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Origami wrapping with an equilateral triangular prism
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Abstract. We study a geometric model to find the relationship of the surface area of rectangular
packaging that encapsulates an equilateral triangular prism in a Thai traditional tall wrap pattern
and find the minimum area of a rectangular wrapping paper.
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1. Introduction

Traditional food packaging has been developed into a practical method to protect a
meal during both storage and transportation. Due to changes in technology and large
quantities of human consumption, containers from natural materials are considered non
practical resources in modern manufacturing [1, 5]. Instead of fading from history, local
wrapping knowledge is one of the most widely studied topics due to the beauty of its
complex design [4, 6, 7], the convenience of the user [3], the efficiency of folding techniques
[5], and the eco-friendly reason [2, 5]. Especially from a usage viewpoint, food packed in
the traditional pattern is tightly sealed compared to the quantity of the material used.
To analyze the relation between the amount of material and the size of the contained
goods, we begin with the Soongsung style, a Thai tall form banana leaf wrapping style
that is still currently utilized in Thai rural areas. This paper focuses, through geometric
investigations, on the folding pattern of this tall wrapping style, which always begins from
a banana leaf that is cut into a rectangular shape to cover Khanom Saisai, a coconut milk
custard that is steamed in the form of a triangular prism, as shown in Figure 1.

In this paper, an equilateral triangular prism is used to represent a triangular prism
carried in the package to serve the convenient purpose of deriving a proof. The aim is to
determine the optimal size of the wrapping rectangle that varies by the given size of the
equilateral triangular prism contained, as shown in Theorem 1 and Theorem 2.
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Figure 1: Khanom Saisai. Left figure: https://shorturl.at/elvyV Right figure: https://shorturl.at/gwAP7

2. Thai traditional tall wrapping pattern

Let A1A2A3A4 be a rectangular wrapping paper with |A1A4| > |A1A2|. Let B1B2B3B4B5B6

be an equilateral triangular prism such that each cross-section B1B2B6 and B3B4B5 is an
equilateral triangle; see Figure 2.

Figure 2: Size of a prism and a wrapping paper.

Let B′
1, B

′
2, B

′
3 and B′

4 be interior points of A1A2A3A4 such that B′
iB

′
j is parallel to

AiAj for every i, j, where AiAj is a perimeter of A1A2A3A4. In addition, the intersection
point of B′

1B
′
3 and B′

2B
′
4 and the intersection point of A1A3 and A2A4 coincide (see Figure

3).
We will define an origami pattern of A1A2A3A4 that encapsulates the prism B1B2B3B4B5B6

where the points Bi and B′
i coincide for any i = 1, 2, 3, 4.

Step 1: Construct B′
5, B

′
6, Ci and C ′

i. The paper is folded upon the equilateral triangle
face of a prism along B′

3B
′
4 and B′

1B
′
2. Let B′

5 and B′
6 be the points on the wrapping

paper where B′
5 and B5 coincide and where B′

6 and B6 coincide, see Figure 4.
Let k be the length of lateral edge B1B4,
l be the length of prism edge B1B6,
K be the length of paper edge A1A4,



A. Wongpradit, P. Khachorncharoenkul / Eur. J. Pure Appl. Math, 15 (2) (2022), 375-389 377

Figure 3: The positions that create the prism on the wrapping paper.

Figure 4: Step 1.

L be the length of paper edge A1A2,
s be the distance between the paper edge A1A2 and the point B′

6,
and t be the distance between the paper edge A1A4 and the lateral edge B1B4. For clarity,
see Figure 5.

Figure 5: variable positions.

From the symmetrical wrapping of an equilateral triangular prism, we obtain k =
|B1B4| = |B2B3| and l = |B1B2| = |B3B4| = |B1B6| = |B2B6| = |B3B5| = |B4B5|. From
the origami pattern, we obtain that s is equal to the distance between the paper edge
A3A4 and the point B′

5 and t is equal to the distance between the paper edge A2A3 and
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the lateral edge B2B3.
Let C1 be a point on the line B1B6, which is t units away from B1. Let C2 be on line

B2B6, t units away from B2. Points C3 and C4 follow a similar pattern. In addition, let
C ′
i be the point on the edge of paper A1A2A3A4, where we fold C ′

i onto Ci along lateral
edges for each i = 1, 2, 3, 4; see Figure 6.

Figure 6: Position of points Ci and C′
i.

Step 2: Construct C ′′
i . Fold the paper upon the prism along the lines B′

1B
′
4 and

B′
2B

′
3 such that each point C ′

i on paper and each point Ci on the lateral face of the prism
coincide, as shown in Figure 7.

Figure 7: Step 2.

Now, we consider both equilateral triangle faces. The paper is folded upon the prism
along the lines B′

1B
′
2 and B′

3B
′
4. Let C ′′

1 be the point on line B′
1B

′
6 that coincide with C ′′

1

and C ′
1. A similar assumption is made for points C ′′

2 , C
′′
3 , C

′′
4 ; see Figure 8.

Step 3: Construct Ei, E
′
i and Di. From Figure 8, let the point E1 be located on

the lateral face of the prism, on the line C1C4 at
√
3t units away from C1. A similar

assumption is made for points E2, E3, E4. Next, let E′
1 be the point on the edge of the

paper A1C ′
1 such that the distance between E′

1 and C ′
1 is

√
3t units. A similar assumption

is made for points E′
2, E

′
3, E

′
4; see Figure 9.

Next, from Figure 8, E′
i is folded to Ei so that B′

iC
′
i is creased, and we see that Ei

and E′
i coincide for any i = 1, 2, 3, 4, which indicates a completed folding. Moreover, the

intersection point of the paper edge and the lateral edge B5B6 is called point Di, where
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Figure 8: Position of point C′′
i .

Figure 9: Position of points Ei and E′
i.

Di corresponds to the point Ai for each i = 1, 2, 3, 4, as shown in Figure 10.

Figure 10: Completed folding.

By observing Figure 10, which shows a completed folding, we can see that the format
of the results obtained by wrapping according to the above procedure will differ depending
on the size of the inner prism and the size of the wrapper. Examples of results obtained
from wrapping different sizes are shown in Table 1.

For the next section, we will consider a wrapping pattern that does not contain a
gap between the inner prism and the wrapping paper and find the minimum area of a
rectangular wrapping paper, that is, find the value of K × L in terms of k and l.
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Table 1: Results obtained from wrapping different sizes.

Case K L k l Result

1 13.9 6.5
√
3(3.5) 3.5

2 13.95 7.5 7 3.5

3 21.12 10.5 10 3.5

4 21.06 8.5 7 3.5

5 15.6 10.5 3.5 3.5

6 22 6.5 10 3.5

7 16.06 10.5 10 3.5

8 21.24 10.5 10 3.5
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3. Encased wrapping

An encased wrapping is a gapless wrapping that makes the contours inside invisible,
that is, all results of folding the paper for wrapping that can completely encapsulate the
prism.

The above definition of wrapping is used to describe a wrapping that can completely
encapsulate the prism. However, it still cannot represent a practical wrapping style due
to its pattern. In some theoretical cover patterns, when used as a prototype of the actual
wrapping, it was found that there is not enough cover paper to move the position of the
package at all because the inner object and the wrapping paper are not held together by
any force as shown in Figure 11. Hence, we need to consider a wrapping pattern that has
enough overlap for the purpose of package wrapping, as shown in Figure 12.

Figure 11: Wrapping that is not practical as packaging.

Figure 12: Wrapping that can be used as packaging.

Therefore, we develop terms of coverage that are practical as packaging. We will begin
by considering the boundary of the paper relative to the size of an equilateral cross-section
prism. We begin from the smallest size of paper in which the wrap will occur.

From the tall wrapping described in Section 2, the tall, encased wrapping by rectan-
gular paper in tall wrapping is achieved by increasing the paper size from the projection
of an equilateral cross-section prism shape, as shown in Figure 13. The distance beyond
the projection of the prism is called the distance between the edges of the paper A1A2 and
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the point B′
6, denoted by s. The distance between the edges of paper A1A4 and the lateral

edge of prism B1B4 is denoted by t, as shown in Figure 14.

Figure 13: Projection of the prism.

Figure 14: The distance between the edge of the paper and the prism.

By the definitions of s and t, we obtain the relationship of the variables given above
as follows:

s =
K − k −

√
3l

2
and t =

L− l

2
.

Consider the smallest rectangular paper that contains the unfolded prism. The rectangle
has the values K = k +

√
3l and L = 3l, as shown in Figure 15.

However, this is not considered a size of paper that can be wrapped in a tall wrapping
to cover a prism because when folding the paper in a tall wrapping form, there is still a
gap to see the prism. In terms of s and t, the size of the above paper gives s = 0 and
t = 0. Hence, the first condition of the required paper size has appeared; that is, s and t
must both be greater than zero.

The remainder of this section is devoted to finding the values of s and t that will cause
wrapping that can be folded as a tall, encased wrapping to lead to the main results.

If a rectangular paper has t > l, then the result of wrapping is an overlap of the paper
in the area above the lateral edge B5B6, as shown in Figure 16. Thus, the boundary of
possible t that prevents excess paper after wrapping is t ∈ (0, l]. However, an equilateral
triangular prism that has a side length of l units and a height of k units where k and l
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Figure 15: The unfolded prism.

Figure 16: A wrapping to cover a prism when t > l.

are any positive real numbers cannot be used as a tall wrap at all k and l values. From
Figure 16, we begin to consider ways in which coverage can be achieved. If a rectangular
paper has t = l to wrap a prism in a tall wrapping, then such wrapping is not considered
as a tall wrap that can be used as packaging because when wrapped according to the steps
given above, points A1 and A4 do not overlap. It is incapable of functioning as packaging
because even though there is no gap to be seen inside when wrapped successfully, moving
such packages may form gaps. Paper convergence is really a fit convergence. There is no
surface to hold all the packages together.

From the reasons mentioned above, we will find the relationship between the values of
k, l, s and t. We begin by considering the reasons for practical encapsulation as packaging,
as shown in Figure 17.

Case t = l. We find that the only reason this wrapping is not an encased wrapping
for packaging is the gap between A1 and A4 after folding is completed. There is a chance
that a gap will form on the lateral edge of the prism, although the lengths of the papers
meet exactly, as shown in Figure 17.

Consequently, we calculate the K-value of the paper so that there is no gap between
points A1 and A4 after folding.
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Figure 17: A tall, encased wrapping that is not as packaging.

Lemma 1. Let B1B2B3B4B5B6 be an equilateral triangular prism such that the cross-
section has height k units and side length l units and A1A2A3A4 be a rectangular wrapping
paper with width L units and length K units such that L ≥ 3l. If K ≥ 3k

2 +
√
3l and

k ≤ 2
√
3l, then this wrapping is a tall, encased wrapping that can be used as packaging.

Proof. Since L ≥ 3l and the definition of t = L−l
2 , we obtain t ≥ 3l−l

2 = l. To find the
smallest paper size that allows for tall, encased wrapping that can be used as packaging, we
determine the case where t = l. From Figure 18, an unfolded paper obtained by wrapping
the prism, we know that the three angles of the cross-sections B′

1B
′
2B

′
6 on the equilateral

triangular prism are each 60 degrees. It forces ∠B′
1B

′
2B

′
6 = ∠B′

2B
′
6B

′
1 = ∠B′

6B
′
1B

′
2 = 60.

Since |B′
1B

′
2| = |B′

1B
′
6| = |B′

2B
′
6| = l, we have sin 60 = sin(∠B′

6B
′
1B

′
2) =

|B′
6X|
l and then

|B′
6X| =

√
3l
2 . Consider that creases, 4A1B

′
1B

′
6 and 4A1B

′
1C

′
1 can be folded together

so that each point can be made coincident with another point. It follows that the two
triangles are equal in all respects and ∠B′

1B
′
6A1 = 90

Figure 18: An unfolded paper obtained by wrapping the prism in case t = l.

Since ∠XB′
6B

′
1 = 30, we have

∠Y B′
6A1 = 180− ∠XB′

6B
′
1 − ∠B′

1B
′
6A1 = 180− 30− 90 = 60.

In addition, we know |Y B′
6| = s, which implies for 4Y B′

6A1 that cos(∠Y B′
6A1) =

|Y B′
6|

|B′
6A1|

.

Thus, |B′
6A1| = 2s. From Figure 17, to achieve wrapping in a tall, encased wrap that can
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be used as packaging, it is necessary to move the points A1 and A4 to converge. Since
|B′

6A1| = |B′
5A4| = 2s, we obtain 4s ≥ k. Then, we have a requirement that s ≥ k

4 . From
the paper length K = 2s+ 2

√
3l

2 + k and the above requirement, we obtain K ≥ 3k
2 +

√
3l.

We can conclude that if K ≥ 3k
2 +

√
3l, then the wrapping that is achieved is a tall, encased

wrap that can be used as packaging.
Next, from Figure 18, points A1, A2, A3 and A4 are brought to line B5B6. Then,

the four corners of the paper are exactly on the lateral edge of the prism; moreover,
∠Y B′

6A1 = 60 and |Y A1| = |XC ′
1| = l

2 + t. Thus,
√
3 = tan(60) = tan(∠Y B′

6A1) =
l
2
+t

s .
Hence, s =

√
3l
2 . We must determine that the boundary of the prism height is no more

than the confluence of the paper angles on the lateral edge of the prism or, in other words,
k ≤ 4s = 2

√
3l.

Since the possible boundaries of t are (0, l], another case that we must consider is t < l.
Case t < l. When we wrap packages with t < l, we find that uncovered wrapping can

occur because the area of the paper covering the lateral faces of the prism is too small as
shown in Figure 19. We can fix this by increasing the size of the paper so that the points
D1 and D4 or the points E′

1 and E′
4 that appear after the fold converge. The size of the

paper is according to the following lemma.

Figure 19: point position.

Lemma 2. Let B1B2B3B4B5B6 be an equilateral triangular prism such that the cross-
section has height k units and side length l units and A1A2A3A4 be a rectangular wrapping
paper with width L units and length K units such that L < 3l. If K ≥ 3k

2 +
√
3l and

k < 2
√
3l, then this wrapping is a tall, encased wrapping that can be used as packaging.

Proof. Since L < 3l and the definition of t = L−l
2 , we obtain t < 3l−l

2 = l. To
find the smallest paper size that allows for a tall, encased wrapping that can be used
as packaging, we consider the unfolded paper obtained by wrapping the prism, as shown
in Figure 20. In the same manner as for the proof of lemma 1, we obtain ∠B′

1B
′
2B

′
6 =

∠B′
2B

′
6B

′
1 = ∠B′

6B
′
1B

′
2 = 60 and |B′

6X| =
√
3l
2 . Moreover, ∠C1B

′
1C

′
1 = 120. Consider that

crease, 4C1E
′
1B

′
1 and 4C ′

1E
′
1B

′
1 can be folded together so that each point can be made

coincident with another point and |C ′
1B

′
1| = |C1B′

1| = t. It follows that the two triangles
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are equal in all respects and ∠C1B
′
1E

′
1 = 60.By 4C1E

′
1B

′
1, we get tan(∠C1B

′
1E

′
1) =

|C1E′
1|

|C1B′
1|

.

Thus, |C1E′
1| =

√
3t. Similarly, |C4E′

4| =
√
3t.

Figure 20: An unfolded paper obtained by wrapping the prism in case t < l.

From Figure 19, to achieve wrapping in a tall, encased wrap that can be used as
packaging, it is necessary to fold the point D1 to D4 or fold the point E′

1 to E′
4. This forces

the following conditions to be met min{|C1E′
1|, |B′

6D1|} ≥ k
2 . Thus, |C1E′

1| + |C4E′
4| ≥

|B′
1B

′
4|. It follows that

√
3t +

√
3t ≥ k. Then, we obtain a requirement that 2

√
3t ≥ k.

Since t < l, it implies that k < 2
√
3l.

Moreover, since|B′
6D1|+ |B′

5D4| ≥ |B′
1B

′
4|, we get a requirement that s ≥ k

4 . Since the
paper length K = 2s+ 2

√
3l

2 + k and the above requirements, we have K ≥ 3k
2 +

√
3l. We

can conclude that if K ≥ 3k
2 +

√
3l, then the wrapping achieves a tall, encased wrap that

can be used as packaging.

Now, we have lemmas that show how to calculate the size of paper to wrap a tall,
encased wrapping as packaging. However, for any prism of height k, it is not always
certain that we can take the tall, encased wrapping formin order to wrap an equilateral
triangular prism. An appropriate t-value must be selected.

Let t∗ be the smallest t-value that causes wrapping as a package and s∗ be the smallest
s-value that causes wrapping as a package. This means that if t < t∗, then the wrapping
formed by the t-value rectangular paper is not a tall, encased wrapping as a package
because the s value that we define later will not affect the wrapping to cover the prism as
shown in Figure 21. We find that no matter how much we increase the s the result is not
tall, encased wrapping if the given value of t does not reach the value of t∗. The following
lemma finds the values of t and s to analyze the smallest boundary of the paper.

Theorem 1. Let B1B2B3B4B5B6 be an equilateral triangular prism such that the cross-
section has height k units and side length l units and A1A2A3A4 be a rectangular wrapping
paper with width L units and length K units such that L < 3l.
Let t be the distance between the paper edge A1A4 and the lateral edge B1B4, that is,
t = L−l

2 ,
t∗ be the smallest t-value that causes wrapping as a package,
s be the distance between the paper edge A1A2 and the point B′

6, that is, s = K−k−
√
3l

2 ,
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Figure 21: Folding paper in case t < t∗.

and s∗ be the smallest s-value that causes wrapping as a package. Then t∗ = k
2
√
3

and
s∗ = k

4 .

Proof. Assume the wrapping is a tall, encased wrapping used as packaging. By Lemma
2, we have K ≥ 3k

2 +
√
3l. We consider the folding scope of the unfolded prism, as shown

in Figure 15; then, the size of the paper that fits the prism is 2
√
3l

2 + k. It follows that
2s∗ = 2(k4 ), that is, s∗ = k

4 . According to the proof of Lemma 2, 2
√
3t ≥ k, as a result,

t∗ = k
2
√
3
.

Now, the boundary of s and t are s∗ ≤ s and t∗ ≤ t ≤ l, respectively to achieve
wrapping in a tall, encased wrap that can be used as packaging. Thus, the smallest of s
and t are s∗ and t∗, respectively. Hence, the paper that can be completely wrapped within
a minimal region is s = s∗ and t = t∗ as the following theorem.

Theorem 2. Let k and l be positive real numbers such that k ≤ 2
√
3l. The smallest paper

that can be completely wrapped contains K = 3k
2 +

√
3l and L = l+ k√

3
, and the paper with

the least area K × L = (3k2 +
√
3l)(l + k√

3
).

We can see more clearly illustrated by the following examples.

Example 1. Let k = 3.5(
√
3), l = 3.5, s = 1.52 and t = 1.75. From Figure 22, when folded

paper is the specified size, it is a tall, encased wrapping that can be used as packaging and
corresponds to Theorem 1 that t = t∗ = k

2
√
3

and s = s∗ = k
4 . In addition, the area is

106.12 units2 corresponding to Theorem 2.

Example 2. Let k = 3.5(
√
3), l = 3.5, s = 1.3 and t = 1.5. From Figure 23, when folded

paper is the specified size, it is a tall, uncovered wrapping that can be used as packaging
because it does not correspond to Lemma 2 and Theorem 1.

Remark 1. From Figure 24, Khanom Saisai, which is a Thai dessert, resembles an
equilateral triangular prism. We see that if k is less than l, then it makes the s-value
larger than the k-value. Besides, when we fold both wings of the banana leaves together to
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Figure 22: Folding paper in case t = t∗ and s = s∗.

Figure 23: Folding paper in case where t < t∗ and s < s∗.

wrap Khanom Saisai, the tall shape required to tightly wrap Khanom Saisai is not obtained.
Therefore, it is necessary to cut the banana leaves in the collision. Thus, the banana leaves
that are wrapped are not rectangular. It can be seen that wrapping Khanom Saisai is a
form of tall, encased wrapping, corresponding to the definition of a tall, encased wrapping
as packaging.

Figure 24: Steamed flour with coconut filling (Thai dessert) - Khanom Saisai.
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4. Discussion

This research may be applied to the application of Khanom Saisai to find the smallest
banana leaves as packaging to help reduce business costs. Our further work may be
considered in origami wrapping with an isosceles triangle prism.
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