EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 15, No. 2, 2022, 478-485 ISSN 1307-5543 – ejpam.com Published by New York Business Global

e^* -Essential Small Submodules and e^* -Hollow Modules

Hiba R. Baanoon^{1,2,*}, Wasan Khalid²

- ¹ Mathematics Department, College of Education, University of Misan, Iraq
- ² Mathematics Department, College of Science, University of Baghdad, Iraq

Abstract. The purpose of this paper is to introduce the concepts of e^* -small essential submodules, e^* -radical submodules, and e^* -hollow modules as a generalizations of the concepts of small submodules, radical submodules, and hollow modules, respectively. We will prove some properties of these concepts.

2020 Mathematics Subject Classifications: 16D10, 16D90, 16D99, 16s90

Key Words and Phrases: e^* -Small essential submodule, Small submodule, e^* -Radical submodule, e^* -Hollow module, Hollow module

1. Introduction

Let R be a ring with identity, M is a right R-module and E(M) the injective hull of M. A submodule N of M is called a small submodule of M denoted $(N \ll M)$ if for any submodule A of M such that M = N + A, we have A = M [6] Recall that a submodule A of R-module B is called essential in B if every nonzero submodule of B has nonzero intersection with A [6], [4] and [5].

Oscan in [2] introduced the concept of cosingular submodule as follows: $Z^*(M) = \{m \in M | mR \ll E(M)\}$. An R-module M is called cosingular if $Z^*(M) = M$. Baanoon and Khaild in [1] introduced a type of submodule which called e^* -essential as follows. A submodule A of M is said to be e^* -essential in M if $A \cap B \neq 0$ for each nonzero cosingular submodule B of M. Denoted by $A \leq_{e^*} M$.

As in [7], we will used e^* -essential submodule that appeared in [1], to present a new generalization of a small submodule namely e^* -essential small submodule. e^* -essential small submodules leads us to introduce e^* -hollow module as a generalization of hollow modules. In this paper main properties of these concepts are proved.

DOI: https://doi.org/10.29020/nybg.ejpam.v15i2.4301

Email addresses: hibabaanoon@uomisan.edu.iq (H.R. Baanoon), wasan.hasan@sc.uobaghdad.edu.iq (W. Khalid)

478

^{*}Corresponding author.

2. e^* -Essential Small Submodules

In this section, so one generalization of small submodules are introduced with some properties. Recall that a submodule A of M is said to be e^* -essential denoted by $A \leq_{e^*} M$ if $A \cap B \neq 0$ for each nonzero cosingular submodule B of M [1]. The following gives some properties of e^* -essential submodules.

Lemma 1. [1] Let M be an R-module.

- 1. If $A \leq B \leq M$, then $A \leq_{e^*} M$ if and only if $A \leq_{e^*} B \leq_{e^*} M$
- 2. Let $f: M \to M'$ be an R-homomorphism. If $A \leq_{e^*} M'$, then $f^{-1}(A) \leq_{e^*} M$.
- 3. If $A \leq_{e^*} B \leq M$ and $A' \leq_{e^*} B' \leq M$, then $A \cap A' \leq_{e^*} B \cap B'$.

Definition 1. Let M be an R-module, a submodule A of M is said to be e^* -essential small in M denoted by $A \ll_{e^*} M$, if whenever M = A + B (where B is an e^* -essential submodule of M) implies that M = B.

Examples and Remarks 1.

- 1. Every small submodule is e*-essential small submodule, but the converse need not to be true in general. For example, in \mathbb{Z}_6 as a \mathbb{Z} -module, the only e*-essential submodule is \mathbb{Z}_6 [1]. So, every submodule of \mathbb{Z}_6 is e*-essential small. while $\langle \overline{2} \rangle$ is not a small submodule since $\langle \overline{2} \rangle + \langle \overline{3} \rangle = \mathbb{Z}_6$ but $\langle \overline{3} \rangle \neq \mathbb{Z}_6$.
- 2. Consider \mathbb{Z}_4 as a \mathbb{Z} -module, the submodles \mathbb{Z}_4 and $\langle \overline{2} \rangle$ are cosingular[2] and e^* -essential, hence $\langle \overline{2} \rangle$ is an e^* -essential small submodule.
- 3. Consider \mathbb{Z}_6 as a \mathbb{Z}_6 -module. In this module every submodule is e^* -essential [1], so $\langle \overline{2} \rangle + \langle \overline{3} \rangle = \mathbb{Z}_6$ but $\langle \overline{3} \rangle \neq \mathbb{Z}_6$. Therefore, $\langle \overline{2} \rangle$ is not e^* -essential submodule. Thus, e^* -essential submodule need not to be e^* -essential small.
- 4. Let M be an R-module, then:
 - The trivial submodule is always e*-essential small in M.
 - $M \ll_{e^*} M$ if and only if M is a simple module.

In the following, we introduce the basic properties of e^* -essential small submodules.

Proposition 1. Let M be an R-module, N a submodule of M and K a submodule of N.

- 1. If $N \ll_{e^*} M$, then $K \ll_{e^*} M$ and $\frac{N}{K} \ll_{e^*} \frac{M}{K}$.
- 2. If $K \ll_{e^*} N$, then $K \ll_{e^*} M$.

Proof.

- 1. Let L be an e^* -essential submodule of M such that K + L = M. Since $K \leq N$ and $N \ll_{e^*} M$, L = M. Thus $K \ll_{e^*} M$.

 Now, to prove that $\frac{N}{K} \ll_{e^*} \frac{M}{K}$, let $\frac{M}{K} = \frac{A}{K} + \frac{N}{K}$ where $\frac{A}{K}$ is an e^* -essential submodule of $\frac{M}{K}$, hence A is e^* -essential submodule of M by lemma 1, and M = A + N, since $N \ll_{e^*} M$. Thus, M = A implies that $\frac{A}{K} = \frac{M}{K}$. Therefore, $\frac{N}{K} \ll_{e^*} \frac{M}{K}$.
- 2. Let L be an e*-essential submodule of M such that K+L=M. Hence, $L\cap N \leq_{e^*} N$ by lemma 1, and $K+(L\cap N)=N\cap (K+L)=N$, since $K\ll_{e^*} N$. Thus, $L\cap N=N$, $N\leq L$. So $K\leq L$. Hence, L=K+L=M. Therefore, $K\ll_{e^*} M$.

Proposition 2. Let M be an R-module, K and N submodules of M such that $K \leq N$. If $K \ll_{e^*} M$ and N is a direct summand e^* -essential submodule of M, then $K \ll_{e^*} N$.

Proof. Let L be an e^* -essential submodule of N such that K + L = N. Since N is a direct summand of M, there exists a submodule N' of M such that $M = N \oplus N'$ and $M = (K + L) \oplus N' = K + (L + N')$. Since $L \leq_{e^*} N \leq_{e^*} M$, by lemma 1, this implies that $L \leq_{e^*} M$ and since $L \leq L + N' \leq M$ also by the same lemma, this implies that $L + N' \log_{e^*} M$. $K \ll_{e^*} N$ implies that L + N' = M. Now, for any $n \in N$, there exists $l \in L$ and $n' \in N'$ such that n = l + n', so $n - l = n' \in N \cap N' = 0$, hence n = l and $N \leq L$. Therefore, N = L and $K \ll_{e^*} N$

The following proposition shows that, the homorphic image of an e^* -essential small submodule is e^* -essential small submodule.

Proposition 3. If $K \ll_{e^*} M$ and $f: M \to N$ is an R-homomorphism, then $f(K) \ll_{e^*} N$. Proof. Let L be an e^* -essential submodule of N such that f(K) + L = N. hence $f^{-1}(L)$ is e^* -essential in M by lemma 1. Let $m \in M$, hence $f(m) \in N = f(K) + L$, so there exist $k \in K$ and $l \in L$ such that f(m) = f(k) + l. Thus, l = f(m - k) so, $m - k \in f^{-1}(L)$ and $m = m - k + k \in K + f^{-1}(L)$. Hence, $K + f^{-1}(L) = M$ since $K \ll_{e^*} M$. Thus $f^{-1}(L) = M$ and $f(M) = f(f^{-1}(L)) = f(L) \cap L$, hence $f(M) \subseteq L$ i.e. $f(K) \subseteq L$. Therefore, L = f(K) + L = N and $f(K) \ll_{e^*} N$.

The sum of e^* -essential small submodules is e^* -essential small submodule as the following proposition shows.

Proposition 4. Let N and L be submodules of an R-module M. Then $N + L \ll_{e^*} M$ if and only if $N \ll_{e^*} M$ and $L \ll_{e^*} M$.

Proof. \Rightarrow) Let K be e^* -essential in M such that K+N=M. So, K+N+L=M. By assumption, K=M and $N \ll_{e^*} M$. Similarly for $L \ll_{e^*} M$.

 \Leftarrow) Let A be e^* -essential in M such that N+L+A=M, M=N+(L+A)=M, since $A \leq A+L \leq M$ and $A \leq_{e^*} M$ by lemma 1, this implies that L+A=M. Now, $N \ll_{e^*} M$ implies that L+A+M and $L \ll_{e^*} M$ implies that A=M. Therefore, $N+L \ll_{e^*} M$.

The following corollary follows from Proposition 3 and Proposition 4.

Corollary 1. Let $M = M_1 \oplus M_2$ and K_i a submodule of M_i , i = 1, 2. Then $K_i \ll_{e^*} M_i$, i = 1, 2 if and only if $K_1 \oplus K_2 \ll_{e^*} M_1 \oplus M_2$.

3. e^* - Radical Submodule

Recall that for an R-module M, if M has maximal submodule, then the radical of M is the intersection of all maximal submodules of M dented by Rad(M) [6]. We generalize this concept as the following:

Definition 2. Let M be R-module. Then the intersection of all e^* -essential maximal submodule of M is called e^* -radical submodule denoted by Rad(M).

If M has no e*-essential maximal submodule, then $Rad(M) = \stackrel{e}{M}$.

The following proposition gives the relationship between e^* -essential small submodules and e^* -essential maximal submodules.

Proposition 5. Let M be an R-module and $m \in M$, then $\langle m \rangle$ is not e^* -essential small if and only if there exists an e^* -essential maximal submodule N of M with $m \notin N$.

 $Proof. \Rightarrow$) Consider the set

 $\Gamma = \{B|B \text{ is a proper } e^*\text{-essential submodule of } M \text{ and } \langle m \rangle + B = M\}. \text{ Since } \langle m \rangle \text{ is not } e^*\text{-essential small, there exists } B' \leq_{e^*} M \text{ such that } \langle m \rangle + B' = M \text{ and } B' \neq M, \text{ hence } \Gamma \neq \phi. \text{ Let } \{C_\alpha\}_{\alpha \in \lambda} \text{ be a chain in } \Gamma, \text{ hence } \cup_{\alpha \in \lambda} C_\alpha \text{ is a proper submodule and since } C_\alpha \leq \cup_{\alpha \in \lambda} C_\alpha \leq M \text{ for each } \alpha \in \lambda \text{ with } C_\alpha \leq_{e^*} M, \text{ then } \cup_{\alpha \in \lambda} C_\alpha \leq_{e^*} M \text{ with } \langle m \rangle + \cup_{\alpha \in \lambda} C_\alpha = M. \text{ So, by Zorn's lemma, } \Gamma \text{ has a maximal element say } B_0. \text{ We claim that } B_0 \text{ is maximal in } M. \text{ Otherwise if } B_0 \not\subseteq C \leqslant M, \text{ then } M = B_0 + \langle m \rangle \leq C + \langle m \rangle \leq M. \text{ Thus, } \langle m \rangle + C = M \text{ and since } B_0 \leqslant_{e^*} M, \text{ hence } C \leqslant_{e^*} M. \text{ Now, if } C \neq M, \text{ hence } C \in \Gamma \text{ which is a contradiction. Thus, } C = M. \text{ So } B_0 \leqslant_{e^*} M \text{ which is maximal in } M. \text{ Now, if } m \in B_0, \text{ then } \langle m \rangle \subseteq B_0 \text{ and since } \langle m \rangle + B_0 = M, \text{ we have } B_0 = M \text{ which is a contradiction. So, } m \notin B_0 \text{ i.e. there exists an } e^*\text{-essential maximal submodule of } M \text{ that does not contain } m.}$

 \Leftarrow) To show that $\langle x \rangle$ is not e^* -essential small in M. If not, then as $x \notin N$ and N is as maximal submodule we have $\langle x \rangle + N = M$. Now, $\langle x \rangle \ll_{e^*} M$ and $N \leq_{e^*} M$ implies that N = M which is a contraindication. Therefore, $\langle x \rangle$ is not e^* -essential small submodule of M.

Examples and Remarks 2.

- 1. Let M be an R-module, then $Rad(M) \leq Rad(M)$. But the converse need not to be true in general. For example: Consider \mathbb{Z}_6 as a \mathbb{Z} -module, $Rad(\mathbb{Z}_6) = \{\overline{0}\}$. When $Rad(\mathbb{Z}_6) = \mathbb{Z}_6$, since the maximal submodules of \mathbb{Z}_6 are $\langle \overline{2} \rangle$ and $\langle \overline{3} \rangle$ while the only e^* -essntial submodule is \mathbb{Z}_6 [1].
- 2. In \mathbb{Z}_4 as a \mathbb{Z} -module $Rad(\mathbb{Z}_4) = \{\overline{0}, \overline{2}\}$. Since all submodules of \mathbb{Z}_4 are: $\{\overline{0}\}, \{\overline{0}, \overline{2}\}$ and \mathbb{Z}_4 . Hence, the e^* -essential submodule of \mathbb{Z}_4 are: $\{\overline{0}, \overline{2}\}$ and \mathbb{Z}_4 . Thus, the only e^* -essential maximal submodule is $\{\overline{0}, \overline{2}\}$.

Theorem 1. Let M be an R-module, then $Rad(M) = \sum\limits_{N \ll_{e^*} M} N$. Proof. Let $m \notin Rad(M)$ then there exists an e^* -essential maximal N of M such that $m \notin N$. Hence by proposition 5, we have that $\langle m \rangle$ is not e^* -essential small. Thus, $m \notin \sum \{N | N \ll_{e^*} M\}$. Therefore, $\sum \{N | N \ll_{e^*} M\} \subseteq Rad(M)$.

Now, let $x \in Rad(M)$ and $x \notin \sum \{N|N \ll_{e^*} M\}$. Hence, $\stackrel{e^*}{\langle x \rangle}$ is not e^* -essential small and by proposition 5, there exists an e*-essential maximal submodule K of M such that $x \notin K$ but $Rad(M) \leq K$ which is a contradiction. Thus, $x \in \sum \{N | N \ll_{e^*} M\}$ and $Rad(M) \le \sum_{e^*} \{N | N \ll_{e^*} M\}.$ Therefore, $Rad(M) = \sum_{e^*} \{N | N \ll_{e^*} M\}.$

Proposition 6. If $f: M \to M'$ is an R-homomorphism, then $f(Rad(M)) \leq Rad(M')$. In particular, Rad(M) is a fully invariant submodule of M.

Proof. By Theorem 1, $Rad(M) = \sum_{K \ll_{e^*} M} K$. Hence, $f(Rad(M)) = \sum_{K \ll_{e^*} M} f(K)$. By Proposition 3, Since $K \ll_{e^*} M$ then $f(K) \ll_{e^*} M'$. Thus, $\sum_{K \ll_{e^*} M} f(K) \leq Rad(M')$ and e^* $f(Rad(M)) \le Rad(M').$

Corollary 2. Let M be an R-module and N be a submodule of M, then:

1.
$$Rad(N) \leq Rad(M)$$

2.
$$\frac{Rad(M)}{N} \leq Rad(\frac{M}{N}).$$

4. e^* -Hollow Modules

Recall that a non-zero R-module M is called a hollow module if every proper submodule of M is small in M[3]. In this section we introduce e^* -hollow modules as a generalization of hollow modules and investigate some of their properties.

Definition 3. A non zero R-module M is called e*-hollow module if every proper submodule of M is e^* -essential small in M.

Examples and Remarks 3.

1. Every hollow module is e*-hollow module. But the converse need not to be true in general. For example: in \mathbb{Z}_6 as \mathbb{Z} -module every proper submodule is e^* -essential small, hence \mathbb{Z}_6 is e^* -hollow module, but it is not hollow, since $\langle 2 \rangle$ is not small submodule.

- 2. Consider \mathbb{Z}_6 as a \mathbb{Z}_6 -module. since $\langle \overline{2} \rangle$ is not an e^* -essential small submodule. Thus, \mathbb{Z}_6 is not e^* -hollow module.
- 3. The direct sum of two e*-hollow modules need not to be e*-hollow. For example: \mathbb{Z}_4 as a \mathbb{Z} -module is e*-hollow since $\langle \overline{2} \rangle$ and \mathbb{Z}_4 are the only e*-essntial submodules. So all the proper submodules are e*-essntial small. Also, \mathbb{Z}_3 as a \mathbb{Z} -module is e*-hollow since the only e*-essntial submodule is \mathbb{Z}_3 it self. But $\mathbb{Z}_4 \oplus \mathbb{Z}_3 \simeq \mathbb{Z}_{12}$ and \mathbb{Z}_{12} is not e*-hollow. since the only e*-essntial submodule of \mathbb{Z}_{12} are $\langle \overline{2} \rangle$ and \mathbb{Z}_{12} with $\langle \overline{3} \rangle + \langle \overline{2} \rangle = \mathbb{Z}_{12}$ but $\langle \overline{2} \rangle \neq \mathbb{Z}_{12}$.
- 4. Any R-module which has no proper e*-essential submodule is e*-hollow.

Proposition 7. The epimorphic image of an e^* -hollow module is e^* -hollow.

Proof. Let $f: M \to M'$ be an R-epimorphism, with M an e^* -hollow module. Let B be a proper submodule of M'. Hence $f^{-1}(B)$ is a proper submodule of M. since if not, $f^{-1}(B) = M$ implies that $ff^{-1}(B) = B = M'$ which is a contradiction. Since M is e^* -hollow then $f^{-1}(B)$ is e^* -essential small. By proposition 3, $ff^{-1}(B) = B$ is an e^* -essential small submodule. Therefore, M' is e^* -hollow.

Corollary 3. If M is an e^* -hollow module, then $\frac{M}{N}$ is e^* -hollow for any proper submodule N of M.

Remark 1. The converse of the above corollary need not to be true in general. For example: Consider \mathbb{Z}_{24} as a \mathbb{Z} -module which is not e^* -hollow. Since every submodule of \mathbb{Z}_{24} is cosingular then the only e^* -essntial submodule of \mathbb{Z}_{24} are $\langle \overline{0} \rangle, \langle \overline{2} \rangle, \langle \overline{4} \rangle$, and \mathbb{Z}_{24} . Since $\langle \overline{3} \rangle + \langle \overline{2} \rangle = \mathbb{Z}_{24}$ and $\langle \overline{2} \rangle \neq \mathbb{Z}_{24}$ we have that $\langle \overline{3} \rangle$ is not e^* -essential small. But $\frac{\mathbb{Z}_{24}}{\langle \overline{4} \rangle}$ is e^* -hollow module since $\frac{\mathbb{Z}_{24}}{\langle \overline{4} \rangle} \simeq \mathbb{Z}_4$.

The following proposition shows that under certain conditions the converse of corollary 3 is true. Recall that a submodule A of a module M is called e^* -closed if A has no proper e^* -essential extension inside M [1].

Lemma 2. [1] If $B \leq K$ are submodules of an R-module M such that B is e^* -closed in M and K is e^* -essential in M, then $\frac{K}{B} \leq_{e^*} \frac{M}{B}$.

Proposition 8. Let M be an R-module. If $\frac{M}{N}$ is e^* -hollow with N is a proper small e^* -closed submodule, then M is e^* -hollow.

Proof. Let L be a proper submodule of M and K an e^* -essential submodule of M such that L+K=M. Then $\frac{M}{N}=\frac{L+N}{N}+\frac{K+N}{N}$ implies that $M\neq L+N$. For if M=L+N with N a small submodule of M i.e. M=L which is a contradiction. Thus, $\frac{M}{N}\neq\frac{L+N}{N}$. Since, $N\leq_{e^*}M$ then by lemma 1, $N\leq_{ce^*}K+N\leq_{e^*}M$, and by lemma 2, $\frac{K+N}{N}\leq_{e^*}\frac{M}{N}$. Since $\frac{M}{N}$ is e^* -hollow, then $\frac{K+N}{N}=\frac{M}{N}$, and M=K+N because $N\ll M$. Therefore, K=M and M is e^* -hollow.

Proposition 9. Let M be an e^* -hollow module, if M has proper a e^* -essential submodule N and $\frac{M}{N}$ is finitely generated then M is finitely generated.

Proof. Since $\frac{M}{N}$ is finitely generated there are $x_1, x_2, ..., x_n \in M$ such that $\frac{M}{N} = \langle x_1 + N, x_2 + N, ..., x_n + N \rangle$. We claim that $M = \langle x_1, x_2, ..., x_n \rangle$. Let $m \in M$, hence $m + N \in \frac{M}{N}$ and $m + N = (x_1r_1 + x_2r_2 + ... + x_nr_n) + N$ for some $r_1, r_2, ..., r_n \in R$. So, $m - (x_1r_1 + x_2r_2 + ... + x_nr_n) \in N$. Let $n = m - (x_1r_1 + x_2r_2 + ... + x_nr_n)$ where $n \in N$, hence $m = (x_1r_1 + x_2r_2 + ... + x_nr_n) + n$. Thus, $M = \langle x_1, x_2, ..., x_n \rangle + N$. If $\langle x_1, x_2, ..., x_n \rangle \neq M$, then $\langle x_1, x_2, ..., x_n \rangle \ll_{e^*} M$, since $N \not \leq_{e^*} M$. Hence, M = N which is a contradiction. Therefore, $M = \langle x_1, x_2, ..., x_n \rangle$.

The following proposition is a characterizes e^* -hollow modules.

Proposition 10. An R-module M is e^* -hollow module if and only if every proper e^* -essential submodule of M is small in M.

 $Proof. \Rightarrow) Clear$

 \Leftarrow) Let A be a proper submodule of M and B an e^* -essential submodule of M such that A+B=M. If $B\neq M$ then B is a proper e^* -essential submodule of M and by assumption B is small. Hence A=M which is a contradiction. Thus, B=M and A is e^* -essential small in M. Therefore, M is e^* -hollow.

Definition 4. Let M be an R-module. A submodule A of M is called e^* -coclosed if whenever $B \leq A$, $\frac{A}{B} \ll_{e^*} \frac{M}{B}$, implies that A = B.

One may ask a question. Is any submodule of an e^* -hollow module e^* -hollow? The following proportion gives a partial answer.

Proposition 11. Let M be an e^* -hollow R-module.

- 1. An e*-essential direct summand of an e*-hollow module is e*-hollow.
- 2. An e*-coclosed submodule of an e*-hollow is e*-hollow.

Proof.

- 1. Let A be an e^* -essential direct summand of M and B a proper submodule of A with $L \leq_{e^*} A$ such that B + L = A. Since $L \leq_{e^*} A \leq_{e^*} M$, then by lemma 1, $L \leq_{e^*} M$. Also, since A is a direct summand of M, there is a submodule A' of M such that $A \oplus A' = M$. Thus, M = B + L + A' with $L + A' \leq_{e^*} M$ and hence B is a proper submodule of M. This implies that B is e^* -essential small in M. Hence, M = L + A' and $A = A \cap M = A \cap (L + A') = L + (A \cap A') = L$. Therefore, B is e^* -essential small in A and A is e^* -hollow.
- 2. Let A be a e*-coclosed submodule of M and B a proper submodule of A with C an e*-essential submodule of A such that B+C=A. Since M is e*-hollow then by corollary 3, $\frac{M}{C}$ is e*-hollow. Now, $\frac{A}{C}$ is a proper submodule of $\frac{M}{C}$ implies that $\frac{A}{C}$ is e*-essential small of $\frac{M}{C}$ since A is e*-coclosed. Thus A=C and B is e*-essential small of A. The case $\frac{A}{C}=\frac{M}{C}$, implies that A=M. Thus A is e*-hollow.

REFERENCES 485

Acknowledgements

The authors would like to thank the reviewers for their invaluable comments and suggestions that led to this improved version of the paper.

References

- [1] H. Baanoon and W. Khalid. e*-essential submodule. European Journal of Pure and Applied Mathematics, 15(1):224–228, 2022.
- [2] A Çiğdem Özcan. Modules with small cyclic submodules in their injective hulls. 2002.
- [3] Patrick Fleury. Hollow modules and local endomorphism rings. *Pacific Journal of Mathematics*, 53(2):379–385, 1974.
- [4] Kenneth Goodearl. Ring theory: Nonsingular rings and modules, volume 33. CRC Press, 1976.
- [5] Michiel Hazewinkel, Nadiya Gubareni, and Vladimir V Kirichenko. *Algebras, rings and modules*, volume 1. Springer Science & Business Media, 2004.
- [6] Friedrich Kasch. Modules and rings, volume 17. Academic press, 1982.
- [7] DX Zhou and XR Zhang. Small-essential submodules and morita duality. Southeast Asian Bulletin of Mathematics, 35(6), 2011.