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A Variant of Hop Domination in Graphs
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Abstract. Let G be a connected graph with vertex and edge sets V (G) and E(G), respectively.
A set S ⊆ V (G) is a hop dominating set of G if for each v ∈ V (G) \ S, there exists w ∈ S such
that dG(v, w) = 2. A set S ⊆ V (G) is a super hop dominating set if ehpnG(v, V (G) \ S) ̸= ∅ for
each v ∈ V (G) \ S, where ehpnG(v, V (G) \ S) is the set containing all the external hop private
neighbors of v with respect to V (G) \ S. The minimum cardinality of a super hop dominating
set of G, denoted by γs

h(G), is called the super hop domination number of G. In this paper, we
investigate the concept and study it for graphs resulting from some binary operations. Specifically,
we characterize the super hop dominating sets in the join, and lexicographic products of graphs,
and determine bounds of the super hop domination number of each of these graphs.
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1. Introduction

Super domination in a graph was first introduced and studied by Lemanska et al.
in [8]. This concept uses the concept of external private neighbor of a vertex in some subset
of the vertex set of a graph. Dettlaff et al. in [3] determined the super domination number
of lexicographic products of graphs. Also, Dettlaff in [2] determined some values and
bounds for the super domination number of some Cartesian products of graphs. Paraico
and Canoy in [13] characterized the super dominating sets in the lexicographic and the
Cartesian products of graphs and obtained bounds for the super domination numbers of
these graphs.

Recently, Natarajan and Ayyaswamy [11] introduced and studied the concept of hop
domination in a graph. Ayyaswamy et al. in [1] also investigated the concept and obtained
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bounds of the hop domination number of some graphs. The concept and some of its
variations are also studied in [5], [6], [7], [10], [9], [12], and [14]. Motivated by these
previous studies and, in particular, [3], [8], and [13], we introduce herein the concept of
super hop domination and investigate it for some graphs and graphs resulting from the
join, and lexicographic product of two graphs.

2. Terminology and Notation

Let G = (V (G), E(G)) be a connected graph and let v ∈ V (G). The open neighborhood
of v is the set NG(v) = {z ∈ V (G) : vz ∈ E(G)} and its closed neighborhood is NG[v] =
NG(v) ∪ {v}. The open hop neighborhood of v is the set N2

G(v) = {u ∈ V (G) : dG(u, v) =
2}, where dG(u, v) denotes the distance between vertices u and v in G. The closed hop
neighborhood of v is N2

G[v] = N2
G(v) ∪ {v}. The open hop neighborhood of A ⊆ V (G) is

the set N2
G(A) = ∪v∈AN

2
G(v) and its closed hop neighborhood is N2

G[A] = A ∪N2
G(A).

A set S ⊆ V (G) is a dominating set (hop dominating set) of a graph G if for each
v ∈ V (G) \ S, there exists w ∈ S such that dG(v, w) = 1 (resp. dG(v, w) = 2). The
smallest cardinality of a dominating (resp. hop dominating) set of G, denoted by γ(G)
(resp. γh(G)), is called the domination number (resp. hop domination number) of G.

Let S be a subset of V (G) and let v ∈ S. A vertex w ∈ V (G) \ S is an external
private neighbor (external hop private neighbor) of v with respect to S if NG(w)∩S = {v}
(resp. N2

G(w)∩S = {v}). The set containing all the external private neighbors (resp. hop
private) neighbors of v with respect to S is denoted by epnG(v, S) (resp. ehpnG(v, S)).
A set S ⊆ V (G) is called a super dominating set (resp. super hop dominating set) if
epnG(v, V (G)\S) ̸= ∅ (resp. ehpnG(v, V (G)\S) ̸= ∅) for each v ∈ V (G)\S. The smallest
cardinality of a super dominating (resp. super hop dominating) set of G, denoted by γs(G)
(resp. γsh(G)), is called the super domination number (resp. super hop domination number)
of G. Any super dominating (resp. super hop dominating) set of G with cardinality γs(G)
(resp. γsh(G)) is called a γs-set (resp. γ

s
h-set) of G.

A subset D of V (G) is a complement-super dominating set of G (super dominating
set of G) if for each v ∈ V (G) \ D, there exists w ∈ D \ NG(v) = D ∩ NG(v) such
that [V (G) \ NG(w)] ∩ [V (G) \ D] = NG(w) ∩ [V (G) \ D] = {v}. The smallest cardi-
nality of a complement-super dominating set of G, denoted by γcs(G) = γs(G), is called
the complement-super domination number of G (super domination number of G). Any
complement-super dominating set of G with cardinality equal to γcs(G) is called a γcs-set.

3. Results

Remark 1. γsh(Kn) = n for all n ≥ 1.

Proposition 1. Let G be a graph of order n ≥ 1. Then max{γh(G), ⌈n2 ⌉} ≤ γsh(G) ≤ n.

Proof. Since every super hop dominating set is hop dominating, it follows that γh(G) ≤
γsh(G). Now let S be a γsh-set of G. Then, by definition of super hop dominating set,
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|S| ≥ |V (G) \ S|. This implies that γsh(G) = |S| ≥ ⌈n2 ⌉. Moreover, since V (G) is a super
hop dominating set, we have ⌈n2 ⌉ ≤ γsh(G) ≤ n. Therefore, the assertion holds.

Theorem 1. Let G be a graph of order n ≥ 1. Then γsh(G) = n if and only if each
component C of G is a complete graph.

Proof. Suppose that γsh(G) = n. Suppose further that there exists a component C
of G such that C is not a complete graph. Then there exist x, y ∈ V (C) such that
dC(x, y) = dG(x, y) = 2. This implies that S = V (G) \ {x} is a super hop dominating set
of G. Hence, γsh(G) ≤ |S| = n − 1, contrary to the assumption that γsh(G) = n. Thus,
each component of G is a complete graph.

For the converse, suppose that each component of G is a complete graph. Let S be a
γsh-set of G and suppose that S ̸= V (G). Let v ∈ V (G) \ S and let C be the component
of G with v ∈ V (C). Let w ∈ ehpnG(v, V (G) \ S). Then w ∈ V (C) and dG(v, w) = 2,
contrary to the assumption that C is a complete graph. Thus, S = V (G), showing that
γsh(G) = n.

The next results are consequences of Theorem 1.

Corollary 1. Let G be a connected graph of order n. Then γsh(G) = n if and only if
G = Kn.

Corollary 2. Let G be a connected non-complete graph of order n. Then γsh(G) ≤ n− 1.

Corollary 3. If G is the complete graph of order n, then γsh(G) + γsh(G) = 2n and
γsh(G).γsh(G) = n2.

Theorem 2. Let G be a connected non-complete graph of oder n. Then

(i) n ≤ γsh(G) + γsh(G) ≤ 2n− 1 and

(ii) n2

4 ≤ γsh(G).γsh(G) ≤ n2 − n.

Proof. By Corollary 2, γsh(G) ≤ n − 1. Also, by Proposition 1, γsh(G) ≤ n. These
imply that γsh(G) + γsh(G) ≤ (n− 1) + n = 2n− 1 and γsh(G).γsh(G) ≤ (n− 1)n = n2 − n.
The left inequalities follow from Proposition 1.

Note that the upper bounds in Theorem 2 are tight. Indeed, if G = K1,n−1, then
G = K1∪Kn−1. It is easy to show that γsh(G) = n−1. By Theorem 1, γsh(G) = n. Hence,
γsh(G)+ γsh(G) = 2n− 1 and γsh(G).γsh(G) = n2−n. The lower bounds are also attainable.
It can be verified that γsh(P4) + γsh(P 4) = 4 and γsh(P4).γ

s
h(P 4) =

16
4 = 4.

The join of graphs G and H is the graph G+H with vertex set V (G+H) = V (G) ∪
V (H) and edge set E(G+H) = E(G) ∪ E(H) ∪ {uv : u ∈ V (G) and v ∈ V (H)}.

Theorem 3. Let G and H be any two graphs. A subset S of V (G + H) is a super hop
dominating set of G+H if and only if S = SG∪SH where SG and SH are complement-super
dominating sets of G and H, respectively.
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Proof. Suppose that S is a super hop dominating set of G +H. Let SG = S ∩ V (G)
and SH = S ∩ V (H). Let v ∈ V (G) \ SG. Since S is a super hop dominating set of
G+H, there exists w ∈ ehpn(v, V (G+H) \ S). Since V (H) ⊆ NG+H(v), it follows that
w ∈ SG \NG(v) and

N2
G+H(w) ∩ (V (G+H) \ S) = [V (G) \NG(w)] ∩ [V (G) \ SG] = {v}.

This shows that SG is a complement-super dominating set of G. Similarly, SH is a
complement-super dominating set of H.

For the converse, suppose that S = SG ∪ SH , where SG and SH are complement-
super dominating sets of G and H, respectively. Let v ∈ V (G + H) \ S. If v ∈ V (G),
then v ∈ V (G) \ SG. Since SG is a complement-super dominating set of G, there exists
w ∈ SG\NG(v) such that [V (G)\NG(w)]∩[V (G)\SG] = N2

G+H(w)∩(V (G+H)\S) = {v}.
This implies that w ∈ ehpn(v, V (G + H) \ S). Similarly, if v ∈ V (G) \ SH , then there
exists z ∈ ehpn(v, V (G + H) \ S). This shows that S is a super hop dominating set of
G+H.

Theorem 4. Let G be a graph of order n. Then ⌈n2 ⌉ ≤ γcs(G) ≤ n. Moreover,

(i) γcs(G) = n if and only if G = Kn; and

(ii) for n ≥ 4 and even, we have γcs(G) = n
2 if and only if G has an (n2 − 1)-regular

bipartite subgraph H with partite sets A and B such that V (G) = A ∪ B = V (H),
|A| = |B| = n

2 and E(G) = E(⟨A⟩)∪E(⟨B⟩)∪E(H), where ⟨A⟩ is the graph induced
by A.

Proof. Let S be a complement-super dominating set of G. By definition, |S| ≥ |V (G)\
S| = n− |S|. Hence, |S| ≥ n

2 , showing that ⌈n2 ⌉ ≤ γcs(G) ≤ n.
For (i), suppose that γcs(G) = n. Since γcs(G) = γs(G), it follows that G = Kn.

Hence, G = Kn.
The converse is clear.
To show (ii), suppose first that γcs(G) = n

2 . Let S be an γcs-set of G. Then |S| = n
2 .

Let v ∈ V (G) \ S. Then there exists xv ∈ S \NG(v) such that [V (G) \NG(xv)] ∩ (V (G) \
S) = {v}. Since |V (G) \ S| = n

2 and S is a complement-super dominating set of G,
vy ∈ E(G) for all y ∈ S \ {xv}. Thus, NG(v) ∩ S = S \ {xv}. Let u, v ∈ V (G) \ S with
u ̸= v. Since NG(xv) ∩ (V (G) \ S) = V (G) \ (S ∪ {v}), it follows that u ∈ NG(xv). Since
u /∈ NG(xu), xu ̸= xv. Hence, S = {xv : v ∈ V (G) \ S}. Let A = S and B = V (G) \ S.
Consider the bipartite graph H with partite sets A and B. Then |A| = |B| = n

2 . Since
NG(v) ∩ S = S \ {xv} for each v ∈ B, it follows that degH(v) = n

2 − 1 for each v ∈ B.
Also, since [V (G) \NG(xv)]∩ (V (G) \S) = {v} for each v ∈ B, degH(xv) =

n
2 − 1 for each

xv ∈ A. Thus, H is an (n2 −1)-regular graph. Moreover, E(G) = E(⟨A⟩)∪E(⟨B⟩)∪E(H).
For the converse, suppose that G has the given property. Let v ∈ B = V (G) \ A.

Then by assumption, degH(v) = n
2 − 1. This implies that there exists w ∈ A such

[V (H) \ NH(w)] ∩ B = {v}. Since E(G) = E(⟨A⟩) ∪ E(⟨B⟩) ∪ E(H), it follows that
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[V (G) \NG(w)] ∩ B = [V (H) \NH(w)] ∩ B = {v}. This shows that A is a complement-
super dominating set of G. Therefore n

2 ≤ γcs(G) ≤ |A| = n
2 , i.e., γcs(G) = n

2 .

Theorem 5. Let G be a graph of order n. Then

(i) γcs(G) = 1 if and only if G = K1 or G = K2.

(ii) γcs(G) = 2 if and only if G ∈ {K2, P3,K2 ∪K1,K3, P4, C4,K2 ∪K2}.

Proof. (i) Suppose γcs(G) = 1 and let S = {v} be a γcs-set of G. By Theorem 4,
1 ≤ n ≤ 2. If n = 1, then G = K1. Suppose n = 2 and let w ∈ V G) \ {v}. Since S is a
complement-super dominating set of G, vw /∈ E(G). It follows that G = K2.

The converse is clear.
(ii) Suppose γcs(G) = 2. Then 2 ≤ n ≤ 4 by Theorem 4. Let S = {a, b} be a γcs-set of

G. If n = 2, then G = K2 since γcs(K2) = 1. Suppose n = 3 and let c ∈ V (G)\S. We may
assume that [V (G)\NG(a)]∩[V (G)\S] = {c}. If ab ∈ E(G), then G = P3 or G = K2∪K1.
If ab /∈ E(G), then G = K3 or G = K2 ∪K1. Finally, let n = 4 and let V (G) = {a, b, c, d}.
Since S is a γcs-set, we may assume that [V (G) \NG(a)] ∩ [V (G) \ S] = {c} and [V (G) \
NG(b)] ∩ [V (G) \ S] = {d}. Then ad, bc ∈ E(G). Suppose ab ∈ E(G). If cd ∈ E(G), then
G = C4. If cd /∈ E(G), then G = P4. Next, suppose that ab /∈ E(G). If cd ∈ E(G), then
G = P4. Otherwise, G = K2∪K2. Therefore, G ∈ {K2, P3,K2∪K1,K3, P4, C4,K2∪K2}.

The converse is clear.

Theorem 6. Let n be a positive integer. Then

γcs(Pn) =


n if n = 1, 2

2 if n = 3

n− 2 if n ≥ 4.

Proof. Let Pn = [v1, v2, · · · , vn]. Clearly, γcs(P1) = 1, γcs(P2) = 2, and γcs(P3) = 2.
Suppose n ≥ 4. Since S0 = V (Pn) \ {v1, vn} is a complement-super dominating set of
Pn, it follows that γcs(Pn) ≤ n − 2. Suppose γcs(Pn) < n − 2. Let S be a γcs-set of Pn

and let v, w, and x be distinct elements of V (Pn) \ S. We may assume that v = vj , w =
vr, and x = vs where 1 ≤ j < r < s ≤ n. Since S is a complement-super dominating set of
Pn and w ∈ V (Pn) \S, there exists p ∈ S such that [V (Pn) \NPn(p)]∩ [V (Pn) \S] = {w}.
This implies that pv, px ∈ E(Pn). Since j < s, it follows that p = vj+1 and s = j+2. This,
however, would imply that r = j+1 (i.e., w = vr = p because j < r < s), a contradiction.
Therefore, γcs(Pn) = n− 2.

Theorem 7. Let n be a positive integer and n ≥ 3. Then

γcs(Cn) =

{
3 if n = 3, 6

n− 2 if n = 4, 5 and n ≥ 7.
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Proof. Let Cn = [v1, v2, · · · , vn, v1]. Now γcs(C3) = 3 by Theorem 4. Suppose 4 ≤
n ≤ 5. It can be verified easily that S0 = V (Cn) \ {v1, v2} is a γcs-set of Cn. Thus,
γcs(Cn) = n− 2. Next, suppose that n = 6. Since S1 = V (C6) \ {v1, v3, v5} = {v2, v4, v6}
is a complement-super dominating set of Cn, γcs(C6) = 3 by Theorem 4. Lastly, suppose
that n ≥ 7. The set S∗ = V (Cn) \ {v1, v2} = {v3, v4, · · · , vn} is a complement-super
dominating set of Cn. Consequently, γcs(Cn) ≤ n−2. Let S be a γcs-set of Cn and suppose
|S| < n−2. Let a, b, and c be distinct elements of V (Cn)\S. We may assume that a = v1,
b = vm, and c = vr where 1 < m < r ≤ n. Since S is a complement-super dominating set
of Cn and c ∈ V (Cn)\S, there exists y ∈ S such that [V (Cn)\NCn(y)]∩ [V (Cn)\S] = {c}.
This implies that ay, yb ∈ E(Cn). With the assumption that a = v1 and m < r, we find
that y = v2 and b = v3. Applying the same argument to a ∈ V (Cn) \ S, we find that
there exists z ∈ S such that [V (Cn) \NCn(z)]∩ [V (Cn) \S] = {a}. Hence, bz, zc ∈ E(Cn),
implying that z = v4 and c = v5. Finally, for b ∈ V (Cn) \ S, there also exists q ∈ S such
that [V (Cn) \NCn(q)] ∩ [V (Cn) \ S] = {b}. It follows that qv1, qv5 ∈ E(Cn). Since n ≥ 7,
no such vertex q of Cn exists. Consequently, S is not a complement-super dominating set
of Cn, a contradiction. Therefore, γcs(Cn) = n− 2.

Theorem 8. Let G be a graph of order n ≥ 2. If S is a complement-super dominating
set of G, then V (G) \ S contains at most a single isolated vertex of G. In particular, if
G = Kn, then S = V (G)\{v} is a γcs-set of G for each v ∈ V (G), that is, γcs(G) = n−1.

Proof. If S = V (G), then we are done. Suppose S ̸= V (G) and let v ∈ V (G) \ S.
Then there exists w ∈ S such that [V (G) \ NG(w)] ∩ [V (G) \ S] = {v}. Hence, if v is
an isolated vertex of G, then there can be no other isolated vertex in V (G) \ S. In other
words, V (G) \ S contains at most a single isolated vertex of G.

Suppose now that G = Kn and let v ∈ V (G). Then clearly, S = V (G) \ {v} is a
complement-super dominating set of G. Since it is not possible for V (G) \ S to contain
more than one isolated vertices, it follows that S is a γcs-set of G. Thus, γcs(G) = n−1.

Theorem 9. Let G1, G2, · · · , Gn be the components of a graph G, where n ≥ 2. Then
S ⊆ V (G) is a complement-super dominating set of G if and only if one of the following
holds:

(i) S = D ∪ [∪j ̸=kV (Gj)] for some k ≤ n and for some complement-super dominating
set D of Gk.

(ii) S = V (G) \ {v} for some isolated vertex v or S = [V (Gk) \ {v}] ∪ [∪j ̸=kV (Gj)] for
some non-trivial component Gk and for some v ∈ V (Gk).

(iii) S = [V (Gk)\{v}]∪[V (Gr)\{w}]∪[
⋃

j ̸=k,r V (Gj)] for distinct non-trivial components
Gk and Gr and for some v ∈ V (Gk) and w ∈ V (Gr).

Proof. Suppose S is a complement-super dominating set of G. If S = V (G), then we
may take D = V (G1) which is a complement-super dominating set of G1. Hence, S of type
(i). Suppose S ̸= V (G). Let v ∈ V (G) \ S and let k ∈ {1, 2, · · · , n} such that v ∈ V (Gk).



S. Canoy, Jr., G. Salasalan / Eur. J. Pure Appl. Math, 15 (2) (2022), 342-353 348

Since S is a complement-super dominating set of G, there exists z ∈ S such that [V (G) \
NG(z)] ∩ [V (G) \ S] = {v}. Suppose first that z ∈ V (Gk). Then clearly, ∪j ̸=kV (Gj) ⊆ S.
Let D = S∩V (Gk). Then [V (Gk)\NGk

(z)]∩[V (Gk)\D] = {v}. Thus, if D = V (Gk)\{v},
then D is a complement-super dominating set of Gk. Suppose D ̸= V (Gk) \ {v} and let
x ∈ V (Gk)\(D∪{v}). Then there exists y ∈ S such that [V (G)\NG(y)]∩[V (G)\S] = {x}.
Since x ̸= v, it follows that y ∈ D and [V (Gk) \ NGk

(y)] ∩ [V (Gk) \D] = {x}. Thus, D
is a complement-super dominating set of Gk, showing that (i) holds. Next, suppose that
z ∈ V (Gr) for some r ≤ n with r ̸= k and let D∗ = S ∩ V (Gr). Note that if Gk ̸= ⟨v⟩,
then [V (Gk)\{v}]∪ [∪j ̸=k,rV (Gj)] ⊆ S. Suppose first that D∗ = V (Gr). If Gk = ⟨v⟩, then
S = V (G) \ {v}. Otherwise, S = [V (Gk) \ {v}] ∪ [∪j ̸=kV (Gj)]. Hence, S is of type (ii).
Next, suppose that D∗ ̸= V (Gr). Let w ∈ V (Gr) \D∗. Then z ∈ NG(w). Let p ∈ S such
that [V (G) \NG(p)] ∩ [V (G) \ S] = {w}. Since v ∈ [V (G) \ S] ∩ V (Gk))], p /∈ ∪j ̸=kV (Gj).
Hence, p ∈ V (Gk) ∩ NGk

(v). Moreover, |V (Gr) \ D∗| = 1, that is, D∗ = V (Gr) \ {w}.
Consequently, S = [V (Gk)\{v}]∪ [V (Gr)\{w}]∪ [∪j ̸=r,kV (Gj)], showing that (iii) holds.

For the converse, suppose first that S is of type (i), that is, S = D ∪ [∪j ̸=kV (Gj)] for
some k ≤ n and for some complement-super dominating set D of Gk. Let v ∈ V (G) \ S.
Then v ∈ V (Gk) \D. Since D is a complement-super dominating set of Gk, there exists
z ∈ D such that [V (Gk) \NGk

(z)] ∩ [V (Gk) \D] = {v}. It follows that [V (G) \NG(z)] ∩
[V (G) \ S] = {v}, showing that S is a complement-super dominating set of G. Clearly,
if S is of type (ii), then S is a complement-super dominating set of G. Finally, suppose
that S = [V (Gk) \ {v}] ∪ [V (Gr) \ {w}] ∪ [

⋃
j ̸=k,r V (Gj)] for some k, r ≤ n, where v ∈

V (Gk), w ∈ V (Gr), and both [V (Gk) \ {v}] and [V (Gr) \ {w}] are non-empty sets. Pick
p ∈ V (Gk) ∩NGk

(v) and q ∈ V (Gr) ∩NGr(w). Then [V (G) \NG(p)] ∩ [V (G) \ S] = {w}
and [V (G)\NG(q)]∩ [V (G)\S] = {v}, showing that S is a complement-super dominating
set of G.

Theorem 10. Let G1, G2, · · · , Gk, where k ≥ 2, be the components of a graph G of order
n. Then each of the following statements holds.

(i) γcs(G) = n−1 if and only if G = Kn or G has exactly a single non-trivial component
Gs and |V (Gs)| − 1 ≤ γcs(Gs) ≤ |V (Gs)|.

(ii) If G has at least two non-trivial components, then

γcs(G) = min{n− 2, n− ηG},

where ηG = max{|V (Gj)| − γcs(Gj) : j = 1, 2, · · · , k}.

Proof. (i) Suppose γcs(G) = n − 1. Suppose G ̸= Kn and assume that G has two
non-trivial components, say Gm and Gr. Pick v ∈ V (Gm) and w ∈ V (Gr). Then S∗ =
[V (Gk) \ {v}] ∪ [V (Gr) \ {w}] ∪ [∪j ̸=k,rV (Gj)] is a complement-super dominating set of
G by Theorem 9(iii). Hence, γcs(G) ≤ |S∗| = n − 2, a contradiction. Since G ̸= Kn,
G has exactly a single non-trivial component, say Gs. Let D be a γcs-set of Gs. Then
S = D ∪ [∪j ̸=kV (Gj)] is a complement-super dominating set of G by Theorem 9(i). Since
γcs(G) = n− 1 ≤ |S|, |V (Gs)| − 1 ≤ |D| = γcs(Gs) ≤ |V (Gs)|.
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For the converse, suppose first that G = Kn. Then γcs(G) = n−1 by Theorem 8. Next,
suppose G has a single non-trivial component Gs and |V (Gs)| − 1 ≤ γcs(Gs) ≤ |V (Gs)|.
Since V (G) \ {x} is a complement-super dominating set of G for each isolated vertex x,
it follows that γcs(G) ≤ n − 1. Let S be a γcs-set of G. If γcs(Gs) = |V (Gs)|, then
S of type (ii) by Theorem 9. Hence, γcs(G) = n − 1. If γcs(Gs) = |V (Gs)| − 1, then
S = D∪ [∪j ̸=sV (Gj)] where D is γcs-set of Gs or S is of type (ii) by Theorem 9. In either
case, γcs(G) = n− 1.

(ii) Let Gm and Gr be non-trivial components and pick v ∈ V (Gm) and w ∈ V (Gr).
Then S′ = [V (Gm)\{v}]∪[V (Gr)\{w}]∪[

⋃
j ̸=k,r V (Gj)] is a complement-super dominating

set of G by Theorem 9(iii). It follows that γcs(G) ≤ n− 2. Let S be a γcs-set of G. Since
every complement-super dominating set of type (ii) (see Theorem 9) is of cardinality n−1,
it follows that S is of type (i) or type (iii). If S is of type (iii), then γcs(G) = n−2. If S is of
type (i), then there exists a (non-trivial component) Gs such that S = Ds ∪ [∪j ̸=sV (Gj)],
where Ds is a γcs-set of Gs. In this case, γcs(G) = γcs(Gs) +

∑
j ̸=s |V (Gj)|. Hence,

γcs(G) + |V (Gs)| − γcs(Gs) = n, that is, γcs(G) = n − [|V (Gs)| − γcs(Gs)]. Clearly,
ηG = |V (Gs)| − γcs(Gs). Accordingly, γcs(G) = min{n− 2, n− ηG}.

The next result is a consequence of Theorem 3, Theorem 4, and Theorem 10.

Corollary 4. Let G and H be any two graphs of orders m and n, respectively. Then

γsh(G+H) = γcs(G) + γcs(H).

In particular,

(i) γsh(G+H) = m+ n if G and H are complete;

(ii) γsh(G+H) = m+ γcs(H) if G = Km; and

(iii) γsh(G+H) = m+ n− 2 if G = Km and H = Kn for m,n ≥ 2.

The lexicographic product of graphs G and H, denoted by G[H], is the graph with
vertex set V (G[H]) = V (G)× V (H) such that (v, a)(u, b) ∈ E(G[H]) if and only if either
uv ∈ E(G) or u = v and ab ∈ E(H).

Note that every non-empty subset C of V (G) × V (H) can be expressed as C =
∪x∈S [{x} × Tx], where S ⊆ V (G) and Tx ⊆ V (H) for each x ∈ S.

Theorem 11. Let G and H be any connected non-trivial graphs. Then C =
⋃
x∈S

[{x}×Tx],

where S ⊆ V (G) and Tx ⊆ V (H) for each x ∈ S, is a super hop dominating set of G[H]
if and only if the following statements hold.

(i) S = V (G).

(ii) For each x ∈ S with |V (H) \ Tx| ≥ 2, the following conditions hold:

(a) Tx is a complement-super dominating set of H, and
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(b) Ty = V (H) for all y ∈ N2
G(x).

(iii) For each x ∈ V (G) with |V (H) \ Tx| = 1, at least one of the following conditions
holds:

(a) Tx is a complement-super dominating set of H and Ty = V (H) for all y ∈
N2

G(x).

(b) There exist z ∈ N2
G(x) and t ∈ Tz such that Tw = V (H) for all w ∈ N2

G(z)\{x}
and V (H) \ Tz ⊆ NH(t), where |V (H) \ Tz| ≤ 1.

Proof. Suppose C = ∪x∈S({x} × Tx) is a super hop dominating set of G[H]. Suppose
there exists x ∈ V (G) \ S and let a ∈ V (H). Since H is non-trivial, it follows that
ehpnG[H] ((x, a), V (G[H]) \ C) = ∅, contrary to our assumption that C is a super hop
dominating set. Thus, S = V (G), showing that (i) holds.

Now let x ∈ S = V (G) with |V (H) \ Tx| ≥ 2 and let p ∈ V (H) \ Tx. Since C is
a super hop dominating set of G[H], ehpnG[H]((x, p), V (G[H]) \ C) ̸= ∅. Let (y, q) ∈
ehpnG[H]((x, p), V (G[H]) \ C). By assumption, y /∈ N2

G(x). Hence, y = x and q ∈
Tx \ NH(p). Moreover, since (x, q) ∈ ehpnG[H]((x, p), V (G[H]) \ C), [V (H) \ NH(q)] ∩
[V (H) \ Tx] = {p} and Ty = V (H) for all y ∈ S ∩N2

G(x), showing that (a) and (b) of (ii)
hold.

Finally, let x ∈ S with |V (H)\Tx| = 1 and let p ∈ V (H)\Tx. Suppose that (a) of (iii)
does not hold. Since C is a super hop dominating set of G[H] and (x, p) ∈ V (G[H])\C, let
(z, t) ∈ ehpnG[H]((x, p), V (G[H]) \ C). This, together with the assumption, implies that
z ∈ N2

G(x), t ∈ Tz, Tw = V (H) for all w ∈ N2
G(z) \ {x} and V (H) \ Tz ⊆ NH(t). Suppose

|V (H)\Tz| > 1, say c, d ∈ V (H)\Tz where c ̸= d. Then ehpnG[H]((z, c), V (G[H])\C) = ∅,
contrary to the assumption that C is a super hop dominating set of G[H]. Therefore,
|V (H) \ Tz| ≤ 1, showing that (b) of (iii) holds.

For the converse, suppose that C = ∪x∈S({x} × Tx) satisfies conditions (i), (ii), and
(iii). Let (x, p) ∈ V (G[H])\C. Since S = V (G), p /∈ Tx. If |V (H)\Tx| ≥ 2, then by condi-
tion (ii), there exists q ∈ ehpnH(p, V (H)\Tx). Clearly, (x, q) ∈ ehpnG[H]((x, p), V (G[H])\
C). Suppose that |V (H) \ Tx| = 1. Then by (iii),
ehpnG[H]((x, p), V (G[H]) \ C) ̸= ∅. Accordingly, C is a super hop dominating set of
G[H].

Let G be a graph. A set S ⊆ V (G) is a hop independent set of G if dG(x, y) ̸= 2 for
any two vertices x, y ∈ S. The hop independence number of G, denoted by αh(G), is the
largest cardinality of a hop independent set of G. Any hop independent set of G with
cardinality αh(G) is called an αh-set of G. The concept has been introduced and studied
in [4].

Corollary 5. Let G and H be non-trivial connected graphs of orders m and n, respectively.
Then γsh(G[H]) ≤ (γcs(H)−n)αh(G)+mn. Moreover, if γcs(H) ≤ n−2, then γsh(G[H]) =
(γcs(H)− n)αh(G) +mn.
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Proof. Let A be a αh-set of G and let D be a γcs-set of H. Set Tx = D for each x ∈ A
and Tx = V (H) for each x ∈ V (G) \A. Then, by Theorem 11, C0 = ∪x∈V (G)({x}× Tx) =
(A×D) ∪ [(V (G) \A)× V (H)] is a super hop dominating set of G[H]. Hence,

γsh(G[H]) ≤ |C0|
= |A||D|+ (m− |A|)n
= αh(G)γcs(H) + [m− αh(G)]n

= (γcs(H)− n)αh(G) +mn.

Next, let C = ∪x∈V (G)({x} × Tx) be a γsh-set of G[H]. Let R = {v ∈ V (G) : |V (H) \
Tv| ≥ 2}. Since C is a super hop dominating set, R must be a hop independent set
of G by Theorem 11(ii). Also, since C is a γsh-set of G[H], Tv is a γcs-set of H for
each v ∈ R. Now let u ∈ V (G) \ R and suppose that |V (H) \ Tu| = 1. By Theorem
11(ii), dG(u,w) ̸= 2 for all w ∈ R (otherwise, Tu = V (H), a contradiction). Suppose
that Tx = V (H) for all x ∈ N2

G(u). Replace Tu by a γcs-set T ′
u of H. Then the set

C∗ = ∪x∈V (G)\{u}({x} × Tx) ∪ ({u} × T ′
u) is a super hop dominating set of G[H] by

Theorem 11. Moreover, |C∗| < |C|, contrary to the assumption that C is a γsh-set of
G[H]. Hence, Tx ̸= V (H) for some x ∈ N2

G(u). It follows from Theorem 11(iii) that
there exists a z ∈ N2

G(u) and t ∈ Tz such that Tw = V (H) for all w ∈ N2
G(z) \ {u} and

V (H)\Tz ⊆ NH(t), where |V (H)\Tz| ≤ 1. Replace Tu by T ′
u = V (H) and Tz by a γcs-set

T ′
z of H. Then the set C1 = ∪x∈V (G)\{z,u}({x}×Tx)∪({u}×T ′

u)∪({z}×T ′
z) is a super hop

dominating set of G[H] by Theorem 11. Clearly, |T ′
u| = |Tu|+ 1. If γcs(H) ≤ n− 3, then

|T ′
z| < |Tz| − 1 and a straightforward computation shows that |C1| < |C|, a contradiction.

Thus, Tu = V (H) for all u ∈ V (G) \ R. Since C is a γsh-set of G[H], it follows that R is
a αh-set of G. This implies that γsh(G[H]) = |C| = (γcs(H) − n)αh(G) + mn. Suppose
now that γcs(H) = n − 2. Suppose further that Tz = V (H). Then |T ′

z| < |Tz| − 1 and
|C1| < |C|, a contradiction. Hence, |Tz| = n − 1. It follows that |T ′

z| = |Tz| − 1 and
|C1| = |C|. This means that in the γsh-set C we may assume further that Tu = V (H) for
each u ∈ V (G)\R. Again, as C is a γsh-set of G[H], R would be a αh-set of G, establishing
the desired equality.

We point out that the equality in Corollary 5 does not necessarily hold if γcs(H) = n−1,
where n = |V (H)|. To see this, consider G = P4 and H = P3. Then αh(G) = 2 and
γcs(H) = 2. It can be verified easily that γsh(G[H]) = 8 < 10 = (2 − 3)(2) + (4)(3) =
[γcs(H)− 3]αh(G) + 12.

Corollary 6. Let H be a connected graph and let m be a positive integer. Then

γsh(Km[H]) =

{
γsh(H) , m = 1

m.γcs(H) , m ≥ 2.

Proof. The result is clear if m = 1. Suppose m ≥ 2 and let let C = ∪x∈V (Km)({x} ×
Tx) be a γsh-set of Km[H]. Then each Tx is a complement-super dominating set of H
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by Theorem 11. In particular, Tx is a γcs-set of H for all x ∈ V (Km). Accordingly,
γsh(Km[H]) = |C| = m.γcs(H).

Conclusion: Super hop domination, a variant of hop domination, has been intro-
duced and studied for some graphs and graphs resulting from the join and lexicographic
product of two graphs. In the case of the join of graphs, the concept of complement-super
domination plays a vital role. Finding the complement-super domination number of a
graph is the same as determining the super domination number of the complement of the
graph. It is conjectured that the problem of finding a super hop dominating set is not
easy, that is, NP-hard (NP-complete). It is recommended that some bounds on the super
hop domination be determined and that the parameter be studied for other graphs.
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