Spectral Dichotomy Methods of a Matrix with respect to the General Equation of the Parabola

Authors

  • Seydou Traoré Laboratoire de de Mathématiques fondammatales et Applications, UFR Mathématiques et Informatique, Université Félix Houphouët-Boigny
  • Dosso Mouhamadou Laboratoire de de Math ́ematiques fondammatales et Applications, UFR Math ́ematiques et Informatique, Universit ́e F ́elix Houphou ̈et-Boigny, Abidjan, Cˆote d’Ivoire

DOI:

https://doi.org/10.29020/nybg.ejpam.v15i2.4348

Keywords:

Spectral dichotomy method, spectral projector, eigensubspaces, eigenvalues

Keywords:

Spectral dichotomy method, spectral projector, eigensubspaces, eigenvalues

Abstract

This paper presents methods of spectral dichotomy of a matrix which compute spectral projectors on the subspace associated with the eigenvalues external to the parabolas described by a general equation. These methods are modifications of the one proposed in [A. N. Malyshev and M. Sadkane, SIAM J. MATRIX ANAL. APPL. 18 (2), 265-278, 1997] which uses the spectral dichotomy method of a matrix with respect to the imaginary axis. Theoretical and algorithmic aspects of the methods are developed. Numerical results obtained by applying methods presented on matrices are reported.

Downloads

How to Cite

Traoré, S., & Mouhamadou, D. (2022). Spectral Dichotomy Methods of a Matrix with respect to the General Equation of the Parabola. European Journal of Pure and Applied Mathematics, 15(2), 681–725. https://doi.org/10.29020/nybg.ejpam.v15i2.4348