1)$: Let $\{x\}$ be $\beta(\Lambda,sp)$ -open. Assume that $\{x\}$ is not $p(\Lambda,sp)$ -open. Then, $\{x\}\nsubseteq [\{x\}^{(\Lambda,sp)}]_{(\Lambda,sp)}$, that is $\{x\}\cap [\{x\}^{(\Lambda,sp)}]_{(\Lambda,sp)}=\emptyset$. Since $[\{x\}^{(\Lambda,sp)}]_{(\Lambda,sp)}$ is (Λ,sp) -open, it follows from Lemma 6 that $\{x\}^{(\Lambda,sp)}\cap [\{x\}^{(\Lambda,sp)}]_{(\Lambda,sp)}=\emptyset$. Thus, $[\{x\}^{(\Lambda,sp)}]_{(\Lambda,sp)}=\emptyset$ and hence $[[\{x\}^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)}=\emptyset$. This is a contradiction.

Proposition 17. Let (X, τ) be a topological space and $x \in X$. Then, $\{x\}$ is $p(\Lambda, sp)$ -open or $\{x\}$ is $\alpha(\Lambda, sp)$ -closed.

Proof. Assume that $\{x\}$ is not $p(\Lambda, sp)$ -open. Then, $\{x\} \nsubseteq [\{x\}^{(\Lambda, sp)}]_{(\Lambda, sp)}$ and hence $\{x\} \cap [\{x\}^{(\Lambda, sp)}]_{(\Lambda, sp)} = \emptyset$. Since $[\{x\}^{(\Lambda, sp)}]_{(\Lambda, sp)}$ is (Λ, sp) -open, it follows from Lemma 6 that $\{x\}^{(\Lambda, sp)} \cap [\{x\}^{(\Lambda, sp)}]_{(\Lambda, sp)} = \emptyset$. Therefore, $[\{x\}^{(\Lambda, sp)}]_{(\Lambda, sp)} = \emptyset$. This implies that $[[\{x\}^{(\Lambda, sp)}]_{(\Lambda, sp)}]^{(\Lambda, sp)} = \emptyset$. Thus, by Proposition 3, $\{x\}$ is $\alpha(\Lambda, sp)$ -closed.

Proposition 18. Let A be a subset of a topological space (X, τ) . Then, A is $s(\Lambda, sp)$ -open if and only if there exists a (Λ, sp) -open set U such that $U \subseteq A \subseteq U^{(\Lambda, sp)}$.

Proof. Suppose that A is $s(\Lambda, sp)$ -open. Then, $A \subseteq [A_{(\Lambda, sp)}]^{(\Lambda, sp)}$. Let $U = A_{(\Lambda, sp)}$. Thus, we obtain $U \subseteq A \subseteq U^{(\Lambda, sp)}$.

Conversely, assume that there exists a (Λ, sp) -open set U such that $U \subseteq A \subseteq U^{(\Lambda, sp)}$. Then, $U \subseteq A_{(\Lambda, sp)}$ and hence $U^{(\Lambda, sp)} \subseteq [A_{(\Lambda, sp)}]^{(\Lambda, sp)}$. Since $A \subseteq U^{(\Lambda, sp)}$, $A \subseteq [A_{(\Lambda, sp)}]^{(\Lambda, sp)}$. Thus, A is $s(\Lambda, sp)$ -open.

Proposition 19. Let A be a subset of a topological space (X, τ) . If there exists a $p(\Lambda, sp)$ open set U such that $U \subseteq A \subseteq U^{(\Lambda, sp)}$, then A is $\beta(\Lambda, sp)$ -open.

Proof. Since $U \subseteq A \subseteq U^{(\Lambda,sp)}$, we have $A^{(\Lambda,sp)} = U^{(\Lambda,sp)}$ and hence

$$[A^{(\Lambda,sp)}]_{(\Lambda,sp)} = [U^{(\Lambda,sp)}]_{(\Lambda,sp)}.$$

Since U is $p(\Lambda, sp)$ -open, we have $U \subseteq [A^{(\Lambda, sp)}]_{(\Lambda, sp)}$. Thus, $A \subseteq U^{(\Lambda, sp)}$ and hence $A \subseteq [[A^{(\Lambda, sp)}]_{(\Lambda, sp)}]^{(\Lambda, sp)}$. This shows that A is $\beta(\Lambda, sp)$ -open.

A subset D of a topological space (X, τ) is called Λ_{sp} -dense [3] if $D^{(\Lambda, sp)} = X$. D is called Λ_{sp} -codense [3] if X - D is Λ_{sp} -dense.

Proposition 20. Let (X,τ) be a topological space and $D \subseteq X$. Then, the following properties are equivalent:

(1) D is Λ_{sp} -dense.

- (2) If F is any (Λ, sp) -closed set and $D \subseteq F$, then F = X.
- (3) Each nonempty (Λ, sp) -open set contains an element of D.
- (4) The complement of D has empty (Λ, sp) -interior.

Proof. (1) \Rightarrow (2): Let F be a (Λ, sp) -closed set such that $D \subseteq F$. Then, $X = D^{(\Lambda, sp)} \subseteq F^{(\Lambda, sp)} = F$.

- (2) \Rightarrow (3): Let U be a nonempty (Λ, sp) -open set such that $U \cap D = \emptyset$; then $D \subseteq X U \neq X$, which contradicts (2), since X U is (Λ, sp) -closed.
- $(3)\Rightarrow (4)$: Assume that $[X-D]_{(\Lambda,sp)}\neq\emptyset$; since $[X-D]_{(\Lambda,sp)}$ is (Λ,sp) -open, there is a nonempty (Λ,sp) -open set U such that $U\subseteq [X-D]_{(\Lambda,sp)}$, and since $[X-D]_{(\Lambda,sp)}\subseteq X-D$, U contains no point of D.
 - (3) \Rightarrow (4): $[X D]_{(\Lambda, sp)} = X D^{(\Lambda, sp)} = \emptyset$ so that $D^{(\Lambda, sp)} = X$.

Remark 4. Let A be a subset of a topological space (X, τ) . If A is Λ_{sp} -dense, then A is $p(\Lambda, sp)$ -open.

Proposition 21. Let A be a subset of a topological space (X,τ) . If A is $p(\Lambda, sp)$ -open, then A is the intersection of a $r(\Lambda, sp)$ -open set and a Λ_{sp} -dense set.

Proof. Suppose that A is a $p(\Lambda, sp)$ -open set. Then, we have $A \subseteq [A^{(\Lambda, sp)}]_{(\Lambda, sp)}$ and hence $A = [A \cup [X - A^{(\Lambda, sp)}]] \cap [A^{(\Lambda, sp)}]_{(\Lambda, sp)}$. Let $C = [A^{(\Lambda, sp)}]_{(\Lambda, sp)}$ and $D = A \cup [X - A^{(\Lambda, sp)}]$. Then, C is $r(\Lambda, sp)$ -open, by Proposition 2, $A^{(\Lambda, sp)} \subseteq D^{(\Lambda, sp)}$ since $A \subseteq D$ and $X - A^{(\Lambda, sp)} \subseteq D \subseteq D^{(\Lambda, sp)}$. Thus, $D^{(\Lambda, sp)} = X$.

Corollary 5. Let A be a subset of a topological space (X,τ) . If A is $p(\Lambda, sp)$ -closed, then A is the union of a $r(\Lambda, sp)$ -closed set and a set has empty (Λ, sp) -interior.

Proposition 22. Let A be a subset of a topological space (X,τ) . If A is $s(\Lambda, sp)$ -open, then A is the intersection of a $r(\Lambda, sp)$ -closed set F and a set C such that $C_{(\Lambda, sp)}$ is Λ_{sp} -dense.

Proof. Suppose that A is $s(\Lambda, sp)$ -open. Then, we have $A \subseteq [A_{(\Lambda, sp)}]^{(\Lambda, sp)}$ and hence $A = [A \cup [X - [A_{(\Lambda, sp)}]^{(\Lambda, sp)}]] \cap [A_{(\Lambda, sp)}]^{(\Lambda, sp)}$. Let $F = [A_{(\Lambda, sp)}]^{(\Lambda, sp)}$ and

$$C = A \cup [X - [A_{(\Lambda, sp)}]^{(\Lambda, sp)}].$$

Then, F is $r(\Lambda, sp)$ -closed, by Proposition 2, we have $[A_{(\Lambda, sp)}]^{(\Lambda, sp)} \subseteq [C_{(\Lambda, sp)}]^{(\Lambda, sp)}$. Since $X - [A_{(\Lambda, sp)}]^{(\Lambda, sp)} \subseteq C$ and $X - [A_{(\Lambda, sp)}]^{(\Lambda, sp)}$ is (Λ, sp) -open, $X - [A_{(\Lambda, sp)}]^{(\Lambda, sp)} \subseteq C_{(\Lambda, sp)} \subseteq [C_{(\Lambda, sp)}]^{(\Lambda, sp)}$. Thus, $[C_{(\Lambda, sp)}]^{(\Lambda, sp)} = X$.

Corollary 6. Let A be a subset of a topological space (X,τ) . If A is $s(\Lambda,sp)$ -closed, then A is the union of a $r(\Lambda,sp)$ -open set and a set whose (Λ,sp) -closure has empty (Λ,sp) -interior.

Proposition 23. Let A be a subset of a topological space (X, τ) . If A is $\beta(\Lambda, sp)$ -open, then A is the intersection of a $r(\Lambda, sp)$ -closed set F and a Λ_{sp} -dense set D.

Proof. Suppose that A is $\beta(\Lambda, sp)$ -open. Then, we have $A \subseteq [[A^{(\Lambda, sp)}]_{(\Lambda, sp)}]^{(\Lambda, sp)}$ and hence $A = [A \cup [X - A^{(\Lambda, sp)}]] \cap [[A^{(\Lambda, sp)}]_{(\Lambda, sp)}]^{(\Lambda, sp)}$. Let $F = [[A^{(\Lambda, sp)}]_{(\Lambda, sp)}]^{(\Lambda, sp)}$ and $D = A \cup [X - A^{(\Lambda, sp)}]$. Then, F is $r(\Lambda, sp)$ -closed by Proposition 2, also $A^{(\Lambda, sp)} \subseteq D^{(\Lambda, sp)}$. Since $X - A^{(\Lambda, sp)} \subseteq D \subseteq D^{(\Lambda, sp)}$, we have $D^{(\Lambda, sp)} = X$.

Corollary 7. Let A be a subset of a topological space (X,τ) . If A is $\beta(\Lambda, sp)$ -closed, then A is the union of a $r(\Lambda, sp)$ -open set and a set has empty (Λ, sp) -interior.

Lemma 7. Let A be a subset of a topological space (X,τ) . If A is (Λ, sp) -closed and $p(\Lambda, sp)$ -open, then A is (Λ, sp) -open.

Theorem 1. For a topological space (X, τ) , the following properties are equivalent:

- (1) Every $s(\Lambda, sp)$ -open set of X is $\alpha(\Lambda, sp)$ -open.
- (2) Every $s(\Lambda, sp)$ -open set of X is $p(\Lambda, sp)$ -open.
- (3) Every $\beta(\Lambda, sp)$ -open set of X is $p(\Lambda, sp)$ -open.
- (4) Every $b(\Lambda, sp)$ -open set of X is $p(\Lambda, sp)$ -open.
- (5) Every $rs(\Lambda, sp)$ -open set of X is $p(\Lambda, sp)$ -open.
- (6) Every $rs(\Lambda, sp)$ -open set of X is $r(\Lambda, sp)$ -open.
- (7) Every $r(\Lambda, sp)$ -closed set of X is $p(\Lambda, sp)$ -open.
- (8) Every $r(\Lambda, sp)$ -closed set of X is (Λ, sp) -open.

Proof. (1) \Rightarrow (2): This is obvious since $\alpha \Lambda_{sp} O(X, \tau) \subseteq s \Lambda_{sp} O(X, \tau)$.

- $(2) \Rightarrow (3)$: Let A be a $\beta(\Lambda, sp)$ -open set. Then, $A \subseteq [[A^{(\Lambda, sp)}]_{(\Lambda, sp)}]^{(\Lambda, sp)}$. It follows from Proposition 2 that $B = [[A^{(\Lambda, sp)}]_{(\Lambda, sp)}]^{(\Lambda, sp)}$ is $r(\Lambda, sp)$ -closed and thus $s(\Lambda, sp)$ -open. By (2), B is $p(\Lambda, sp)$ -open and hence $A \subseteq B \subseteq [B^{(\Lambda, sp)}]_{(\Lambda, sp)} = B_{(\Lambda, sp)}$. Also it is clear that $B \subseteq A^{(\Lambda, sp)}$ and thus $B_{(\Lambda, sp)} \subseteq [A^{(\Lambda, sp)}]_{(\Lambda, sp)}$. Therefore, $A \subseteq [A^{(\Lambda, sp)}]_{(\Lambda, sp)}$. This shows that A is $p(\Lambda, sp)$ -open.
 - $(3) \Rightarrow (4)$: This is obvious since $b\Lambda_{sp}O(X,\tau) \subseteq \beta\Lambda_{sp}O(X,\tau)$.
- $(4) \Rightarrow (5)$: It follows from Proposition 14 that $rs\Lambda_{sp}O(X,\tau) \subseteq s\Lambda_{sp}O(X,\tau)$. Since $s\Lambda_{sp}O(X,\tau) \subseteq b\Lambda_{sp}O(X,\tau)$, $rs\Lambda_{sp}O(X,\tau) \subseteq b\Lambda_{sp}O(X,\tau)$. Thus, the result follows from (3).
- (5) \Rightarrow (6): Since every $rs(\Lambda, sp)$ -open set is $s(\Lambda, sp)$ -closed, it follows from (4) that a $rs(\Lambda, sp)$ -open set is both $s(\Lambda, sp)$ -closed and $p(\Lambda, sp)$ -open. Thus, by Proposition 4, follows.
 - $(6) \Rightarrow (7)$: Follows from Proposition 4 and Remark 3.
 - $(7) \Rightarrow (8)$: Follows from Lemma 7.

 $(8) \Rightarrow (1)$: Let A be a $s(\Lambda, sp)$ -open set. Then, by Corollary 3, $A^{(\Lambda, sp)}$ is $r(\Lambda, sp)$ -closed. By (8), $A^{(\Lambda, sp)}$ is (Λ, sp) -open and hence $A^{(\Lambda, sp)} \subseteq [A^{(\Lambda, sp)}]_{(\Lambda, sp)}$. Therefore, A is $p(\Lambda, sp)$ -open. Since $A \in s\Lambda_{sp}O(X, \tau) \cap p\Lambda_{sp}O(X, \tau) = \alpha\Lambda_{sp}O(X, \tau)$, (1) follows.

Corollary 8. For a topological space (X,τ) , the following properties are equivalent:

- (1) $\alpha \Lambda_{sp} O(X, \tau) = s \Lambda_{sp} O(X, \tau)$.
- (2) Every $rs(\Lambda, sp)$ -open set of X is $p(\Lambda, sp)$ -closed.
- (3) Every $rs(\Lambda, sp)$ -open set of X is $r(\Lambda, sp)$ -closed.

Proof. Follows from Remark 3 and Theorem 1.

Definition 7. A subset A of a topological space (X, τ) is called $p(\Lambda, sp)$ -clopen if A is both $p(\Lambda, sp)$ -open and $p(\Lambda, sp)$ -closed.

Corollary 9. For a topological space (X,τ) , the following properties are equivalent:

- (1) $\alpha \Lambda_{sp} O(X, \tau) = s \Lambda_{sp} O(X, \tau)$.
- (2) Every $rs(\Lambda, sp)$ -open set of X is $p(\Lambda, sp)$ -clopen.
- (3) Every $rs(\Lambda, sp)$ -open set of X is (Λ, sp) -clopen.

Proof. Follows from Theorem 1 and Corollary 8.

Proposition 24. For a topological space (X, τ) , the following properties are equivalent:

- (1) Every $p(\Lambda, sp)$ -open set of X is $\alpha(\Lambda, sp)$ -open.
- (2) Every $p(\Lambda, sp)$ -open set of X is $s(\Lambda, sp)$ -open.

Proof. Follows from Proposition 1.

4. Some characterizations of Λ_{sp} -extremally disconnected spaces

In this section, we investigate some characterizations of Λ_{sp} -extremally disconnected spaces.

Definition 8. [3] A topological space (X, τ) is called Λ_{sp} -extremally disconnected if $U^{(\Lambda, sp)}$ is (Λ, sp) -open in X for every (Λ, sp) -open set U of X.

Theorem 2. For a topological space (X, τ) , the following properties are equivalent:

- (1) (X, τ) is Λ_{sp} -extremally disconnected.
- (2) For each $V \in \beta \Lambda_{sp}O(X,\tau)$, $V^{(\Lambda,sp)} \in r\Lambda_{sp}O(X,\tau)$.

- (3) For each $V \in b\Lambda_{sp}O(X,\tau)$, $V^{(\Lambda,sp)} \in r\Lambda_{sp}O(X,\tau)$.
- (4) For each $V \in s\Lambda_{sp}O(X,\tau)$, $V^{(\Lambda,sp)} \in r\Lambda_{sp}O(X,\tau)$.
- (5) For each $V \in \alpha \Lambda_{sp}O(X,\tau)$, $V^{(\Lambda,sp)} \in r\Lambda_{sp}O(X,\tau)$.
- (6) For each $V \in \Lambda_{sp}O(X,\tau)$, $V^{(\Lambda,sp)} \in r\Lambda_{sp}O(X,\tau)$.
- (7) For each $V \in r\Lambda_{sp}O(X,\tau)$, $V^{(\Lambda,sp)} \in r\Lambda_{sp}O(X,\tau)$.
- (8) For each $V \in p\Lambda_{sp}O(X,\tau)$, $V^{(\Lambda,sp)} \in r\Lambda_{sp}O(X,\tau)$.

Proof. (1) \Rightarrow (2): Let $V \in \beta\Lambda_{sp}O(X,\tau)$. By (1) and Proposition 13, we have $V^{(\Lambda,sp)} = [[V^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)} = [[V^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)}]_{(\Lambda,sp)} = [V^{(\Lambda,sp)}]_{(\Lambda,sp)}$ and hence $V^{(\Lambda,sp)} = [V^{(\Lambda,sp)}]_{(\Lambda,sp)} = [[V^{(\Lambda,sp)}]_{(\Lambda,sp)}]_{(\Lambda,sp)}$. Thus, $V^{(\Lambda,sp)} \in r\Lambda_{sp}O(X,\tau)$.

- $(2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (6) \Rightarrow (7)$: Obvious.
- $(7) \Rightarrow (8)$: Let $V \in p\Lambda_{sp}O(X,\tau)$. Then, we have $[V^{(\Lambda,sp)}]_{(\Lambda,sp)}$ is $r(\Lambda,sp)$ -open, by (7), $[[V^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)}$ is $r(\Lambda,sp)$ -open. Therefore,

$$\begin{split} V^{(\Lambda,sp)} &= [[V^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)} \\ &= [[[V^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)}]^{(\Lambda,sp)}]_{(\Lambda,sp)} \\ &= [V^{(\Lambda,sp)}]_{(\Lambda,sp)} \\ &= [[V^{(\Lambda,sp)}]_{(\Lambda,sp)}]_{(\Lambda,sp)}. \end{split}$$

Thus, $V^{(\Lambda,sp)} \in r\Lambda_{sp}O(X,\tau)$.

 $(8) \Rightarrow (1)$: The proof is obvious.

Theorem 3. For a topological space (X, τ) , the following properties are equivalent:

- (1) (X, τ) is Λ_{sp} -extremally disconnected.
- (2) $r\Lambda_{sp}C(X,\tau) \subseteq \Lambda_{sp}O(X,\tau)$.
- (3) $r\Lambda_{sp}C(X,\tau) \subseteq \alpha\Lambda_{sp}O(X,\tau)$.
- (4) $r\Lambda_{sp}C(X,\tau) \subseteq p\Lambda_{sp}O(X,\tau)$.
- (5) $s\Lambda_{sp}O(X,\tau) \subseteq \alpha\Lambda_{sp}O(X,\tau)$.
- (6) $s\Lambda_{sp}C(X,\tau) \subseteq \alpha\Lambda_{sp}C(X,\tau)$.
- (7) $s\Lambda_{sp}C(X,\tau) \subseteq p\Lambda_{sp}C(X,\tau)$.
- (8) $s\Lambda_{sp}O(X,\tau) \subseteq p\Lambda_{sp}O(X,\tau)$.
- (9) $\beta \Lambda_{sp} O(X, \tau) \subseteq p \Lambda_{sp} O(X, \tau)$.

- (10) $\beta \Lambda_{sp}C(X,\tau) \subseteq p\Lambda_{sp}C(X,\tau)$.
- (11) $b\Lambda_{sp}C(X,\tau) \subseteq p\Lambda_{sp}C(X,\tau)$.
- (12) $b\Lambda_{sp}O(X,\tau) \subseteq p\Lambda_{sp}O(X,\tau)$.
- (13) $r\Lambda_{sp}O(X,\tau) \subseteq p\Lambda_{sp}C(X,\tau)$.
- (14) $r\Lambda_{sp}O(X,\tau) \subseteq \Lambda_{sp}C(X,\tau)$.
- (15) $r\Lambda_{sp}O(X,\tau) \subseteq \alpha\Lambda_{sp}C(X,\tau)$.

Proof. (1) \Rightarrow (2): Let $V \in r\Lambda_{sp}C(X,\tau)$. Then, we have $V = [V_{(\Lambda,sp)}]^{(\Lambda,sp)}$. Since (X,τ) is Λ_{sp} -extremally disconnected, $V_{(\Lambda,sp)} = [[V_{(\Lambda,sp)}]^{(\Lambda,sp)}]_{(\Lambda,sp)} = [V_{(\Lambda,sp)}]^{(\Lambda,sp)} = V$ and hence $V \in \Lambda_{sp}O(X,\tau)$. Consequently, we obtain $r\Lambda_{sp}C(X,\tau) \subseteq \Lambda_{sp}O(X,\tau)$.

- $(2) \Rightarrow (3) \Rightarrow (4)$: Obvious.
- $(4) \Rightarrow (5)$: Let $V \in s\Lambda_{sp}O(X,\tau)$. Then, we have $V \subseteq [V_{(\Lambda,sp)}]^{(\Lambda,sp)}$. Since $[V_{(\Lambda,sp)}]^{(\Lambda,sp)}$ is $r(\Lambda,sp)$ -closed, by (4), $[V_{(\Lambda,sp)}]^{(\Lambda,sp)}$ is $p(\Lambda,sp)$ -open and hence

$$[V_{(\Lambda,sp)}]^{(\Lambda,sp)} \subseteq [[[V_{(\Lambda,sp)}]^{(\Lambda,sp)}]^{(\Lambda,sp)}]_{(\Lambda,sp)} = [[V_{(\Lambda,sp)}]^{(\Lambda,sp)}]_{(\Lambda,sp)}.$$

This implies that $V \subseteq [[V_{(\Lambda,sp)}]^{(\Lambda,sp)}]_{(\Lambda,sp)}$ and hence $V \in \alpha \Lambda_{sp}O(X,\tau)$. Thus,

$$s\Lambda_{sp}O(X,\tau)\subseteq \alpha\Lambda_{sp}O(X,\tau).$$

- $(5) \Rightarrow (6) \Rightarrow (7) \Rightarrow (8)$: Obvious.
- (8) \Rightarrow (9): Let $V \in \beta\Lambda_{sp}O(X,\tau)$. By Proposition 13, $V^{(\Lambda,sp)}$ is $s(\Lambda,sp)$ -open, by (8), $V^{(\Lambda,sp)}$ is $p(\Lambda,sp)$ -open. Thus, $V^{(\Lambda,sp)} \subseteq [[V^{(\Lambda,sp)}]^{(\Lambda,sp)}]_{(\Lambda,sp)} = [V^{(\Lambda,sp)}]_{(\Lambda,sp)}$ and hence $V \subseteq [V^{(\Lambda,sp)}]_{(\Lambda,sp)}$. Therefore, $V \in p\Lambda_{sp}O(X,\tau)$. This shows that $\beta\Lambda_{sp}O(X,\tau) \subseteq p\Lambda_{sp}O(X,\tau)$.
 - $(9) \Rightarrow (10) \Rightarrow (11) \Rightarrow (12)$: Obvious.
- (12) \Rightarrow (13): Let $V \in r\Lambda_{sp}O(X,\tau)$. Then, V is $\beta(\Lambda, sp)$ -open, by Proposition 13, $V^{(\Lambda,sp)}$ is $b(\Lambda, sp)$ -open and by (12), $V^{(\Lambda,sp)}$ is $p(\Lambda, sp)$ -open. Thus,

$$V^{(\Lambda,sp)}\subseteq [[V^{(\Lambda,sp)}]^{(\Lambda,sp)}]_{(\Lambda,sp)}=[V^{(\Lambda,sp)}]_{(\Lambda,sp)}=V.$$

Therefore, V is $p(\Lambda, sp)$ -closed and hence $r\Lambda_{sp}O(X, \tau) \subseteq p\Lambda_{sp}C(X, \tau)$.

- $(13) \Rightarrow (14)$: Let $V \in r\Lambda_{sp}O(X,\tau)$. By (13), we have V is $p(\Lambda, sp)$ -closed and hence $[V_{(\Lambda,sp)}]^{(\Lambda,sp)} \subseteq V$. Since V is (Λ,sp) -open, $V^{(\Lambda,sp)} \subseteq V$. Thus, $V \in \Lambda_{sp}C(X,\tau)$. Consequently, we obtain $r\Lambda_{sp}O(X,\tau) \subseteq \Lambda_{sp}C(X,\tau)$.
 - $(14) \Rightarrow (15)$: The proof is obvious.
- $(15) \Rightarrow (1)$: Let V be a (Λ, sp) -open set. Then, $[V^{(\Lambda, sp)}]_{(\Lambda, sp)}$ is $r(\Lambda, sp)$ -open, by (15), $[V^{(\Lambda, sp)}]_{(\Lambda, sp)}$ is $\alpha(\Lambda, sp)$ -closed. Therefore,

$$V^{(\Lambda,sp)} \subseteq [[V^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)} = [[[[V^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)} \subseteq [V^{(\Lambda,sp)}]_{(\Lambda,sp)}.$$

Thus, $V^{(\Lambda,sp)}$ is (Λ,sp) -open. This shows that (X,τ) is Λ_{sp} -extremally disconnected.

REFERENCES 588

Acknowledgements

This research project was financially supported by Mahasarakham University.

References

- [1] D. Andrijević. On b-open sets. Matematički Vesnik, 48:59–64, 1996.
- [2] P. Bhattacharya and B. K. Lahiri. Semi-generalized closed sets in topology. *Indian Journal of Mathematics*, 29:375–382, 1987.
- [3] C. Boonpok. (Λ, sp) -closed sets and related topics in topological spaces. WSEAS Transactions on Mathematics, 19:321–322, 2020.
- [4] M. E. Abd El-Monsef, S. N. El-Deeb, and R. A. Mahmoud. β-open sets and β-continuous mappings. Bulletin of the Faculty of Science. Assist University., 12:77–90, 1983.
- [5] L. Gillman and M. Jerison. *Rings of continuous functions*. The University Series in Higher Mathematics, Van Nostrand, Princeton, New York, 1960.
- [6] N. Levine. Semi-open sets and semi-continuity in topological spaces. *The American Mathematical Monthly*, 70:36–41, 1963.
- [7] S. N. Maheshwari and R. Prasad. Some new separation axioms. *Annales de la Société Scientifique Bruxelles*, 89:395–402, 1975.
- [8] A. S. Mashhour, M. E. Abd El-Monsef, and S. N. El-Deeb. On precontinuous and weak precontinuous functions. *Proceedings of the Mathematical and Physical Society Egypt*, 53:47–53, 1982.
- [9] A. S. Mashhour, I. N. Hasanein, and S. N. El-Deeb. α -continuous and α -open mappings. Acta Mathematica Hungarica, 41:213–218, 1983.
- [10] O. Njåstad. On some classes of nearly open sets. *Pasific Journal of Mathematics*, 15:961–970, 1965.
- [11] T. Noiri. Characterizations of extremally disconnected spaces. *Indian Journal of Pure and Applied Mathematics*, 19:325–329, 1988.
- [12] T. Noiri and E. Hatir. Λ_{sp} -sets and some weak separation axioms. *Acta Mathematica Hungarica*, 103:225–232, 2004.
- [13] D. Sivaraj. A note on extremally disconnected spaces. *Indian Journal of Pure and Applied Mathematics*, 17:1373–1375, 1986.