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Abstract. In this paper, we introduce some separation axioms in coc-compact set, namely coc-T0-
space, coc-T 1

4
- space, coc-T 3

8
- space, coc-T 1

2
- space, coc-T 5

8
- space, coc-Di- space, coc-Ri- space for

i = 0, 1, weak coc-D1- space and weak coc-R0- space, and we study some relations between them,
also we prove that some of these separation axioms have ”hereditary property”.
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1. Introduction and Preliminaries

In [4], the authors defined a new type of open sets called coc-compact set as a gener-
alizations of open sets. After this paper many papers in this concept were appeared, see
[1–3].

Also many authors studied weak separation axioms in different types of open sets, for
example [5, 8, 9] .

Definition 1. [4] A subset A of a topological space (X, τ) is called co-compact open set
(notation: coc-open) if for every x ∈ A, there exists an open set U ⊆ X and a compact
subset K of X such that x ∈ U −K ⊆ A. The complement of a coc-open subset is called
coc-closed. The family of all coc-open subsets of a topological space X will be denoted by
τk.

Theorem 1. [4] Let (X, τ) be a topological space. Then

(i) The collection τk forms a topology on X with τ ⊆ τk.

(ii) The set {U −K : U ∈ τ and K is compact in X} forms a base for τk .

Lemma 1. [4] Let (X, τ) be a topological space and A be a closed subset of X. Then(
τ |A

)k
= τk |A .
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Throughout this paper, we use R,Q and N to denote the set of real numbers, rational
numbers and natural numbers, respectively. The coc-closure of A and the coc- interior of
A will be denoted by A

cocand intcoc(A), respectively.
Terms and notations not explained in this paper are taken from [4, 7].

2. Coc-T -spaces and Coc-D-spaces

Definition 2. A space (X, τ) is called co-compact-T0-space (coc-T0-space) if for all x 6=
y ∈ X, there exists a coc-open set U contains one point but not other.

Definition 3. A subset A of a topological space (X, τ) is called coc-D-set if A = U − V ,
for some U, V ∈ τk.

Definition 4. A space (X, τ) is called co-compact-D0-space (coc-D0-space) if for all x 6=
y ∈ X, there exists a coc-D-set U contains one point but not other.

Theorem 2. A coc-closed subspace of a coc-D0-space (X, τ) is coc-D0-space.

Proof. Let A be a coc-closed subset X and let x 6= y ∈ A. So there exists a coc-D-set
D = U − V with U, V ∈ τk such that x ∈ D and y /∈ D. Now x ∈ D ∩A = (U − V )∩A =
(A∩U)− (A∩ V ), so by Lemma 1 we have A∩U and A∩ V ∈ (τ |A)k = τk |A, hence the
result.

Theorem 3. A space (X, τ) is coc-T0-space if and only if it is coc-D0-space.

Proof. (⇒) It is clear since every proper coc-open subset of X is coc-D-set.
(⇐) Let x 6= y ∈ X, so there exists a coc-D0- set U contains x with U = U1 − U2 where
U1, U2 ∈ τk i.e. x ∈ U1 and x /∈ U2. For y, we have the following cases:(1) If y /∈ U1, we
are done. (2) If y ∈ U1 and y ∈ U2, so U2 contains y but not x.

Theorem 4. A space (X, τ) is coc-T0-space if and only if for all x 6= y ∈ X, we have
{x}coc = {y}coc.

Proof. (⇒) Let x 6= y ∈ X, there exists a coc- open set U contains one point but not
other, say x ∈ U and y /∈ U . Then X−U is a coc-closed set contains y and {y}coc ⊆ X−U,
so x /∈ {y}coc, hence {x}coc 6= {y}coc.
(⇐) Let x 6= y ∈ X. Then it is clear that X − {y}coc is coc-open set contains x but not
y, hence X is coc-T0-space.

Definition 5. A space (X, τ) is called co-compact -T1-space (coc-T1-space) if for all
x 6= y ∈ X, there exist coc-open sets Ux, Vy with {Ux, Vy}∩ τ 6= φ such that x ∈ Ux, y ∈ Vy

and y /∈ Ux, x /∈ Vy.

Definition 6. [3] A space (X, τ) is called co-compact -T2-space (coc-T2-space) if for all
x 6= y ∈ X, there exist coc-open sets Ux, Vy with {Ux, Vy}∩ τ 6= φ such that x ∈ Ux, y ∈ Vy

and Ux ∩ Vy = φ.
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It is clear that if (X, τ) is coc-T1-space, then (X, τk) is T1-space. And every T1-space
is coc-T1-space, but the converse need not be true, consider the following example.

Example 1. Let X = R and τ = {φ} ∪ {U ⊆ R, 0 ∈ U}.

Proof.
A space (X, τ) is coc-T1- space, to prove this let x 6= y ∈ X, so we have the following

cases :

(i) For x = 0, y 6= 0, let U = {0} and V = {y, 0}−{0}, then U, V ∈ τk and {U, V }∩τ =
{V } with x /∈ V and y /∈ U .

(ii) For y = 0, x 6= 0, same as (i).

(iii) For x 6= 0, y 6= 0, let U = {x, 0}, V = {y, 0} − {0}, then U, V ∈ τk and {U, V } ∩ τ =
{V }, then x /∈ V and y /∈ U .

But (X, τ) is not T1- space, for instance take x = 0, y = 1, then there is no open set
contains y but not x.

Theorem 5. A space (X, τ) is coc-T1-space if and only if every singleton is coc-closed.

Definition 7. A space (X, τ) is called co-compact-D1-space (coc-D1-space) if for all x 6=
y ∈ X, there exist coc-D-sets Ux, Vy such that x ∈ Ux , y ∈ Vy and y /∈ Ux, x /∈ Vy.

Theorem 6. A coc-closed subspace of a coc-D1-space (X, τ) is coc-D1-space.

Definition 8. A space (X, τ) is called co-compact-D2-space (coc-D2-space) if for all x 6=
y ∈ X, there exist disjoint coc-D-sets Ux, Vy such that x ∈ Ux, y ∈ Vy and y /∈ Ux, x /∈ Vy.

Theorem 7. Let (X, τ) be a topological space. Then:

(i) If X is coc-Ti-space, then X is coc-Ti−1-space for i = 1, 2.

(ii) If X is coc-Ti-space, then X is coc-Di-space for i = 1, 2.

(iii) If X is coc-Di-space, then X is coc-Di−1-space for i = 1, 2.

(iv) If X is coc-D1-space, then X is coc-T0-space.

(v) X is coc-D1-space if and only if X is coc-D2-space .

Proof. We will prove (v) only.
(⇐) Obvious.
(⇒) For x 6= y ∈ X, there exist coc-D-sets U1, U2 with x ∈ U1, y /∈ U1 and y ∈ U2, x /∈ U1,
assume U1 = V1−W1, U2 = V2−W2 where V1,W1, V2,W2 ∈ τk. Then for x /∈ U2, we have
the following cases:
(1) x /∈ V2 (2) x ∈ V2 and x ∈ W2. For (1) If x /∈ V2, we have: (i) If y /∈ V1,
x ∈ V1 − W1, then x ∈ V1 − (V2 ∪ W1) and y ∈ V2 − W2, so y ∈ V2 − (V1 ∪ W2) and
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V1−(V2∪W1)

)
∩
(
V2−(V1∪W2)

)
= φ. (ii) If y ∈ V1 and y ∈ W1, we have x ∈ U1−U2,

y ∈ U2 and
(
U1 − U2

)
∩ U2 = φ.

For (2) If y ∈ U2 = V2 −W2 , then x ∈ W2 and
(
V2 −W2

)
∩W2 = φ. From (1) and (2),

X is coc-D2-space .

The following theorem gives improvement of Theorem 7(iv).

Theorem 8. A space (X, τ) is coc-D1-space if and only if X is coc-T0-space and intcoc(Ax) 6=
X for all x ∈ Ax ⊆ X.

Proof. (⇒) For x ∈ X, there exists a coc-D-set Ox = U − V with U, V ∈ τk and
x ∈ Ox, but U 6= X, so intcoc(U) 6= X, hence the result.
(⇐) For x 6= y ∈ X, with out loss of generality there exists a coc-open set U contains x
but not y and there exists coc-open set V contains y and intcoc(V ) 6= X, hence y ∈ V −U ,
therefore X is coc-D1-space.

3. Coc-R0 and Coc-R1-spaces

Definition 9. A space (X, τ) is called co-compact-R0-space (coc-R0-space) if every coc-
open set contains the coc-closure of its singletons, i.e. for each coc-open set O we have
{x}coc ⊆ O for all x ∈ O.

Definition 10. A space (X, τ) is called co-compact-R1-space (coc-R1-space) if for x 6=
y ∈ X with {x}coc 6= {y}coc, then there exist disjoint coc-open sets U, V with {x}coc ⊆ U ,
{y}coc ⊆ V .

The following theorem is obvious.

Theorem 9. Let (X, τ) be a topological space. Then:

(i) A coc-closed subspace of a coc-R0-space X is coc-R0-space.

(ii) A coc-closed subspace of a coc-R1-space X is coc-R1-space.

Theorem 10. Every coc-R1-space (X, τ) is coc-R0-space.

Proof. Let U be a coc-open set in X with x ∈ U . For y /∈ U , we have x /∈ {y}coc, thus
{x}coc 6= {y}coc, but X is coc-R1-space, so there exits a coc-open set Vy contains y such
that {y}coc ⊆ Vy and x /∈ Vy, hence {x}coc ⊆ U , thus X is coc-R0-space.

Theorem 11. A space (X, τ) is coc-T1-space if and only if it is coc-T0-space and coc-R0-
space.

Proof. (⇒) Notes that {x} is coc-closed subset of X for all x ∈ X.
(⇐) Let x 6= y ∈ X, with out loss of generality there exists a coc-open set O with
x ∈ O ⊆ X − {y}. Thus x /∈ {y}coc, so y /∈ {x}coc, hence X − {x}coc is coc-open set
contains y but not x.
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Corollary 1. Let (X, τ) be a coc-R0-space. Then the following are equivalent:

(i) X is coc-T2-space,

(ii) X is coc-T1-space,

(iii) X is coc-T0-space.

Definition 11. Let (X, τ) be a topological space and A ⊆ X. Then the coc-Kernal of A
define by:

coc-ker(A) = ∩{U ∈ τk : A ⊆ U},

if there no coc-open set contains A, then coc-ker(A) = X.

Lemma 2. If (X, τ) is a topological space and A is a subset of X, then coc-ker(A) =
{x ∈ X : {x}coc ∩A 6= φ}.

Proof. For x /∈ coc-ker(A), there exists a coc-open set U contains A and x /∈ U , then
{x}coc ∩ U = φ. For {x}coc ∩ U = φ, we have x /∈ X − {x}coc , thus x /∈ coc-ker(A).

Lemma 3. Let (X, τ) be a topological space and x ∈ X. Then y ∈ coc-ker({x}) if and
only if x ∈ {y}coc.

Theorem 12. Let (X, τ) be a topological space and x 6= y ∈ X. Then coc-ker({x}) 6=
coc-ker({y}) if and only if {x}coc 6= {y}coc.

Proof. (⇒) Let w ∈ coc-ker({x}) and w /∈ coc-ker({y}). Then {w}coc ∩ {x} 6= φ and
{w}coc ∩ {y} = φ, so x ∈ {w}coc, and hence {x}coc ⊆ {w}coc, therefore {w}coc ∩ {y} = φ
and hence y /∈ {x}coc.
(⇐) Since coc-ker({x}) 6= coc-ker({y}), there is z ∈ {x}coc and z /∈ {y}coc, hence there
exists a coc-open set Uz with x ∈ Uz and y /∈ Uz, so y /∈ coc-ker({x}).

Theorem 13. A space (X, τ) is coc-R0-space if and only if for x 6= y ∈ X, {x}coc 6= {y}coc

gives {x}coc ∩ {y}coc = φ.

Proof. (⇐) Let x ∈ Ox ∈ τk and assume that y /∈ Ox. Then x /∈ {y}coc, hence
{x}coc 6= {y}coc, so {x}coc ∩ {y}coc = φ, therefore y /∈ {x}coc and {x}coc ⊆ Ox, so X is
coc-R0-space.

(⇒) Let x 6= y ∈ X with {x}coc 6= {y}coc. So there exists z ∈ {x}coc and z /∈ {y}coc,
then z ∈ X−{y}coc, so there exists a coc-open set U contains z but not y, but z ∈ {x}coc,
so x ∈ U and x /∈ {y}coc, hence {x}coc ⊆ X − {y}coc, therefore {x}coc ∩ {y}coc = φ.

Theorem 14. A space (X, τ) is coc-R0-space if and only if for x 6= y ∈ X, coc-ker({x}) 6=
coc-ker({y}) gives coc-ker({x}) ∩ coc-ker({y}) = φ.
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Proof. (⇒) Let X be a coc-R0-space and for x 6= y ∈ X with coc-ker({x}) 6=
coc-ker({y}). Let w ∈ coc-ker({x})∩coc-ker({y}). Then w ∈ coc-ker({x}) so x ∈ {w}coc,
and then by Lemma 3 {x}coc = {w}coc, in same method we have {y}coc = {w}coc, and this
is a contradiction which completes the proof.

(⇐) Assume {x}coc 6= {y}coc, then coc-ker({x}) 6= coc-ker({y}), so coc-ker({x}) ∩
coc-ker({y}) = φ. If z ∈ {x}coc, then x ∈ coc-ker({z}) and coc-ker({x})∩ coc-ker({z}) =
φ, so coc-ker({x}) = coc-ker({z}). Now for z ∈ {x}coc ∩ {y}coc , we have coc-ker({x}) =
coc-ker({y}) = coc-ker({z}), and this is a contradiction, hence {x}coc ∩ {y}coc = φ.

Theorem 15. For a topological space (X, τ). The following are equivalent:

(i) X is a coc-R0-space,

(ii) For a subset A of X and G coc-open set of X such that A ∩ G 6= φ, there exists a
coc-closed subset F of X such that A ∩ F 6= φ and F ⊆ G,

(iii) For any coc-open set G of X, G = ∪{F : F is coc-closed subset with F ⊆ G},

(iv) For any coc-closed subset F of X, F = coc-ker(F ),

(v) For any x ∈ X, {x}coc ⊆ coc-ker({x}).

Proof. (iii) ⇒ (iv), (v) ⇒ (i) Obvious.
(i) ⇒ (ii) Let A ⊆ X and G is a coc-open set and let x ∈ A ∩ G. Then the needed
coc-closed subset F is {x}coc.
(ii) ⇒ (iii) For a coc-open set G ⊇ ∪{F : F is a coc-closed with F ⊆ G}, let x ∈ G,
then there exists a coc-closed set F such that x ∈ F and F ⊆ G, so x ∈ F ⊆ ∪{F :
F is a coc-closed, F ⊆ G}, hence the result.
(iv) ⇒ (v) Let x ∈ X and y /∈ coc-ker({x}), there exists a coc-open set Ux contains x
with y /∈ U , so {y}coc ∩ U = φ and hence coc-ker

(
{y}coc

)
∩ U = φ, therefore there exists

a coc-open set Oy such that x /∈ Oy and {y}coc ⊆ Oy, so {x}coc ∩Oy = φ and y /∈ {x}coc,
hence the result.

Lemma 4. A topological space (X, τ) is coc-R0-space if and only if for each x 6= y ∈ X
with x ∈ {y}coc gives y ∈ {x}coc

Proof. (⇒) Let X be a coc-R0-space and x ∈ {y}coc. If U is any coc-open set with
y ∈ U , then x ∈ U and any coc-open set contains y must contains x, hence y ∈ {x}coc.

(⇐) Let U be a coc-open set with x ∈ U . For x ∈ {y}coc, we have y ∈ {x}coc, therefore
{x}coc ⊆ U , hence X is coc-R0-space.

Theorem 16. For a topological space (X, τ). The following are equivalent:

(i) X is a coc-R0-space,

(ii) If F is a coc-closed subset of X with x ∈ F , then coc-ker({x}) ⊆ F ,
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(iii) If x ∈ X, then coc-ker({x}) ⊆ {x}coc.

Proof. (ii) ⇒ (iii) Obvious .
(i) ⇒ (ii) Let F be a coc-closed and x ∈ F . So coc-ker({x}) ⊆ coc-ker(F ), then by
Theorem 15 we have coc-ker({x}) ⊆ F .
(iii) ⇒ (i) Let x ∈ {y}coc. So y ∈ coc-ker({x}), therefore by (iii) y ∈ {x}coc, and the
result comes from Lemma 4.

Corollary 2. A topological space (X, τ) is coc-R0-space if and only if coc-ker({x}) =
{x}coc for all x ∈ X.

4. Coc-T 1
2
-space, Coc-T 3

8
-space and Coc-T 1

4
-space

In this section we define more weak separation axioms in coc-open set, but before this
we need some definitions and lemmas.

Definition 12. Let A be a subset of a topological space (X, τ). Then A is called coc-g-
closed if {A}coc ⊆ U , whenever A ⊆ U and U is coc-open set. A is called coc-g-open if
X −A is coc-g-closed.

Clearly, A is a coc-g-closed of (X, τ) if F ⊆ intcoc(A), whenever F ⊆ A and F is
coc-closed set of X.

Definition 13. Let A be a subset of a topological space (X, τ). Then coc-A∨ = ∪{F :
X − F ∈ τk : F ⊆ A}, if there is no coc-closed set contains in A, then coc-A∨ = φ.

Lemma 5. Let A be a subset of a topological space (X, τ). Then A is coc-g-closed (coc-
g-open) if and only if {A}coc ⊆ coc-ker(A) (coc-A∨ ⊆ intcoc(A)).

Definition 14. Let A be a subset of a topological space (X, τ) . Then A is called coc-∧-
set (coc-∨-set) if A = coc-ker(A)(A = coc-A∨), or equivalently, A is the intersection of
coc-open sets or A = X(A is the union of coc-closed sets or A = φ).

Lemma 6. Let A,B are subsets of a topological space (X, τ). Then :

(i) coc-ker{φ} = φ, coc-φ∨ = φ, coc-ker{X} = X, coc-X∨ = X.

(ii) A ⊆ coc-ker(A), coc-A∨ ⊆ A.

(iii) coc-ker(coc-ker(A))=coc-ker(A), coc-
(
coc-A∨)∨ = coc-A∨.

(iv) If A ⊆ B, then coc-ker(A) ⊆ coc-ker(B).

(v) If A ⊆ B, then coc-A∨ ⊆ coc-B∨.

Lemma 7. Let (X, τ) be a topological space. Then the following are hold :

(i) If A is coc-∧-set (coc-A∨-set), then A is coc-g-closed (coc-g-open) if and only if A
is coc-closed (coc-open).
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(ii) For A ⊆ X, if coc-ker(A) is coc-g-closed set (coc-A∨ is coc-g-open set), then A is
coc-g-closed (coc-g-open).

Proof. (i) Obvious.
(ii) From Lemma 5 and Lemma 6.

The following definition gives a weaker form of coc-∧-set.

Definition 15. A subset A of a space (X, τ) is called generalized coc-kernal set (g-coc-∧-
set) if coc-ker(A) ⊆ {A}coc, or equivalently coc-ker(A) ⊆ F , whenever A ⊆ F and F is
coc-closed. A subset A of a space (X, τ) is called generalized coc-∨-set (g-coc-∨-set) if
X −A is g-coc-∧-set, or equivalently intcoc(A) ⊆ coc−A∨.

Lemma 8. Let A be subset of a topological space (X, τ). If A is coc-∧-set (coc-A∨-set),
then it is g-coc−∧-set (g-coc-∨-set).

Theorem 17. Let (X, τ) be a topological space. Then for x ∈ X, {x} is either coc-open
or g-coc-∨-set.

Proof. Let x ∈ X and {x} is not coc-open subset of X. Hence X − {x} is not coc-
closed subset of X and {X − {x}}coc = X, so coc-ker (X−{x}) ⊆ {X − {x}}coc, therefore
X − {x} is g-coc-∧-set, i.e. {x} is g-coc-∨-set.

Definition 16. A topological space (X, τ) is called coc-T 1
2
-space if every coc-g-closed subset

of X is coc-closed.

Lemma 9. Let (X, τ) be a topological space and A ⊆ X. Then A is coc-g-closed subset if
and only if Acoc −A contains no coc-closed subset of X.

Proof. (⇐) Obvious.
(⇒) Let A be coc-g-closed and assume there exists a coc-closed subset F with A ⊆ X−F .
Since A is coc-g-closed set, we have A

coc ⊆ X − F , hence F ⊆ X − A
coc and this is a

contradiction which completes the proof.

Theorem 18. A topological space (X, τ) is coc-T 1
2
-space if and only if every singleton of

X is coc-open or coc-closed.

Proof. (⇒) Let x ∈ X and {x} is not coc-closed set. Hence X − {x} is not coc-open,
therefore X is the only coc-open set with X − {x} ⊆ X, that is mean X − {x} is coc-g-
closed, so X − {x} is coc-closed, i.e. {x} is coc-open.
(⇐) Let x ∈ X and A is coc-g-closed subset of X with x ∈ A

coc. If {x} is a coc-open set,
then {x}∩A 6= φ and hence x ∈ A. If {x} is a coc-closed, then by Lemma 9, x /∈ A

coc−A,
hence x ∈ A and A = A

coc, therefore X is coc-T 1
2
-space.

Corollary 3. Every coc-T1-space is coc-T 1
2
-space .

Theorem 19. For a topological space (X, τ). The following are equivalent:
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(i) X is coc-T 1
2
-space,

(ii) Every g-coc-∧- set is coc-∧-set,

(iii) Every g-coc-∨-set is coc-∨-set.

Proof.
(iii) ⇒ (ii) Obvious.

(ii) ⇒ (i) Let x ∈ X. If {x} is not coc-open, then X − {x} is not coc-closed, so the only
coc-open set contains X − {x} is X, but X − {x} is g-coc-∧-set, so X − {x} is coc-∧-set,
therefore X − {x} is coc-open, hence {x} is coc-closed set, that’s complete the proof.

(i) ⇒ (ii) Assume that a subset A of X is g-coc-∧-set which is not coc-∧-set, then
coc-ker(A) * A, so there exists x ∈ coc-ker(A) and x /∈ A, but X is a coc-T 1

2
-space, so

{x} is a coc-open or coc-closed set, we need to discuss the following two cases:
(1) If {x} is a coc-closed, then X−{x} is a coc-open set contains A, but x ∈ coc−ker(A),
so x ∈ X − {x} and this is a contradiction. (2) If {x} is coc-open set, then X − {x} is a
coc-open set contains A, by assumption coc-ker (A) ⊆ X − {x}, i.e. x /∈coc-ker(A) and
this is a contradiction, hence A is coc-∧-set.

Definition 17. A subset A of a topological space (X, τ) is called coc-λ-closed if A = L∩F,
where L is coc-∧-set and F is coc-closed set. A subset A is coc-λ-open if X −A is coc-λ-
closed.

Lemma 10. For a subset A of (X, τ). The following are equivalent :

(i) A is coc-λ-closed,

(ii) A = L ∩A
coc, where L is coc-∧-set,

(iii) A=coc-ker(A) ∩A
coc.

Theorem 20. A topological space (X, τ) is coc-T 1
2
-space if and only if every subset of X

is coc-λ-closed.

Proof. (⇐) Let x ∈ X. Assume that {x} is not coc-open, then A = X − {x} is not
coc-closed, but A is coc-λ-closed, so A is coc-∧-set, thus A is coc-open set, then A is
coc-open, that is {x} is coc-closed, which is complete the proof.
(⇒) Let A ⊆ X and x ∈ X − A. Then {x} is coc-open or coc-closed subset of X.
Define B = {x ∈ X − A, {x} ∈ τk}, C = {x ∈ X − A,X − {x} ∈ τk}. Also define
F =

⋂
x∈B

(
X − {x}

)
= X − B, and L =

⋂
x∈C

(
X − {x}

)
= X − C, then F is coc-closed

set and L is coc-∧-set with L ∩ F = A, hence A is coc-λ-set.

Definition 18. A topological space (X, τ) is called coc-T 1
4
-space if every finite subset F

of X and every y ∈ X −F , there exists a set Ay with F ⊆ Ay such that {y} ∩Ay = φ and
Ay is either coc-open or coc-closed.
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Theorem 21. A topological space (X, τ) is coc-T 1
4
-space if and only if every finite subset

of X is coc-λ-closed.

Proof. (⇒) Let F be any finite subset of X and y ∈ X−F . So there exist a set Ay such
that Ay∩{x} = φ, and Ay is either coc-open or coc-closed. Let C be the intersection of all
coc-open sets Ay and let L be the intersection of all coc-closed sets Ay, clearly F = C ∩L,
C is coc-∧-set and L is coc-closed set, hence F is coc-λ-closed set.
(⇐) Let F = L ∩ C and y ∈ X − F where C is coc-∧-set and L coc-closed set. If y /∈ C,
we are done. If y ∈ C, then y /∈ L, so there exists a coc-open set Uy with y ∈ Uy, hence
X is coc-T 1

4
-space.

Definition 19. A topological space (X, τ) is called coc-T 3
8
-space if every countable subset

F of X and every y ∈ X − F , there exists a set Ay with F ⊆ Ay such that {y} ∩ Ay = φ
and Ay is coc-open or coc-closed.

Clearly every coc-T 1
2
-space is coc-T 3

8
-space and hence coc-T 1

4
-space.

Theorem 22. A topological space (X, τ) is coc-T 3
8
-space if and only if every countable

subset of X is coc-λ-closed.

Proof. Same as Theorem 21.

In the end of this section, we give weak forms of coc-D1-space and coc-R0-space.

Definition 20. A topological space (X, τ) is called weak coc-D1-space if
⋂
x∈X

{x}coc = φ.

Theorem 23. A coc-closed subspace of weak coc-D1-space (X, τ) is weak coc-D1-space.

Theorem 24. A topological space (X, τ) is weak coc-D1-space if and only if intcoc(Ax) 6= X
for all x ∈ Ax ⊆ X.

Proof. (⇒) Assume that there exists y ∈ X with intcoc({Ay}) = X, then y ∈ {x}coc

for each x ∈ X, this is a contradiction, hence the result.
(⇐) Let y ∈

⋂
x∈X

{x}coc, then the coc-open set contains y must be X, so intcoc({Ay}) = X,

this is a contradiction, hence the result.

Corollary 4. A topological space (X, τ) is coc-D1-space if and only if (X, τ) is coc-T0-space
and weak coc-D1-space.

Theorem 25. A topological space (X, τ) is weak coc-D1-space if and only if coc-ker({x}) 6=
X for all x ∈ X.

Proof. (⇒) Obvious.
(⇐) From Theorem 24.
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Definition 21. A topological space (X, τ) is called weak coc-R0-space if every coc-λ-closed
singleton is a coc-∧-set.

Theorem 26. Every coc-R0-space (X, τ) is weak coc-R0-space.

Proof. Let x ∈ X with {x} is coc−λ−closed. By Lemma 10 {x} = coc-ker({x}) ∩
{x}coc. If {x} is not coc-ker-set, then there exists y ∈ coc−ker({x})−{x} with y /∈ {x}coc,
but X is coc-R0-space, so {x}coc ∩ {y}coc = φ and x ∈ {y}coc, therefore there exists a coc-
open set Ux contains x but not y, thus y /∈ coc − ker({x}), and this is a contradiction
which completes the proof.

The following theorems are easily to prove.

Theorem 27. For a topological space (X, τ). The following are equivalent:

(i) X is coc-T1-space,

(ii) Every subset of X is coc-∧-set,

(iii) Every singleton of X is coc-∧-set.

Theorem 28. For a topological space (X, τ). The following are equivalent:

(i) X is coc-T1-space,

(ii) X is coc-T0-space and coc-R0-space,

(iii) X is coc-T0-space and weak coc-R0-space.

Corollary 5. For a weak coc-R0-space (X, τ). The following are equivalent:

(i) X is coc-T0-space,

(ii) X is coc-T 1
4
-space,

(iii) X is coc-T 3
8
-space,

(iv) X is coc-T 1
2
-space,

(v) X is coc-T1-space.

5. Hereditary Property for Weak Coc-compact Separation Axioms

In this section, we discuss the known problem that appeared by Arenas [6] “If every
subspace of a topological space X has a property, then the space X has this property” in
weak separation axioms via coc-open sets.

Theorem 29. If every proper subspace of a topological space (X, τ) is coc-T 1
2
-space, then

X is coc-T 1
2
-space with |X| ≥ 4.
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Proof. Let x ∈ X and let z1 6= z2 6= z3 ∈ X − {x} and Zi = X − {zi} for i = 1, 2, 3.
So {x} is either coc-open or coc-closed in Zi, therefore either {x} is coc-open in at least
two of Z1, Z2, Z3, and hence {x} is coc-open in X, or {x} is coc-closed in at least two of
Z1, Z2, Z3, and hence {x} is coc-closed in X, hence the result.

Theorem 30. Let (X, τ) be infinite topological space. If every proper subspace of a
topological space X is coc-T 1

4
-space, then X is coc-T 1

4
-space.

Proof. Let F be a finite set and y /∈ F and let z ∈ X −
(
F ∪ {y}

)
. So there exists a

set A contains F and y /∈ A which is either coc-open or coc-closed in X − {z}, therefore
there exists a set B which is either coc-open or coc-closed in X with A = B ∩ (X − {x}),
hence X is coc-T 1

4
-space.

Theorem 31. Let (X, τ) be infinite topological space. If every proper subspace of a
topological space X is coc-T 3

8
-space, then X is coc-T 3

8
-space.

Proof. Same as Theorem 30.

Theorem 32. If every proper subspace of a topological space (X, τ) is coc-R0-space, then
X is coc-R0-space with |X| ≥ 3.

Proof. Assume that all proper subspaces of X are coc-R0-space. Let U be coc-open
subset of X. If X = U we are done, so we may assume X 6= U . Let x /∈ U and p ∈ U with
y ∈ X − {p, x}. So we have the following cases :
(1) If y ∈ U , so X − {y} is coc-R0-space, so by Theorem 15 (iii) there is a coc-closed set
Gy in X − {y} such that p ∈ Gy ⊆ U − {y} and also there exists a coc-closed set G in X
such that Gy = G ∩ (X − {y}), then p ∈ G ⊆ Gy ∪ {y} ⊆ (U − {y}) ∪ {y} = U , hence X
is coc-R0-space.
(2) If y /∈ U , then X − {x} and X − {y} are proper subspaces of X, so there exist coc-
closed subsets Gx, Gy in X − {x} and X − {y}, respectively such that p ∈ Gx ⊆ U and
p ∈ Gy ⊆ U , also there exist coc-closed sets G1, G2 in X such that Gx = G1 ∩ (X − {x})
and Gy = G2 ∩ (X − {y}). Define G = G1 ∩G2, so p ∈ G ⊆ (Gx ∪ {x})∩ (Gy ∪ {y}) ⊆ U ,
hence X is coc-R0-space.

Theorem 33. If every proper subspace of a topological space (X, τ) is coc-T1-space, then
X is coc-T1-space with |X| ≥ 3.

Proof. Suppose that X is not a coc-T1-space, so there exists x ∈ X such that {x}
is not coc-closed in X. Let z ∈ X − {x}. Then X − {z} is a coc-T1-space, so {x} is
coc-closed is X −{z} and {x}coc = {x, z}. Now let y ∈ X −{x, z} and B = X −{y}, then
{x}coc(B)

= {x, z} that means {x} is not coc-closed in B which is a contradiction, hence
X is coc-T1-space .

The following theorem can be proved as the previous one.

Theorem 34. If every proper subspace of a topological space (X, τ) is coc-T2-space, then
X is coc-T2-space with |X| ≥ 3.
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