Spectral Dichotomy Methods of a Matrix with respect to the General Equation of the Parabola

Authors

  • Seydou Traoré Laboratoire de de Mathématiques fondammatales et Applications, UFR Mathématiques et Informatique, Université Félix Houphouët-Boigny
  • Dosso Mouhamadou Laboratoire de de Math ́ematiques fondammatales et Applications, UFR Math ́ematiques et Informatique, Universit ́e F ́elix Houphou ̈et-Boigny, Abidjan, Cˆote d’Ivoire

DOI:

https://doi.org/10.29020/nybg.ejpam.v15i2.4348

Keywords:

Spectral dichotomy method, spectral projector, eigensubspaces, eigenvalues

Abstract

This paper presents methods of spectral dichotomy of a matrix which compute spectral projectors on the subspace associated with the eigenvalues external to the parabolas described by a general equation. These methods are modifications of the one proposed in [A. N. Malyshev and M. Sadkane, SIAM J. MATRIX ANAL. APPL. 18 (2), 265-278, 1997] which uses the spectral dichotomy method of a matrix with respect to the imaginary axis. Theoretical and algorithmic aspects of the methods are developed. Numerical results obtained by applying methods presented on matrices are reported.

Downloads

Published

2022-04-30

Issue

Section

Topology

How to Cite

Spectral Dichotomy Methods of a Matrix with respect to the General Equation of the Parabola. (2022). European Journal of Pure and Applied Mathematics, 15(2), 681-725. https://doi.org/10.29020/nybg.ejpam.v15i2.4348