EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 15, No. 2, 2022, 626-634
ISSN 1307-5543 - ejpam.com
Published by New York Business Global

On almost $\alpha(\Lambda, s p)$-continuous multifunctions

Chawalit Boonpok ${ }^{1}$, Jeeranunt Khampakdee ${ }^{1, *}$
${ }^{1}$ Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand

Abstract

Our main purpose is to introduce the notion of almost $\alpha(\Lambda, s p)$-continuous multifunctions. Moreover, some characterizations of almost $\alpha(\Lambda, s p)$-continuous multifunctions are established.

2020 Mathematics Subject Classifications: 54C08, 54C60
Key Words and Phrases: $\alpha(\Lambda, s p)$-open set, almost $\alpha(\Lambda, s p)$-continuous multifunction

1. Introduction

The notion of continuity is an important concept in topological spaces. Many mathematicians studied the various types of generalizations of continuity. In 1988, Noiri [6] introduced and studied the notion of almost α-continuity in topological spaces as a generalization of α-continuity due to Mashhour et al. [5]. In 1998, Popa and Noiri [8] extended the concept of almost α-continuous functions to multifunctions and defined almost α continuous multifunctions and obtained several characterizations of almost α-continuous multifunctions. Abd El-Monsef et al. [4] introduced a weak form of open sets called β-open sets. This notion was also called semi-preopen sets in the sense of Andrijević [1]. In 2004, Noiri and Hatir [7] introduced the notion of $\Lambda_{s p}$-sets in terms of the concept of β-open sets and investigated the notion of $\Lambda_{s p}$-closed sets by using $\Lambda_{s p}$-sets. In [3], the author introduced the concepts of ($\Lambda, s p$)-open sets and ($\Lambda, s p$)-closed sets which are defined by utilizing the notions of $\Lambda_{s p}$-sets and β-closed sets. In particular, some characterizations of upper and lower $(\Lambda, s p)$-continuous multifunctions are investigated in [3]. The purpose of the present paper is to introduce the notion of almost $\alpha(\Lambda, s p)$-continuous multifunctions. Furthermore, several characterizations of almost $\alpha(\Lambda, s p)$-continuous multifunctions are discussed.
*Corresponding author.
DOI: https://doi.org/10.29020/nybg.ejpam.v15i2.4277
Email addresses: chawalit.b@msu.ac.th (C. Boonpok), jeeranunt.k@msu.ac.th (J. Khampakdee)

2. Preliminaries

Throughout this paper, spaces (X, τ) and (Y, σ) (or simply X and Y) always mean topological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a topological space (X, τ). The closure of A and the interior of A are denoted by $\mathrm{Cl}(A)$ and $\operatorname{Int}(A)$, respectively. A subset A of a topological space (X, τ) is said to be β-open [4] if $A \subseteq \mathrm{Cl}(\operatorname{Int}(\mathrm{Cl}(A)))$. The complement of a β-open set is called β-closed. The family of all β-open sets of a topological space (X, τ) is denoted by $\beta(X, \tau)$. A subset $\Lambda_{s p}(A)[7]$ is defined as follows: $\Lambda_{s p}(A)=\cap\{U \mid A \subseteq U, U \in \beta(X, \tau)\}$. A subset A of a topological space (X, τ) is called a $\Lambda_{s p}$-set [7] if $A=\Lambda_{s p}(A)$. A subset A of a topological space (X, τ) is called $(\Lambda, s p)$-closed [3] if $A=T \cap C$, where T is a $\Lambda_{s p}$-set and C is a β-closed set. The complement of a $(\Lambda, s p)$-closed set is called ($\Lambda, s p)$-open.

Let A be a subset of a topological space (X, τ). A point $x \in X$ is called a $(\Lambda, s p)$ cluster point [3] of A if $A \cap U \neq \emptyset$ for every ($\Lambda, s p$)-open set U of X containing x. The set of all $(\Lambda, s p)$-cluster points of A is called the (Λ, sp)-closure [3] of A and is denoted by $A^{(\Lambda, s p)}$. The union of all $(\Lambda, s p)$-open sets contained in A is called the ($\Lambda, s p$)-interior [3] of A and is denoted by $A_{(\Lambda, s p)}$.

Lemma 1. [3] Let A and B be subsets of a topological space (X, τ). For the $(\Lambda, s p)$-closure, the following properties hold:
(1) $A \subseteq A^{(\Lambda, s p)}$ and $\left.\left[A^{(\Lambda, s p)}\right]\right]^{(\Lambda, s p)}=A^{(\Lambda, s p)}$.
(2) If $A \subseteq B$, then $A^{(\Lambda, s p)} \subseteq B^{(\Lambda, s p)}$.
(3) $A^{(\Lambda, s p)}=\cap\{F \mid A \subseteq F$ and F is (Λ, sp)-closed $\}$.
(4) $A^{(\Lambda, s p)}$ is $(\Lambda, s p)$-closed.
(5) A is $(\Lambda, s p)$-closed if and only if $A=A^{(\Lambda, s p)}$.

Lemma 2. [3] Let A and B be subsets of a topological space (X, τ). For the $(\Lambda, s p)$ interior, the following properties hold:
(1) $A_{(\Lambda, s p)} \subseteq A$ and $\left[A_{(\Lambda, s p)}\right]_{(\Lambda, s p)}=A_{(\Lambda, s p)}$.
(2) If $A \subseteq B$, then $A_{(\Lambda, s p)} \subseteq B_{(\Lambda, s p)}$.
(3) $A_{(\Lambda, s p)}$ is $(\Lambda, s p)$-open.
(4) A is $(\Lambda, s p)$-open if and only if $A_{(\Lambda, s p)}=A$.
(5) $[X-A]^{(\Lambda, s p)}=X-A_{(\Lambda, s p)}$.
(6) $[X-A]_{(\Lambda, s p)}=X-A^{(\Lambda, s p)}$.

A subset A of a topological space (X, τ) is said to be $s(\Lambda, s p)$-open (resp. $p(\Lambda, s p)$-open, $r(\Lambda, s p)$-open, $\alpha(\Lambda, s p)$-open, $\beta(\Lambda, s p)$-open) if $A \subseteq\left[A_{(\Lambda, s p)}\right]^{(\Lambda, s p)}$ (resp. $A \subseteq\left[A^{(\Lambda, s p)}\right]_{(\Lambda, s p)}$, $\left.A=\left[A^{(\Lambda, s p)}\right]_{(\Lambda, s p)}, A \subseteq\left[\left[A_{(\Lambda, s p)}\right]^{(\Lambda, s p)}\right]_{(\Lambda, s p)}, A \subseteq\left[\left[A^{(\Lambda, s p)}\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)}\right)[3]$. The complement of a $s(\Lambda, s p)$-open (resp. $p(\Lambda, s p)$-open, $r(\Lambda, s p)$-open, $\alpha(\Lambda, s p)$-open, $\beta(\Lambda, s p)$-open) set is said to be $s(\Lambda, s p)$-closed (resp. $p(\Lambda, s p)$-closed, $r(\Lambda, s p)$-closed, $\alpha(\Lambda, s p)$-closed, $\beta(\Lambda, s p)$-closed). The family of all $s(\Lambda, s p)$-open (resp. $p(\Lambda, s p)$-open, $r(\Lambda, s p)$-open, $\alpha(\Lambda, s p)$-open, $\beta(\Lambda, s p)$-open) sets in a topological space (X, τ) is denoted by $s \Lambda_{s p} O(X, \tau)$ (resp. $\left.p \Lambda_{s p} O(X, \tau), r \Lambda_{s p} O(X, \tau), \alpha \Lambda_{s p} O(X, \tau), \beta \Lambda_{s p} O(X, \tau)\right)$. The intersection of all $\alpha(\Lambda, s p)$-closed (resp. $s(\Lambda, s p)$-closed) sets containing A is called the $\alpha(\Lambda, s p)$-closure (resp. $s(\Lambda, s p)$-closure) of A and is denoted by $A^{\alpha(\Lambda, s p)}$ (resp. $\left.A^{s(\Lambda, s p)}\right)$. The union of all $\alpha(\Lambda, s p)$-open (resp. $s(\Lambda, s p)$-open) sets contained in A is called the $\alpha(\Lambda, s p)$-interior (resp. $s(\Lambda, s p)$-interior) of A and is denoted by $A_{\alpha(\Lambda, s p)}\left(\right.$ resp. $\left.A_{s(\Lambda, s p)}\right)$.

Lemma 3. Let A be a subset of a topological space (X, τ). Then, $x \in A^{s(\Lambda, s p)}$ if and only if $U \cap A \neq \emptyset$ for every $U \in s \Lambda_{s p} O(X, \tau)$ containing x.

Lemma 4. Let A be a subset of a topological space (X, τ). Then,

$$
A^{\alpha(\Lambda, s p)}=A \cup\left[\left[A^{(\Lambda, s p)}\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)} .
$$

By a multifunction $F: X \rightarrow Y$, we mean a point-to-set correspondence from X into Y, and always assume that $F(x) \neq \emptyset$ for all $x \in X$. For a multifunction $F: X \rightarrow Y$, following [2] we shall denote the upper and lower inverse of a set B of Y by $F^{+}(B)$ and $F^{-}(B)$, respectively, that is, $F^{+}(B)=\{x \in X \mid F(x) \subseteq B\}$ and $F^{-}(B)=\{x \in X \mid F(x) \cap B \neq \emptyset\}$. In particular, $F^{-}(y)=\{x \in X \mid y \in F(x)\}$ for each point $y \in Y$. For each $A \subseteq X$, $F(A)=\cup_{x \in A} F(x)$. Let $\mathcal{P}(Y)$ be the collection of all nonempty subsets of Y. For any ($\Lambda, s p$)-open set V of a topological space (Y, σ), we denote $V^{+}=\{B \in \mathcal{P}(Y) \mid B \subseteq V\}$ and $V^{-}=\{B \in \mathcal{P}(Y) \mid B \cap V \neq \emptyset\}$.

3. Almost $\alpha(\Lambda, s p)$-continuous multifunctions

In this section, we introduce the notion of almost $\alpha(\Lambda, s p)$-continuous multifunctions. Moreover, some characterizations of almost $\alpha(\Lambda, s p)$-continuous multifunctions are discussed.

Definition 1. A multifunction $F:(X, \tau) \rightarrow(Y, \sigma)$ is said to be almost $\alpha(\Lambda, s p)$-continuous at $x \in X$ if, for any $(\Lambda$, sp $)$-open sets G_{1}, G_{2} of Y such that $F(x) \in G_{1}^{+} \cap G_{2}^{+}$and each $s(\Lambda, s p)$-open set U of X containing x, there exists a nonempty ($\Lambda, s p$)-open set G_{U} of X such that $G_{U} \subseteq U, F\left(G_{U}\right) \subseteq G_{1}^{s(\Lambda, s p)}$ and $F(z) \cap G_{2}^{s(\Lambda, s p)} \neq \emptyset$ for every $z \in G_{U}$. A multifunction $F:(X, \tau) \rightarrow(Y, \sigma)$ is said to be almost $\alpha(\Lambda, s p)$-continuous if F has this property at each point of X.

Theorem 1. For a multifunction $F:(X, \tau) \rightarrow(Y, \sigma)$, the following properties are equivalent:
(1) F is almost $\alpha(\Lambda, s p)$-continuous at a point $x \in X$;
(2) for any $(\Lambda, s p)$-open sets G_{1}, G_{2} of Y such that $F(x) \in G_{1}^{+} \cap G_{2}^{-}$, there exists an $\alpha(\Lambda$, sp $)$-open set U containing x such that $F(U) \subseteq G_{1}^{s(\Lambda, s p)}$ and $F(z) \cap G_{2}^{s(\Lambda, s p)} \neq \emptyset$ for every $z \in U$;
(3) $x \in\left[F^{+}\left(G_{1}^{s(\Lambda, s p)}\right) \cap F^{-}\left(G_{2}^{s(\Lambda, s p)}\right)\right]_{\alpha(\Lambda, s p)}$ for any (Λ, sp)-open sets G_{1}, G_{2} of Y such that $F(x) \in G_{1}^{+} \cap G_{2}^{-}$;
(4) $x \in\left[\left[\left[F^{+}\left(G_{1}^{s(\Lambda, s p)}\right) \cap F^{-}\left(G_{2}^{s(\Lambda, s p)}\right)\right]_{(\Lambda, s p)]}{ }^{(\Lambda, s p)}\right]_{(\Lambda, s p)}\right.$ for any (Λ, sp)-open sets G_{1}, G_{2} of Y such that $F(x) \in G_{1}^{+} \cap G_{2}^{-}$.

Proof. (1) $\Rightarrow(2)$: Let G_{1}, G_{2} be any $(\Lambda, s p)$-open sets of Y such that $F(x) \in G_{1}^{+} \cap G_{2}^{-}$. For each $s(\Lambda, s p)$-open set H containing x, there exists a nonempty ($\Lambda, s p$)-open set G_{H} such that $G_{H} \subseteq H, F\left(G_{H}\right) \subseteq G_{1}^{s(\Lambda, s p)}$ and $F(z) \cap G_{2}^{s(\Lambda, s p)} \neq \emptyset$ for every $z \in G_{H}$. Let

$$
W=\cup\left\{G_{H} \mid H \in s \Lambda_{s p} O(X, \tau) \text { containing } x\right\} .
$$

Then, W is $(\Lambda, s p)$-open in $X, x \in W^{s(\Lambda, s p)}, F(W) \subseteq G_{1}^{s(\Lambda, s p)}$ and $F(w) \cap G_{2}^{s(\Lambda, s p)} \neq \emptyset$ for every $w \in W$. Put $U=W \cup\{x\}$, then $W \subseteq U \subseteq W^{s(\Lambda, s p)}=\left[W^{(\Lambda, s p)}\right]_{(\Lambda, s p)}$. Thus, U is an $\alpha(\Lambda, s p)$-open set containing x such that $F(U) \subseteq G_{1}^{s(\Lambda, s p)}$ and $F(u) \cap G_{2}^{s(\Lambda, s p)} \neq \emptyset$ for every $u \in U$.
$(2) \Rightarrow(3)$: Let G_{1}, G_{2} be any $(\Lambda, s p)$-open sets of Y such that $F(x) \in G_{1}^{+} \cap G_{2}^{-}$. Then, there exists an $\alpha(\Lambda, s p)$-open set U of X containing x such that $F(U) \subseteq G_{1}^{s(\Lambda, s p)}$ and $F(z) \cap G_{2}^{s(\Lambda, s p)} \neq \emptyset$ for every $z \in U$. Thus, $x \in U \subseteq F^{+}\left(G_{1}^{s(\Lambda, s p)}\right) \cap F^{-}\left(G_{2}^{s(\Lambda, s p)}\right)$. Since $U \in \alpha \Lambda_{s p} O(X, \tau)$, we have $x \in U \subseteq\left[F^{+}\left(G_{1}^{s(\Lambda, s p)}\right) \cap F^{-}\left(G_{2}^{s(\Lambda, s p)}\right)\right]_{\alpha(\Lambda, s p)}$.
$(3) \Rightarrow(4)$: Let G_{1}, G_{2} be any $(\Lambda, s p)$-open sets of Y such that $F(x) \in G_{1}^{+} \cap G_{2}^{-}$. Now, put $U=\left[F^{+}\left(G_{1}^{s(\Lambda, s p)}\right) \cap F^{-}\left(G_{2}^{s(\Lambda, s p)}\right)\right]_{\alpha(\Lambda, s p)}$. Then, U is an $\alpha(\Lambda, s p)$-open set and $x \in U \subseteq F^{+}\left(G_{1}^{s(\Lambda, s p)}\right) \cap F^{-}\left(G_{2}^{s(\Lambda, s p)}\right)$. Thus,

$$
x \in U \subseteq\left[\left[U_{(\Lambda, s p)}\right]^{(\Lambda, s p)}\right]_{(\Lambda, s p)} \subseteq\left[\left[\left[F^{+}\left(G_{1}^{s(\Lambda, s p)}\right) \cap F^{-}\left(G_{2}^{s(\Lambda, s p)}\right)\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)}\right]_{(\Lambda, s p)} .
$$

(4) \Rightarrow (1): Let $U \in s \Lambda_{s p} O(X, \tau)$ containing x and let G_{1}, G_{2} be any ($\Lambda, s p$)-open sets of Y such that $F(x) \in G_{1}^{+} \cap G_{2}^{-}$. Then, $\left.x \in\left[\left[\left[F^{+}\left(G_{1}^{s(\Lambda, s p)}\right) \cap F^{-}\left(G_{2}^{s(\Lambda, s p)}\right)\right]_{(\Lambda, s p)}\right]\right]^{(\Lambda, s p)}\right]_{(\Lambda, s p)}=$ $\left[\left[F^{+}\left(G_{1}^{s(\Lambda, s p)}\right) \cap F^{-}\left(G_{2}^{s(\Lambda, s p)}\right)\right]_{(\Lambda, s p)}\right]^{s(\Lambda, s p)}$, by Lemma 3,

$$
\emptyset \neq U \cap\left[F^{+}\left(G_{1}^{s(\Lambda, s p)}\right) \cap F^{-}\left(G_{2}^{s(\Lambda, s p)}\right)\right]_{(\Lambda, s p)} .
$$

Put $G_{U}=\left[U \cap\left[F^{+}\left(G_{1}^{s(\Lambda, s p)}\right) \cap F^{-}\left(G_{2}^{s(\Lambda, s p)}\right)\right]_{(\Lambda, s p)}\right]_{(\Lambda, s p)}$, then G_{U} is a nonempty $(\Lambda, s p)$ open set of X such that $G_{U} \subseteq U, F\left(G_{U}\right) \subseteq G_{1}^{s(\Lambda, s p)}$ and $F(z) \cap G_{2}^{s(\Lambda, s p)} \neq \emptyset$ for each $z \in G_{U}$. This shows that F is almost $\alpha(\Lambda, s p)$-continuous at x.

Theorem 2. For a multifunction $F:(X, \tau) \rightarrow(Y, \sigma)$, the following properties are equivalent:
(1) F is almost $\alpha(\Lambda, s p)$-continuous at a point $x \in X$;
(2) for each $x \in X$ and any $(\Lambda, s p)$-open sets G_{1}, G_{2} of Y such that $F(x) \in G_{1}^{+} \cap G_{2}^{-}$, there exists an $\alpha(\Lambda, s p)$-open set U containing x such that $F(U) \subseteq G_{1}^{s(\Lambda, s p)}$ and $F(z) \cap G_{2}^{s(\Lambda, s p)} \neq \emptyset$ for every $z \in U ;$
(3) for each $x \in X$ and any $r\left(\Lambda\right.$, sp)-open sets G_{1}, G_{2} of Y such that $F(x) \in G_{1}^{+} \cap G_{2}^{-}$, there exists $U \in \alpha \Lambda_{s p} O(X, \tau)$ containing x such that $F(U) \subseteq G_{1}$ and $F(z) \cap G_{2} \neq \emptyset$ for every $z \in U$;
(4) $F^{+}\left(G_{1}\right) \cap F^{-}\left(G_{2}\right) \in \alpha \Lambda_{s p} O(X, \tau)$ for every $G_{1}, G_{2} \in r \Lambda_{s p} O(Y, \sigma)$;
(5) $F^{+}\left(K_{1}\right) \cup F^{-}\left(K_{2}\right)$ is $\alpha(\Lambda, s p)$-closed in X for every $r(\Lambda, s p)$-closed sets K_{1}, K_{2} of Y;
(6) $F^{+}\left(G_{1}\right) \cup F^{-}\left(G_{2}\right) \subseteq\left[F^{+}\left(G_{1}^{s(\Lambda, s p)}\right) \cap F^{-}\left(G_{2}^{s(\Lambda, s p)}\right)\right]_{\alpha(\Lambda, s p)}$ for any (Λ, sp)-open sets G_{1}, G_{2} of Y;
(7) $\left[F^{-}\left(\left[K_{1}\right]_{s(\Lambda, s p)}\right) \cup F^{+}\left(\left[K_{2}\right]_{s(\Lambda, s p)}\right)\right]^{\alpha(\Lambda, s p)} \subseteq F^{-}\left(K_{1}\right) \cup F^{+}\left(K_{2}\right)$ for any $(\Lambda, s p)$-closed sets K_{1}, K_{2} of Y;
(8) $\left[F^{-}\left(\left[\left[K_{1}\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)}\right) \cup F^{+}\left(\left[\left[K_{2}\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)}\right)\right]^{\alpha(\Lambda, s p)} \subseteq F^{-}\left(K_{1}\right) \cup F^{+}\left(K_{2}\right)$ for any ($\Lambda, s p)$-closed sets K_{1}, K_{2} of Y;
(9) $\left[F^{-}\left(\left[\left[B_{1}^{(\Lambda, s p)}\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)}\right) \cup F^{+}\left(\left[\left[B_{2}^{(\Lambda, s p)}\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)}\right)\right]^{\alpha(\Lambda, s p)} \subseteq F^{-}\left(B_{1}^{(\Lambda, s p)}\right) \cup F^{+}\left(B_{2}^{(\Lambda, s p)}\right)$ for any subsets B_{1}, B_{2} of Y;
(10) $\left[\left[\left[F^{-}\left(\left[\left[K_{1}\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)}\right) \cup F^{+}\left(\left[\left[K_{2}\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)}\right)\right]^{(\Lambda, s p)}\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)} \subseteq F^{-}\left(K_{1}\right) \cup F^{+}\left(K_{2}\right)$ for any $(\Lambda, s p)$-closed sets K_{1}, K_{2} of Y;
(11) $\left[\left[\left[F^{-}\left(\left[K_{1}\right]_{s(\Lambda, s p)}\right) \cup F^{+}\left(\left[K_{2}\right]_{s(\Lambda, s p)}\right)\right]^{(\Lambda, s p)}\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)} \subseteq F^{-}\left(K_{1}\right) \cup F^{+}\left(K_{2}\right)$ for any $(\Lambda, s p)$-closed sets K_{1}, K_{2} of Y;
(12) $F^{+}\left(G_{1}\right) \cap F^{-}\left(G_{2}\right) \subseteq\left[\left[\left[F^{+}\left(G_{1}^{s(\Lambda, s p)}\right) \cap F^{-}\left(G_{2}^{s(\Lambda, s p)}\right)\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)}\right]_{(\Lambda, s p)}$ for any $(\Lambda, s p)$ open sets G_{1}, G_{2} of Y.

Proof. (1) $\Rightarrow(2)$: The proof follows from Theorem 1.
$(2) \Rightarrow(3)$: The proof is obvious.
$(3) \Rightarrow(4):$ Let $G_{1}, G_{2} \in r \Lambda_{s p} O(Y, \sigma)$ and let $x \in F^{+}\left(G_{1}\right) \cap F^{-}\left(G_{2}\right)$. Then,

$$
F(x) \in G_{1}^{+} \cap G_{2}^{-}
$$

and there exists $U \in \alpha \Lambda_{s p} O(X, \tau)$ containing x such that $F(U) \subseteq G_{1}$ and $F(z) \cap G_{2} \neq \emptyset$ for every $z \in U$. Thus, $x \in U \subseteq F^{+}\left(G_{1}\right) \cap F^{-}\left(G_{2}\right)$ and hence

$$
F^{+}\left(G_{1}\right) \cap F^{-}\left(G_{2}\right) \in \alpha \Lambda_{s p} O(X, \tau)
$$

$(4) \Rightarrow(5)$: This follows from the fact that $F^{+}(Y-B)=X-F^{-}(B)$ and $F^{-}(Y-B)=$ $X-F^{+}(B)$ for every subset B of Y.
$(5) \Rightarrow(6)$: Let G_{1}, G_{2} be any $(\Lambda, s p)$-open sets of Y and let $x \in F^{+}\left(G_{1}\right) \cap F^{-}\left(G_{2}\right)$. Then, $F(x) \subseteq G_{1} \subseteq G_{1}^{s(\Lambda, s p)}$ and $\emptyset \neq F(x) \cap G_{2} \subseteq F(x) \cap G_{2}^{s(\Lambda, s p)}$. Thus,

$$
x \in F^{+}\left(G_{1}^{s(\Lambda, s p)}\right)=X-F^{-}\left(Y-G_{1}^{s(\Lambda, s p)}\right)
$$

and $x \in F^{-}\left(G_{2}^{s(\Lambda, s p)}\right)=X-F^{-}\left(Y-G_{2}^{s(\Lambda, s p)}\right)$. Since $Y-G_{1}^{s(\Lambda, s p)}$ and $Y-G_{2}^{s(\Lambda, s p)}$ are $r(\Lambda, s p)$-closed, $F^{-}\left(Y-G_{1}^{s(\Lambda, s p)}\right) \cup F^{+}\left(Y-G_{2}^{s(\Lambda, s p)}\right)$ is $\alpha(\Lambda, s p)$-closed in X. Since

$$
\begin{aligned}
F^{-}\left(Y-G_{1}^{s(\Lambda, s p)}\right) \cup F^{+}\left(Y-G_{2}^{s(\Lambda, s p)}\right) & =\left[X-F^{+}\left(G_{1}^{s(\Lambda, s p)}\right)\right] \cup\left[X-F^{-}\left(G_{2}^{s(\Lambda, s p)}\right)\right] \\
& =X-\left[F^{+}\left(G_{1}^{s(\Lambda, s p)}\right) \cup F^{-}\left(G_{2}^{s(\Lambda, s p)}\right)\right]
\end{aligned}
$$

we have $F^{+}\left(G_{1}^{s(\Lambda, s p)}\right) \cup F^{-}\left(G_{2}^{s(\Lambda, s p)}\right)$ is $\alpha(\Lambda, s p)$-open in X and hence

$$
x \in\left[F^{+}\left(G_{1}^{s(\Lambda, s p)}\right) \cup F^{-}\left(G_{2}^{s(\Lambda, s p)}\right)\right]_{\alpha(\Lambda, s p)}
$$

Thus, $F^{+}\left(G_{1}\right) \cup F^{-}\left(G_{2}\right) \subseteq\left[F^{+}\left(G_{1}^{s(\Lambda, s p)}\right) \cap F^{-}\left(G_{2}^{s(\Lambda, s p)}\right)\right]_{\alpha(\Lambda, s p)}$.
$(6) \Rightarrow(7)$: Let K_{1}, K_{2} be any $(\Lambda, s p)$-closed sets of Y. Then, $Y-K_{1}$ and $Y-K_{2}$ are ($\Lambda, s p$)-open, by (6),

$$
\begin{aligned}
X-\left[F^{-}\left(K_{1}\right) \cup F^{+}\left(K_{2}\right)\right] & =\left[X-F^{-}\left(K_{1}\right)\right] \cap\left[X-F^{+}\left(K_{2}\right)\right] \\
& =F^{+}\left(Y-K_{1}\right) \cap F^{-}\left(Y-K_{2}\right) \\
& \subseteq\left[F^{+}\left(\left[Y-K_{1}\right]^{s(\Lambda, s p)}\right) \cap F^{-}\left(\left[Y-K_{2}\right]^{s(\Lambda, s p)}\right)\right]_{\alpha(\Lambda, s p)} \\
& =\left[F^{+}\left(Y-\left[K_{1}\right]_{s(\Lambda, s p)}\right) \cap F^{-}\left(Y-\left[K_{2}\right]_{s(\Lambda, s p)}\right)\right]_{\alpha(\Lambda, s p)} \\
& =\left[\left[X-F^{-}\left(\left[K_{1}\right]_{s(\Lambda, s p)}\right)\right] \cap\left[X-F^{+}\left(\left[K_{2}\right]_{s(\Lambda, s p)}\right)\right]\right]_{\alpha(\Lambda, s p)} \\
& =X-\left[F^{-}\left(\left[K_{1}\right]_{s(\Lambda, s p)}\right) \cup F^{+}\left(\left[K_{2}\right]_{s(\Lambda, s p)}\right)\right]^{\alpha(\Lambda, s p)} .
\end{aligned}
$$

Thus, $\left[F^{-}\left(\left[K_{1}\right]_{s(\Lambda, s p)}\right) \cup F^{+}\left(\left[K_{2}\right]_{s(\Lambda, s p)}\right)\right]^{\alpha(\Lambda, s p)} \subseteq F^{-}\left(K_{1}\right) \cup F^{+}\left(K_{2}\right)$.
$(7) \Rightarrow(8)$: The proof is obvious since $K_{s(\Lambda, s p)}=\left[K_{(\Lambda, s p)}\right]^{(\Lambda, s p)}$ for every $(\Lambda, s p)$-closed set K.
$(8) \Rightarrow(9)$: The proof is obvious.
$(9) \Rightarrow(10)$: Let K_{1}, K_{2} be any $(\Lambda, s p)$-closed sets of Y. Thus, by (9) and Lemma 4,

$$
\begin{aligned}
& {\left[\left[\left[F^{-}\left(\left[\left[K_{1}\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)}\right) \cup F^{+}\left(\left[\left[K_{2}\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)}\right)\right]^{(\Lambda, s p)}\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)}} \\
& \subseteq\left[F^{-}\left(\left[\left[K_{1}\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)}\right) \cup F^{+}\left(\left[\left[K_{2}\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)}\right)\right]^{\alpha(\Lambda, s p)} \\
& =\left[F^{-}\left(\left[\left[K_{1}^{(\Lambda, s p)}\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)}\right) \cup F^{+}\left(\left[\left[K_{2}^{(\Lambda, s p)}\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)}\right)\right]^{\alpha(\Lambda, s p)} \\
& \subseteq F^{-}\left(K_{1}\right) \cup F^{+}\left(K_{2}\right) .
\end{aligned}
$$

$(10) \Rightarrow(11)$: The proof is obvious since $K_{s(\Lambda, s p)}=\left[K_{(\Lambda, s p)}\right]^{(\Lambda, s p)}$ for every $(\Lambda, s p)-$ closed set K.
$(11) \Rightarrow(12)$: Let G_{1}, G_{2} be any $(\Lambda, s p)$-open sets of Y. Then, $Y-G_{1}$ and $Y-G_{2}$ are ($\Lambda, s p$)-closed sets of Y, by (11),

$$
\begin{aligned}
& {\left[\left[\left[F^{-}\left(\left[Y-G_{1}\right]_{s(\Lambda, s p)}\right) \cup F^{+}\left(\left[Y-G_{2}\right]_{s(\Lambda, s p)}\right)\right]^{(\Lambda, s p)}\right]_{(\Lambda, s p)]}{ }^{(\Lambda, s p)}\right.} \\
& \subseteq F^{-}\left(Y-G_{1}\right) \cup F^{+}\left(Y-G_{2}\right) \\
& =\left[X-F^{+}\left(G_{1}\right)\right] \cup\left[X-F^{-}\left(G_{2}\right)\right] \\
& =X-\left[F^{+}\left(G_{1}\right) \cap F^{-}\left(G_{2}\right)\right] .
\end{aligned}
$$

Moreover, we have

$$
\begin{aligned}
& {\left[\left[\left[F^{-}\left(\left[Y-G_{1}\right]_{s(\Lambda, s p)}\right) \cup F^{+}\left(\left[Y-G_{2}\right]_{s(\Lambda, s p)}\right)\right]^{(\Lambda, s p)}\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)}} \\
& =\left[\left[\left[F^{-}\left(Y-G_{1}^{s(\Lambda, s p)}\right) \cup F^{+}\left(Y-G_{2}^{s(\Lambda, s p)}\right)\right]^{(\Lambda, s p)}\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)} \\
& =\left[\left[\left[\left[X-\left[F^{+}\left(G_{1}^{s(\Lambda, s p)}\right)\right]\right] \cup\left[X-\left[F^{-}\left(G_{2}^{s(\Lambda, s p)}\right)\right]\right]\right]^{(\Lambda, s p)}\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)} \\
& =\left[\left[\left[X-\left[F^{+}\left(G_{1}^{s(\Lambda, s p)}\right) \cap F^{-}\left(G_{2}^{s(\Lambda, s p)}\right)\right]\right]^{s(\Lambda, s p)}\right]_{s(\Lambda, s p)}^{s(\Lambda, s p)}\right. \\
& =X-\left[\left[\left[F^{+}\left(G_{1}^{s(\Lambda, s p)}\right) \cap F^{-}\left(G_{2}^{s(\Lambda, s p)}\right)\right]_{(\Lambda, s p))}\right]^{(\Lambda, s p)}\right]_{(\Lambda, s p)} .
\end{aligned}
$$

Thus, $F^{+}\left(G_{1}\right) \cap F^{-}\left(G_{2}\right) \subseteq\left[\left[\left[F^{+}\left(G_{1}^{s(\Lambda, s p)}\right) \cap F^{-}\left(G_{2}^{s(\Lambda, s p)}\right)\right]_{(\Lambda, s p)]}\right]^{(\Lambda, s p)}\right]_{(\Lambda, s p)}$.
$(12) \Rightarrow(1)$: Let $x \in X$ and let G_{1}, G_{2} be any ($\left.\Lambda, s p\right)$-open sets of Y such that $F(x) \in G_{1}^{+} \cap G_{2}^{-}$. Then,

$$
x \in F^{+}\left(G_{1}\right) \cap F^{-}\left(G_{2}\right) \subseteq\left[\left[\left[F^{+}\left(G_{1}^{s(\Lambda, s p)}\right) \cap F^{-}\left(G_{2}^{s(\Lambda, s p)}\right)\right]_{(\Lambda, s p)}\right]^{[\Lambda, s p)}\right]_{(\Lambda, s p)}
$$

and hence F is almost $\alpha(\Lambda, s p)$-continuous at x by Theorem 1 . This shows that F is almost $\alpha(\Lambda, s p)$-continuous.

Definition 2. A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is said to be almost $\alpha(\Lambda, s p)$-continuous if $f^{-1}(V) \in \alpha \Lambda_{s p} O(X, \tau)$ for every $V \in r \Lambda_{s p} O(Y, \sigma)$.

Corollary 1. For a function $f:(X, \tau) \rightarrow(Y, \sigma)$, the following properties are equivalent:
(1) f is almost $\alpha(\Lambda, s p)$-continuous;
(2) for each $x \in X$ and any $(\Lambda, s p)$-open set G of Y containing $f(x)$, there exists an $\alpha(\Lambda, s p)$-open set U of X containing x such that $f(U) \subseteq G^{s(\Lambda, s p)}$;
(3) for each $x \in X$ and any $r(\Lambda, s p)$-open set G of Y containing $f(x)$, there exists an $\alpha(\Lambda, s p)$-open set U of X containing x such that $f(U) \subseteq G$;
(4) $f^{-1}(G) \in \alpha \Lambda_{s p} O(X, \tau)$ for every $G \in r \Lambda_{s p} O(Y, \sigma)$;
(5) $f^{-1}(K) \in \alpha \Lambda_{s p} C(X, \tau)$ for every $K \in r \Lambda_{s p} C(Y, \sigma)$;
(6) $f^{-1}(G) \subseteq\left[f^{-1}\left(G^{s(\Lambda, s p)}\right)\right]_{\alpha(\Lambda, s p)}$ for any $(\Lambda, s p)$-open set G of Y;
(7) $\left[f^{-1}\left(K_{s(\Lambda, s p)}\right)\right]^{\alpha(\Lambda, s p)} \subseteq f^{-1}(K)$ for any $(\Lambda, s p)$-closed set K of Y;
(8) $\left[f^{-1}\left(\left[K_{(\Lambda, s p)}\right]^{(\Lambda, s p)}\right)\right]^{\alpha(\Lambda, s p)} \subseteq f^{-1}(K)$ for any $(\Lambda$, sp $)$-closed set K of Y;
(9) $\left[f^{-1}\left(\left[\left[B^{(\Lambda, s p)}\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)}\right)\right]^{\alpha(\Lambda, s p)} \subseteq f^{-1}\left(B^{(\Lambda, s p)}\right)$ for any subset B of Y;
(10) $\left.\left[\left[\left[f^{-1}\left(\left[K_{(\Lambda, s p)}\right]\right]^{(\Lambda, s p)}\right)\right]^{(\Lambda, s p)}\right]_{(\Lambda, s p)]}\right]^{(\Lambda, s p)} \subseteq f^{-1}(K)$ for any $(\Lambda, s p)$-closed set K of Y;
(11) $\left[\left[\left[f^{-1}\left(K_{s(\Lambda, s p)}\right)\right]^{(\Lambda, s p)}\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)} \subseteq f^{-}(K)$ for any $(\Lambda, s p)$-closed set K of Y;
(12) $f^{-1}(G) \subseteq\left[\left[\left[f^{-1}\left(G^{s(\Lambda, s p)}\right)\right]_{(\Lambda, s p)}\right]^{(\Lambda, s p)}\right]_{(\Lambda, s p)}$ for any $(\Lambda$, sp)-open set G of Y.

Theorem 3. For a multifunction $F:(X, \tau) \rightarrow(Y, \sigma)$, the following properties are equivalent:
(1) F is almost $\alpha(\Lambda, s p)$-continuous;
(2) $\left[F^{-}\left(G_{1}\right) \cup F^{+}\left(G_{2}\right)\right]^{\alpha(\Lambda, s p)} \subseteq F^{-}\left(G_{1}^{(\Lambda, s p)}\right) \cup F^{+}\left(G_{2}^{(\Lambda, s p)}\right)$ for any $G_{1}, G_{2} \in \beta \Lambda_{s p} O(Y, \sigma)$;
(3) $\left[F^{-}\left(G_{1}\right) \cup F^{+}\left(G_{2}\right)\right]^{\alpha(\Lambda, s p)} \subseteq F^{-}\left(G_{1}^{(\Lambda, s p)}\right) \cup F^{+}\left(G_{2}^{(\Lambda, s p)}\right)$ for any $G_{1}, G_{2} \in s \Lambda_{s p} O(Y, \sigma)$;
(4) $F^{+}\left(G_{1}\right) \cap F^{-}\left(G_{2}\right) \subseteq\left[F^{+}\left(G_{1}^{s(\Lambda, s p)}\right) \cap F^{-}\left(G_{2}^{s(\Lambda, s p)}\right)\right]_{\alpha(\Lambda, s p)}$ for any $G_{1}, G_{2} \in p \Lambda_{s p} O(Y, \sigma)$.

Proof. (1) $\Rightarrow(2)$: Let G_{1}, G_{2} be any $\beta(\Lambda, s p)$-open sets of Y. Since $G_{1}^{(\Lambda, s p)}$ and $G_{2}^{(\Lambda, s p)}$ are $r(\Lambda, s p)$-closed, by Theorem 2, $F^{-}\left(G_{1}^{(\Lambda, s p)}\right) \cup F^{+}\left(G_{2}^{(\Lambda, s p)}\right)$ is $\alpha(\Lambda, s p)$-closed in X and $F^{-}\left(G_{1}\right) \cup F^{+}\left(G_{2}\right) \subseteq F^{-}\left(G_{1}^{(\Lambda, s p)}\right) \cup F^{+}\left(G_{2}^{(\Lambda, s p)}\right)$. Thus,

$$
\left[F^{-}\left(G_{1}\right) \cup F^{+}\left(G_{2}\right)\right]^{\alpha(\Lambda, s p)} \subseteq F^{-}\left(G_{1}^{(\Lambda, s p)}\right) \cup F^{+}\left(G_{2}^{(\Lambda, s p)}\right)
$$

$(2) \Rightarrow(3)$: This is obvious since $s \Lambda_{s p} O(Y, \sigma) \subseteq \beta \Lambda_{s p} O(Y, \sigma)$.
(3) \Rightarrow (1): Let $K_{1}, K_{2} \in r \Lambda_{s p} C(Y, \sigma)$. Then, $K_{1}, K_{2} \in s \Lambda_{s p} O(Y, \sigma)$ and hence $\left[F^{-}\left(K_{1}\right) \cup F^{+}\left(K_{2}\right)\right]^{\alpha(\Lambda, s p)} \subseteq F^{-}\left(K_{1}\right) \cup F^{+}\left(K_{2}\right)$. Thus, we have $F^{-}\left(K_{1}\right) \cup F^{+}\left(K_{2}\right)$ is $\alpha(\Lambda, s p)$-closed in X and hence F is almost $\alpha(\Lambda, s p)$-continuous by Theorem 2 .
$(1) \Rightarrow(4)$: Let G_{1}, G_{2} be any $p(\Lambda, s p)$-open sets of Y. Since $\left[G_{1}^{(\Lambda, s p)}\right]_{(\Lambda, s p)}$ and $\left[G_{2}^{(\Lambda, s p)}\right]_{(\Lambda, s p)}$ are $r(\Lambda, s p)$-open in Y, we have $\left[G_{1}^{(\Lambda, s p)}\right]_{(\Lambda, s p)}=G_{1}^{s(\Lambda, s p)}$ and

$$
\left[G_{1}^{(\Lambda, s p)}\right]_{(\Lambda, s p)}=G_{2}^{s(\Lambda, s p)}
$$

by Theorem $2, F^{+}\left(G_{1}^{s(\Lambda, s p)}\right) \cap F^{-}\left(G_{2}^{s(\Lambda, s p)}\right)$ is $\alpha(\Lambda, s p)$-open in X. Thus,

$$
\begin{aligned}
F^{+}\left(G_{1}\right) \cap F^{-}\left(G_{2}\right) & \subseteq F^{+}\left(G_{1}^{s(\Lambda, s p)}\right) \cap F^{-}\left(G_{2}^{s(\Lambda, s p)}\right) \\
& =\left[F^{+}\left(G_{1}^{s(\Lambda, s p)}\right) \cap F^{-}\left(G_{2}^{s(\Lambda, s p)}\right)\right]_{\alpha(\Lambda, s p)} .
\end{aligned}
$$

$(4) \Rightarrow(1)$: Let G_{1}, G_{2} be any $r(\Lambda, s p)$-open sets of Y. Since $G_{1}, G_{2} \in p \Lambda_{s p} O(Y, \sigma)$, we have $F^{+}\left(G_{1}\right) \cap F^{-}\left(G_{2}\right) \subseteq\left[F^{+}\left(G_{1}^{s(\Lambda, s p)}\right) \cap F^{-}\left(G_{2}^{s(\Lambda, s p)}\right)\right]_{\alpha(\Lambda, s p)}=\left[F^{+}\left(G_{1}\right) \cap F^{-}\left(G_{2}\right)\right]_{\alpha(\Lambda, s p)}$ and hence $F^{+}\left(G_{1}\right) \cap F^{-}\left(G_{2}\right) \in \alpha \Lambda_{s p} O(X, \tau)$. It follows from Theorem 2 that F is almost $\alpha(\Lambda, s p)$-continuous.

Corollary 2. For a function $f:(X, \tau) \rightarrow(Y, \sigma)$, the following properties are equivalent:
(1) f is almost $\alpha(\Lambda, s p)$-continuous;
(2) $\left[f^{-1}(V)\right]^{\alpha(\Lambda, s p)} \subseteq f^{-1}\left(V^{(\Lambda, s p)}\right)$ for any $V \in \beta \Lambda_{s p} O(Y, \sigma)$;
(3) $\left[f^{-1}(V)\right]^{\alpha(\Lambda, s p)} \subseteq f^{-1}\left(V^{(\Lambda, s p)}\right)$ for any $V \in s \Lambda_{s p} O(Y, \sigma)$;
(4) $f^{-1}(V) \subseteq\left[f^{-1}\left(V^{s(\Lambda, s p)}\right)\right]_{\alpha(\Lambda, s p)}$ for any $V \in p \Lambda_{s p} O(Y, \sigma)$.

Acknowledgements

This research project was financially supported by Mahasarakham University.

References

[1] D. Andrijević. On b-open sets. Matematički Vesnik, 48:56-64, 1996.
[2] C. Berge. Espaces topologiques fonctions multivoques. Dunod, Paris, 1959.
[3] C. Boonpok. $(\Lambda, s p)$-closed sets and related topics in topological spaces. WSEAS Transactions on Mathematics, 19:312-322, 2020.
[4] M. E. Abd El-Monsef, S. N. El-Deeb, and R. A. Mahmoud. β-open sets and β continuous mappings. Bulletin of the Faculty of Science. Assiut University., 12:77-90, 1983.
[5] A. S. Mashhour, I. A. Hasanein, and S. N. El-Deeb. α-continuous and α-open mappings. Acta Mathematica Hungarica, 41:213-218, 1983.
[6] T. Noiri. Almost α-continuous functions. Kyungpook Mathematical Journal, 28(1):71-77, 1988.
[7] T. Noiri and E. Hatir. $\Lambda_{s p}$-sets and some weak separation axioms. Acta Mathematica Hungarica, 103(3):225-232, 2004.
[8] V. Popa and T. Noiri. Almost α-continuous multifunctions. Filomat, 12(1):39-52, 1998.

