EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 15, No. 2, 2022, 784-795 ISSN 1307-5543 — ejpam.com Published by New York Business Global

New Spectral Idea for Conjugate Gradient Methods and Its Global Convergence Theorems

Aseel M. Qasim¹, Zinah F. Salih^{2,*}

Abstract. Recently, the unconstrained optimization conjugate gradient methods have been widely utilized, especially for problems that are known as large-scale problems. This work proposes a new spectral gradient coefficient obtained from a convex linear combination of two different gradient coefficients to solve unconstrained optimization problems. One of the most essential features of our suggested strategy is to guarantee the suitable subsidence direction of the line search precision. Furthermore, the proposed strategy is more effective than previous conjugate gradient approaches and stationery, which have been observed in the test problem. However, when it is compared to other conjugate gradient methods, such as FR methods, the proposed method confirmed the globally convergent, indicating that it can be used in scientific data computation.

2020 Mathematics Subject Classifications: 65K10

Key Words and Phrases: Conjugate gradient, Spectral, Unconstrained optimization, Global convergence, Descent property

1. Introduction

The spectral gradient approaches presented by Barzilai and Browein [5] and later researched by Raydan [23] have proven to be useful and valuable in this area, which are utilized to determine the local minimizers of large-scale problems [2]. In this paper, we describe a spectral gradient technique to solve unconstrained optimization problems of the form:

$$\min_{x \in R} f(x) \tag{1}$$

In most cases, the conjugate gradient approach creates a sequence $\{x_k\}$ in such a way:

$$x_{k+1} = x_k + \alpha_k d_k \tag{2}$$

DOI: https://doi.org/10.29020/nybg.ejpam.v15i2.4364

Email addresses: aseel.albazaz@uomosul.edu.iq (A. M. Qasim), zn_f2020@uomosul.edu.iq (Z. F. Salih)

¹ Department of Mathematics, College of Education of Pure Sciences, University of Mosul, Mosul, Nineveh, Iraq

² Department of Mathematics, College of Computers Sciences and Mathematics, University of Mosul, Mosul, Nineveh, Iraq

^{*}Corresponding author.

For k = 0, x_0 denotes the starting position, α_k denotes the specified step size by a line search, d_k signifies the direction of search, which is specified by:

$$d_{k+1} = -g_{k+1} + \beta_k d_k \tag{3}$$

where $d_0 = -g_0$ for k = 0 and β_k is a scalar, g_{k+1} refers to the gradient $\nabla f(x_{k+1})$ at the new point. The most familiar β_k formulation is the Fletcher-Reeves (FR), Polak-Ribire, Hestenes-Stiefel (HS), Dai and Yan (DY) formulations which are supplied by: see [12][20][21][17][6]

$$\beta_k^{FR} = \frac{g_{k+1}^T g_{k+1}}{g_k^T g_k} \tag{4}$$

$$\beta_k^{PRP} = \frac{g_{k+1}^T y_k}{||g_k||^2} \tag{5}$$

$$\beta_k^{HS} = \frac{g_{k+1}^T \ g_{k+1}}{d_k^T y_k} \tag{6}$$

$$\beta_k^{DY} = \frac{g_{k+1}^T g_{k+1}}{y_k^T d_k} \tag{7}$$

Also, recently, Hassan [13] suggests a new formula which is denoted in equations (8), (9) respectively.

$$\beta_k^Y = \frac{g_{k+1}^T y_k}{(f_k - f_{k+1})/\alpha_k - g_k^T d_k/2} \tag{8}$$

$$\beta_k^G = \frac{g_{k+1}^T g_{k+1}}{(f_k - f_{k+1})/\alpha_{k-} g_k^T d_k/2} \tag{9}$$

Where the last two equations of β_k are used to suggest a new form of β_k , which we call β_k^{NN} . The other β_k parameters have been offered in the literature see for example [1][3][4][10][11]. To avoid the non-convergence in the nonlinear function which is used with inexact line search the following condition is used:

$$\left| g_{k+1}^T g_k \right| > 0.2 ||g_{k+1}|| \tag{10}$$

Known as the Powell restart condition [7]. Also, to avoid the negative case of β_k we use Wolfe conditions to guarantee the convergence of non-linear conjugate methods for the research [24]. More information on these line search methods can be found in the literature [8][19][26][27]

$$f(x_k + \alpha_k d_k) \le f(x_k) + \delta_1 \alpha_k d_k^T g_k \tag{11}$$

$$g(x_k + \alpha_k d_k)^T d_k \ge \delta_2 \alpha_k d_k^T g_k \tag{12}$$

Where d_k is descant direction, $g_k^T d_k < 0$, and $0 < \delta_1 < \delta_2 < 1$. Dai and Yuan [6] show that the FR method satisfies the global convergence feature if the strong Wolfe conditions are satisfied. Recently, combining the well numerical results execution of PRP and HS with the globally convergent properties of the FR and DY methods [6], are the way that is adopted in this paper, which will be discussed in the second section. the systematic sequence of this paper is: The second section proposes a new spectral CG formula and the section three establishes the new method's global convergence. The numerical experiments are shown in the fourth Section, and finally, the fifth Section presents the comparison of the results and conclusion.

2. New Spectral formula for CG Method

The new concept is to redirect the search path so that the new path guarantees the condition.

$$g_{k+1}^T d_{k+1} \le -c ||g_{k+1}||^2 \tag{13}$$

Zhang et al. [28] suggested a conjugate gradient approach based on the modification of the Fletcher-Reeves method in such a way that the direction d_k which is given by [14]:

$$d_{k+1} = -\theta g_{k+1} + \beta_k \ d_k \tag{14}$$

and the scalar θ is defined as, $\theta = \left(1 + \beta_k \frac{d_k^T g_{k+1}}{||g_{k+1}||^2}\right)$ Now to improve the proposed CG method, we combine the good computational properties of β_k^Y and β_k^G method which is given in equations (8) and (9) respectively. These methods have strong convergence properties, then rewrite the new formula of β_k as a linear combination of (8) and (9), therefor our new formula β_k^{NN} becomes:

$$\beta_k^{NN} = (1 - r) \beta_k^Y + r \beta_k^G \tag{15}$$

Where 0 < r < 1, $\beta_k^Y = \frac{g_{k+1}^T \ y_k}{(f_k - f_{k+1})/\alpha_k - \ g_k^T \ d_k/2}$, and $\beta_k^G = \frac{g_{k+1}^T \ g_{k+1}}{(f_k - f_{k+1})/\alpha_k - \ g_k^T \ d_k/2}$ Now by multiplying (14) by y_k^T and using the Conjugacy condition [25]

 $y_k^T d_{k+1} = 0$ in order to compute the value of r we get:

$$y_k^T \left(-\theta g_{k+1} + \beta_k \ d_k \right) = 0 \tag{16}$$

$$-\left[1 + \beta_k \frac{d_k^T g_{k+1}}{\|g_{k+1}\|^2}\right] y_k^T g_{k+1} + \beta_k y_k^T d_k = 0$$
(17)

By using (15) we get:

$$-\left[1 + \left[(1-r)\beta_k^Y + r\beta_k^G\right] \frac{d_k^T g_{k+1}}{||g_{k+1}||^2} \right] y_k^T g_{k+1} + \left[(1-r)\beta_k^Y + r\beta_k^G\right] y_k^T d_k = 0$$

$$r\left[-\beta_k^G \frac{d_k^T \, g_{k+1}}{||g_{k+1}||^2} y_k^T \, g_{k+1} + \beta_k^Y \frac{d_k^T \, g_{k+1}}{||g_{k+1}||^2} y_k^T \, g_{k+1} - \beta_k^Y y_k^T \, d_k + \beta_k^G y_k^T \, d_k\right]$$

$$= \beta_k^Y \frac{d_k^T g_{k+1}}{||g_{k+1}||^2} y_k^T g_{k+1} - \beta_k^Y y_k^T d_k + y_k^T g_{k+1}$$

$$\therefore r = \frac{\beta_k^Y \left(\frac{d_k^T g_{k+1}}{||g_{k+1}||^2} y_k^T g_{k+1} - y_k^T d_k\right) + y_k^T g_{k+1}}{\left(\beta_k^G - \beta_k^Y\right) \left(y_k^T d_k - \frac{d_k^T g_{k+1}}{||g_{k+1}||^2} y_k^T g_{k+1}\right)}$$
(18)

This is the final form of r which is denoted in the equation above. the explanation of the outlines of the new algorithm might be stated as follows:

2.1. The NN-CG Algorithm

- 1st: take $x_1 \in \mathbb{R}^n, \varepsilon > 0, d_1 = -g_1$ if $||g_1|| < \varepsilon$, then quit.
- 2^{nd} : if $||g_{k+1}|| < \varepsilon$ then come to the end; otherwise proceed to 3^{th} step.
- 3^{rd} : By satisfying Wolfe conditions (11) and (12), find α_k and take $x_{k+1} = x_k + \alpha_k d_k$
- 4^{th} : find β_k by equation (15), then compute d_{k+1} by (3).
- 5^{th} : put k = k + 1, go-to 2^{nd} .

3. The Global Convergence Theorem and hypothesis

The following hypothesis is required to investigate a new convergence method:

hypothesis number one:

- (i) The set $\Omega = x \in \mathbb{R}^n | f(x) \le f(x_0)$ is bounded when $x_0 \in \mathbb{R}^n$, is an initial point.
- (ii) There exists a constant W>0 in an open convex set N that includes f is continuously differentiable and the gradient that satisfies Lipschitz condition is continuous. For more detail see [29]. Such as:

$$||g(x) - g(y)|| \le W||x - y||, \quad \forall x, y \in \Omega$$

$$\tag{19}$$

Furthermore, we can deduce from the hypothesis that p and $\ell > 0$ are constants such that:

$$||x|| \le p$$
, $||g(x)|| < \ell$, $\in \Omega$

Lemma 1. Consider that hypothesis number one is holding, and let any step of the type (3) where d_k is decline direction and α_k fulfills conditions (11) and (12), so Zoutedijk condition hold. [30][22].

$$\sum_{k=1}^{\infty} \frac{\left(g_k^T d_k\right)^2}{||d_k||^2} < \infty \tag{20}$$

Following that, we present additional lemmas that are critical for the global convergence dissection.

Lemma 2. Suppose that hypothesis number one holds, and take into account any iteration of the form (2) then the direction d_{k+1} which is given in (14) satisfies the sufficient descant condition

$$d_{k+1}^T g_{k+1} = -||g_{k+1}||^2 (21)$$

Proof. From (15), for k = 0 the result is hold and we have $d_1^T g_1 = -||g_1||^2$, now when k > 0 we obtain:

$$g_{k+1}^{T} d_{k+1} = -\left(1 + \beta_{k} \frac{g_{k+1}^{T} d_{k}}{||g_{k+1}||^{2}}\right) ||g_{k+1}||^{2} + \beta_{k} g_{k+1}^{T} d_{k}$$

$$= -||g_{k+1}||^{2} - \beta_{k} \frac{g_{k+1}^{T} d_{k}}{||g_{k+1}||^{2}} \cdot ||g_{k+1}||^{2} + \beta_{k} g_{k+1}^{T} d_{k} = -||g_{k+1}||^{2}$$
(22)

We see that (21) holds for all k > 0. So, the **proof** is complete.

Lemma 3. Consider that hypothesis (1) and (2) hold and let α_k satisfies Wolfe's condition (11), (12) then β_k which is determined by (15) satisfies $0 < \beta_k$

Proof. from the line of inquiry condition (11), (12) as well as the sufficient descent condition (21), and since $d_k^T g_k = -||g_k||^2$ it is possible to show that:

$$\beta_k^Y = \frac{g_{k+1}^T y_k}{(f_k - f_{k+1})/\alpha_{k-} g_k^T d_k / 2} > \frac{||g_{k+1}||^2 - g_{k+1}^T g_k}{-\delta_1 d_k^T g_k + \frac{||g_k||^2}{2}}$$
(23)

$$\beta_k^G = \frac{g_{k+1}^T g_{k+1}}{(f_k - f_{k+1})/\alpha_k - g_k^T d_k/2} > \frac{||g_{k+1}||^2}{-\delta_1 d_k^T g_k + \frac{||g_k||^2}{2}} > \frac{||g_{k+1}||^2}{\delta ||g_k||^2 + \frac{||g_k||^2}{2}}$$

$$= \frac{||g_{k+1}||^2}{\left(\delta + \frac{1}{2}\right) ||g_k||^2} > 0$$
(24)

Then from (23), (24) and (15) we have:

$$\beta_k^{NN} = (1 - r) \,\beta_k^Y + r \,\beta_k^G$$

$$= (1 - r) \frac{||g_{k+1}||^2 - g_{k+1}^T g_k}{\left(\delta + \frac{1}{2}\right) ||g_k||^2} + r \frac{||g_{k+1}||^2}{\left(\delta + \frac{1}{2}\right) ||g_k||^2} = \frac{||g_{k+1}||^2 - g_{k+1}^T g_k + r g_{k+1}^T g_k}{\left(\delta + \frac{1}{2}\right) ||g_k||^2}$$

From Powell restart condition (10) we have

$$\beta_{k}^{NN} > \frac{||g_{k+1}||^{2} - 0.2||g_{k+1}||^{2} + 0.2r||g_{k+1}||^{2}}{\left(\delta + \frac{1}{2}\right)||g_{k}||^{2}} > \frac{0.8||g_{k+1}||^{2} + 0.2r||g_{k+1}||^{2}}{\left(\delta + \frac{1}{2}\right)||g_{k}||^{2}}$$
$$\therefore \beta_{k}^{NN} = \frac{n||g_{k+1}||^{2}}{\left(\delta + \frac{1}{2}\right)||g_{k}||^{2}} > 0$$
(25)

by assuming n = (0.8 + 0.2r), and since 0 < r < 1 then it is clearly that $\beta_k^{NN} > 0$

Theorem 1. Assume that hypothesis number one is true, $\{x_k\}$ is a sequence generated by the algorithm (2.1) and α_k fulfill the Wolfe's conditions (11) and (12), Then we need to prove that $\lim_{k\to\infty}\inf||g_{k+1}||=0$

Proof. we use the disagreement method to complete the proof which assumes that $||g_{k+1}|| > \gamma$ for $\gamma > 0$ from (3) it follows that: $d_{k+1} + g_{k+1} = \beta_k d_k$ by squaring the equation (3) we have:

$$||d_{k+1}||^2 + 2g_{k+1}^T d_{k+1} + ||g_{k+1}||^2 = \beta_k^2 ||d_k||^2$$

Since the sufficient descant condition (21) is held, we obtain:

$$||d_{k+1}||^2 = (\beta_k)^2 ||d_k||^2 - ||g_{k+1}||^2 - 2g_{k+1}^T d_{k+1}$$

$$= (\beta_k)^2 ||d_k||^2 - ||g_{k+1}||^2 + 2||g_{k+1}||^2$$

$$= (\beta_k)^2 ||d_k||^2 + ||g_{k+1}||^2$$
(26)

Both sides are divided by $(g_{k+1}^T \ d_{k+1})^2$ we have:

$$\frac{||d_{k+1}||^2}{(g_{k+1}^T d_{k+1})^2} \le (\beta_k^2) \frac{||d_k||^2}{(g_{k+1}^T d_{k+1})^2} + \frac{||g_{k+1}||^2}{(g_{k+1}^T d_{k+1})^2}
\le (\beta_k)^2 \frac{||d_k||^2}{(g_{k+1}^T d_{k+1})^2} + \frac{1}{||g_{k+1}||^2}$$
(27)

Now from (25), (27) we obtain:

$$\frac{||d_{k+1}||^2}{(g_{k+1}^T d_{k+1})^2} \le \left(\frac{n||g_{k+1}||^2}{\left(\delta + \frac{1}{2}\right)||g_k||^2}\right)^2 \frac{||d_k||^2}{||g_{k+1}||^4} + \frac{1}{||g_{k+1}||^2}$$

$$= \frac{n^2||d_k||^2}{\left(\delta + \frac{1}{2}\right)^2||g_k||^4} + \frac{1}{||g_{k+1}||^2}$$

$$= \frac{n^2||d_k||^2}{\left(\delta + \frac{1}{2}\right)^2(g_k^T d_k)^2} + \frac{1}{||g_{k+1}||^2}$$
(28)

Since that:

$$\frac{||d_1||^2}{(g_1^T d_1)^2} = \frac{1}{||g_1||^2} \tag{29}$$

From this and $||g_{k+1}|| > \varepsilon^2 \quad \forall k$ we have:

$$\frac{||d_{k+1}||^2}{(g_{k+1}^T d_{k+1}^T)^2} \le \sum_{i=1}^{k+1} \frac{1}{(\delta + 1/2)^2 ||g_i||^2} \le \frac{k}{(\delta + 1/2)^2 \varepsilon^2}$$

$$\therefore \frac{(g_{k+1}^T d_{k+1}^T)^2}{||d_{k+1}||^2} \ge \frac{(\delta + 1/2)^2 \varepsilon^2}{k}$$

Which indicates:

$$\sum_{k=1}^{\infty} \frac{(g_{k+1}^T d_{k+1})^2}{||d_{k+1}||^2} \ge \sum_{k=1}^{\infty} \frac{(\delta + \frac{1}{2})^2 \varepsilon^2}{k} = \infty$$
 (30)

And this is in direct opposition to the Zoutendijk condition (20), with this contradiction we complete **proof**.

4. Numerical Experiments

Now we set up the numeral experiments, Compute and make a comparison between our method vs. β_k^{FR} . The comparison is written using the Fortran 90 program, and the test function is implemented using the functions chosen from Andrei [2]. The measure of stooping the algorithm is denoted as $||g_{k+1}|| \leq 10^{-6}$, We use 27 test problems with different dimensions to experiment with the execution of the new method. Table 1 shows the calculation result, with NOI, NOR, and NOF which stand for the amount of iterations total, restart, and function evaluation, respectively. While Table 2 explains the execution percentage of the new method opposite FR method, also the execution was analyzed by the performance profile software which is developed by Dolan and Mor'e [9] which are seen in Figures 1, 2, 3.

Figure 1: The performance profile of iteration.

Figure 2: The performance profile of function evaluation.

Figure 3: The performance profile of restart.

Prignometric 100 20	Test Problem	Dim		NN			FR	
Penalty			NOI		NOF	NOI		NOF
Penalty	m:	100	20	11	37	18	10	34
Penalty 1000	Trigonometric	1000	33	19	63	40	24	69
Perturbed Quadratic 100	D 14	100	9	6	25	11	6	28
Raydan 2	Penaity	1000	51	43	959	210	202	6193
Raydan 2 1000	Dt	100	102	35	156	102	31	156
Diagonal 2 1000	Perturbed Quadratic	1000	340	95	559	325	111	494
Diagonal 2	D 1 0	100	4	4	9	4	4	9
Diagonal 2 1000 221 74 377 211 74 351	Raydan 2	1000	4	4	9	4	4	9
Generalized Tridiagonal 1	D: 10	100	61	18	105	70	24	113
Extended Tridiagonal 1 1000 32 17 263 49 29 758 Extended Tridiagonal 1 1000 11 6 23 10 5 21 1000 13 7 26 13 7 26 Generalized Tridiagonal 2 1000 62 25 107 67 28 102 Diagonal 4 1000 4 2 8 4 2 8 Diagonal 5 1000 4 4 9 4 4 9 Extended Himmelblau 1000 4 4 9 4 4 9 Extended PSC1 1000 8 6 17 8 6 17 Extended Powell 1000 7 5 15 7 5 15 Extended BD1 1000 63 63 98 63 63 98 Extended BD1 1000 67 67 105 67 67 105 Extended Wood WOODS 1000 31 232 89 31 167 Extended EP1 1000 67 67 105 67 67 105 Extended Tridiagonal 2 1000 67 67 105 67 67 105 Extended Tridiagonal Perturbed 1000 151 31 268 181 39 321 Extended Wood WOODS 1000 364 111 588 362 101 568 Extended Tridiagonal 2 1000 2 2 5 2 2 5 Extended Tridiagonal 2 1000 2 2 5 2 2 5 Extended Tridiagonal 2 1000 2 2 5 2 2 5 Extended Tridiagonal 2 1000 20 20 129 66 22 127 Extended Tridiagonal 2 1000 20 20 20 20 20 Extended Tridiagonal 2 1000 364 111 588 362 101 568 Extended Tridiagonal 2 1000 364 111 588 362 101 568 Extended Tridiagonal 2 1000 39 15 63 36 12 57 Extended Tridiagonal 2 1000 42 18 64 40 17 64 NONDIA 1000 7 7 14 7 5 14 DQDRTIC 1000 8 1 17 6 1 13 DQDRTIC 1000	Diagonai 2	1000	221	74	377	211	74	351
Extended Tridiagonal 1		100	23	7	46	22	6	44
Diagonal 1 1000 13 7 26 13 7 26 100 42 17 64 37 11 59 100 62 25 107 67 28 102 1000 4 2 8 4 2 8 102 1000 4 2 8 4 2 8 102 1000 4 2 8 4 2 8 102 1000 4 4 9 4 4 9 4 4 9 1000 4 4 9 4 4 9 100 4 4 9 100 100 12 6 23 22 12 35 100 100 12 6 23 22 12 35 100	Generalized Tridiagonal I	1000	32	17	263	49	29	758
Generalized Tridiagonal 2	D / 1 1 D : 1: 11	100	11	6	23	10	5	21
Ceneralized Tridiagonal 2 100	Extended Tridiagonal 1	1	I			13		
Diagonal 4		1	l	17		37	11	
Diagonal 4	Generalized Tridiagonal 2	1	62					
Diagonal 4	D	1	I					
Diagonal 5 100	Diagonal 4	1						
Diagonal 5 1000		1						
Extended Himmelblau 100	Diagonal 5							
Extended Himmelblau 1000 12 6 23 22 12 35		1	1					
Extended PSC1	Extended Himmelblau	1	I					
Extended PSCI 1000 7 5 15 7 5 15 15 15 1		1	1					
Extended Powell	Extended PSC1		1					
Extended Powell 1000 1000 31 232 89 31 167		1	1					
Extended BD1	Extended Powell	1	l					
Extended BD1 1000 67 67 105 67 67 105 Quadratic Diagonal Perturbed 100 73 9 128 52 11 89 Extended Wood WOODS 100 32 13 60 25 9 48 Extended Wood WOODS 1000 46 16 83 30 13 55 Quadratic QF1 100 95 30 153 85 22 134 Extended EP1 1000 364 111 588 362 101 568 Extended Tridiagonal 2 1000 39 15 63 36 12 57 Extended Tridiagonal 2 1000 42 18 64 40 17 64 NONDIA 100 12 8 23 15 8 30 DQDRTIC 100 8 1 17 6 1 13 DIXMAANA 100 7 7		1	l					
Quadratic Diagonal Perturbed 100 73 9 128 52 11 89 Extended Wood WOODS 100 32 13 60 25 9 48 Lextended Wood WOODS 1000 46 16 83 30 13 55 Quadratic QF1 100 95 30 153 85 22 134 Extended EP1 100 364 111 588 362 101 568 Extended Tridiagonal 2 100 2 2 5 2 2 5 Extended Tridiagonal 2 100 39 15 63 36 12 57 Extended Tridiagonal 2 100 42 18 64 40 17 64 NONDIA 100 12 8 23 15 8 30 DQDRTIC 100 8 1 17 6 1 13 DIXMAANA 100 7 7	Extended BD1	1	1					
Quadratic Diagonal Perturbed 1000 151 31 268 181 39 321 Extended Wood WOODS 100 32 13 60 25 9 48 Quadratic QF1 100 46 16 83 30 13 55 Quadratic QF1 100 95 30 153 85 22 134 Extended EP1 100 2 2 5 2 2 5 Extended Tridiagonal 2 1000 39 15 63 36 12 57 Extended Tridiagonal 2 100 39 15 63 36 12 57 Extended Tridiagonal 2 100 42 18 64 40 17 64 NONDIA 100 12 8 23 15 8 30 DQDRTIC 100 8 1 17 6 1 13 DIXMAANA 100 7 7 <td< td=""><td></td><td>1</td><td>I</td><td></td><td></td><td></td><td></td><td></td></td<>		1	I					
Extended Wood WOODS	Quadratic Diagonal Perturbed	1	I					
Extended Wood WOODS 1000 46 16 83 30 13 55 Quadratic QF1 100 95 30 153 85 22 134 1000 364 111 588 362 101 568 Extended EP1 100 2 2 5 2 2 5 Extended Tridiagonal 2 100 39 15 63 36 12 57 Extended Tridiagonal 2 100 39 15 63 36 12 57 Extended Tridiagonal 2 100 42 18 64 40 17 64 NONDIA 100 12 8 23 15 8 30 NONDIA 100 12 7 25 9 6 19 DQDRTIC 100 8 1 17 6 1 13 DIXMAANA 100 7 7 14 7 7		1	l					
Quadratic QF1 100 95 30 153 85 22 134 Extended EP1 100 2 2 5 2 2 5 Extended Tridiagonal 2 100 2 2 5 2 2 5 Extended Tridiagonal 2 100 39 15 63 36 12 57 NONDIA 100 42 18 64 40 17 64 NONDIA 100 12 8 23 15 8 30 NONDIA 100 12 7 25 9 6 19 DQDRTIC 100 8 1 17 6 1 13 DIXMAANA 100 7 7 14 7 7 14 DIXMAANB 100 10 18 10 10 18 DIXMAANC 100 13 13 24 13 13 24	Extended Wood WOODS		1					
Quadratic QF1 1000 364 111 588 362 101 568 Extended EP1 100 2 2 5 2 2 5 Extended Tridiagonal 2 100 39 15 63 36 12 57 NONDIA 100 42 18 64 40 17 64 NONDIA 100 12 8 23 15 8 30 DQDRTIC 100 8 1 17 6 1 13 DIXMAANA 100 7 7 14 7 7 14 DIXMAANB 100 7 7 14 7 5 14 DIXMAANB 100 10 18 10 10 18 DIXMAANC 100 13 13 24 13 13 24 DIXMAANE 100 79 28 119 82 27 126		1	I					
Extended EP1	Quadratic QF1	1	l					
Extended EPI		1	I					
Extended Tridiagonal 2	Extended EP1		l					
NONDIA 1000 42 18 64 40 17 64		1	1					
NONDIA 100 12 8 23 15 8 30 DQDRTIC 100 8 1 17 6 1 13 DIXMAANA 1000 7 7 14 7 7 14 DIXMAANA 1000 7 3 14 7 5 14 DIXMAANB 100 10 10 18 10 10 18 DIXMAANC 100 13 13 24 13 13 24 DIXMAANE 100 79 28 119 82 27 126 DIXMAANE 100 79 28 119 82 27 126 Partial Perturbed Quadratic 100 85 26 135 77 26 120 Broyden Tridiagonal 100 38 16 58 30 10 48 Broyden Tridiagonal 100 40 17 68 33 8 <td>Extended Tridiagonal 2</td> <td>1</td> <td>l</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Extended Tridiagonal 2	1	l					
NONDIA 1000 12 7 25 9 6 19 DQDRTIC 100 8 1 17 6 1 13 DIXMAANA 1000 11 0 23 7 1 15 DIXMAANA 1000 7 7 14 7 7 14 DIZMAANB 100 10 10 18 10 10 18 DIXMAANC 100 13 13 24 13 13 24 DIXMAANE 100 14 14 25 14 14 25 DIXMAANE 100 79 28 119 82 27 126 DIXMAANE 1000 216 67 344 239 60 378 Partial Perturbed Quadratic 100 85 26 135 77 26 120 Broyden Tridiagonal 100 38 16 58 30 10		1	I					
DQDRTIC 100 8 1 17 6 1 13 DIXMAANA 1000 7 7 14 7 7 14 DIXMAANB 1000 7 3 14 7 5 14 DIXMAANB 100 10 10 18 10 10 18 DIXMAANC 100 11 11 19 11 11 19 DIXMAANE 100 13 13 24 13 13 24 DIXMAANE 100 79 28 119 82 27 126 DIXMAANE 1000 216 67 344 239 60 378 Partial Perturbed Quadratic 100 85 26 135 77 26 120 Broyden Tridiagonal 100 38 16 58 30 10 48 Broyden Tridiagonal 1000 40 17 68 33	NONDIA		1					
DQDRITC 1000 11 0 23 7 1 15 DIXMAANA 100 7 7 14 7 7 14 DIZMAANB 1000 10 10 18 10 10 18 DIXMAANC 100 11 11 19 11 11 19 DIXMAANC 100 13 13 24 13 13 24 DIXMAANE 100 79 28 119 82 27 126 DIXMAANE 1000 216 67 344 239 60 378 Partial Perturbed Quadratic 100 85 26 135 77 26 120 Broyden Tridiagonal 100 38 16 58 30 10 48 Broyden Tridiagonal 1000 40 17 68 33 8 63		1	I					
DIXMAANA 100 7 7 14 7 7 14 7 5 14 1000 7 3 14 7 5 14 1000 10 10 18 10 10 18 10 10	DQDRTIC	1	l					
DIXMAANA 1000 7 3 14 7 5 14 DIZMAANB 100 10 10 18 10 10 18 DIXMAANC 1000 11 11 19 11 11 19 DIXMAANC 100 13 13 24 13 13 24 DIXMAANE 1000 14 14 25 14 14 25 Partial Perturbed Quadratic 1000 216 67 344 239 60 378 Partial Perturbed Quadratic 100 85 26 135 77 26 120 Broyden Tridiagonal 100 38 16 58 30 10 48 Broyden Tridiagonal 1000 40 17 68 33 8 63			I					
DIZMAANB 100 10 10 10 18 10 10 18 1000 11 11	DIXMAANA	1	l					
DIZMAANB 1000 11 11 19 11 11 19 DIXMAANC 100 13 13 24 13 13 24 DIXMAANE 1000 14 14 25 14 14 25 DIXMAANE 100 79 28 119 82 27 126 Partial Perturbed Quadratic 100 85 26 135 77 26 120 Broyden Tridiagonal 100 38 16 58 30 10 48 1000 40 17 68 33 8 63	DIZMAANB	1	I					
DIXMAANC 100 13 13 24 13 13 24 DIXMAANE 1000 14 14 25 14 14 25 DIXMAANE 100 79 28 119 82 27 126 Partial Perturbed Quadratic 100 85 26 135 77 26 120 Broyden Tridiagonal 100 38 16 58 30 10 48 1000 40 17 68 33 8 63		1	I					
DIXMAANC 1000 14 14 25 14 14 25 DIXMAANE 100 79 28 119 82 27 126 1000 216 67 344 239 60 378 Partial Perturbed Quadratic 100 85 26 135 77 26 120 1000 250 65 410 249 68 412 Broyden Tridiagonal 100 38 16 58 30 10 48 1000 40 17 68 33 8 63	DIXMAANC	1	I					
DIXMAANE 100 79 28 119 82 27 126 1000 216 67 344 239 60 378 100 85 26 135 77 26 120 1000 250 65 410 249 68 412 1000 40 17 68 33 8 63 63 Partial Perturbed Quadratic 100 85 26 135 77 26 120		1	I					
DIXMAANE 1000 216 67 344 239 60 378 Partial Perturbed Quadratic 100 85 26 135 77 26 120 1000 250 65 410 249 68 412 Broyden Tridiagonal 100 38 16 58 30 10 48 1000 40 17 68 33 8 63		1	I					
Partial Perturbed Quadratic 100 85 26 135 77 26 120 1000 250 65 410 249 68 412 Broyden Tridiagonal 100 38 16 58 30 10 48 1000 40 17 68 33 8 63	DIXMAANE	1	I					
Partial Perturbed Quadratic 1000 250 65 410 249 68 412 100 38 16 58 30 10 48 1000 40 17 68 33 8 63			I					
Broyden Tridiagonal $ \begin{vmatrix} 1000 & 250 & 65 & 410 & 249 & 68 & 412 \\ 100 & 38 & 16 & 58 & 30 & 10 & 48 \\ 1000 & 40 & 17 & 68 & 33 & 8 & 63 \end{vmatrix} $	Partial Perturbed Quadratic	1	!					
Broyden Tridiagonal 1000 40 17 68 33 8 63	-	1	I					
1000 40 17 68 33 8 63	Broyden Tridiagonal	1	l					
10tal 3051 1149 6272 3165 1303 11767	, , , , , , , , , , , , , , , , , , ,	1000						
	10tal		3051	1149	6272	3165	1303	11767

Table 1: Results for the NN and FR algorithm

REFERENCES 793

	FR	NN
NOI	100%	96.398%
NOR	100%	88.18%
NOF	100%	53.30%

Table 2: Efficiency of the NN method

5. Conclusion

In this paper, we searched for a new conjugate gradient method that depends on the spectral strategy. We established, under acceptable assumptions, that the global convergence for one of the offered approaches is satisfied. The arithmetical computation explained in Table 1 shows the efficiency of the proposed algorithm outperformed the regular FR method on average, according to the numerical results and Figures 1, 2, 3, which are denoted by the performance profile iteration and the number of function evaluations and CPU time respectively. Furthermore, there are exist many good progress in conjugate gradient algorithms see for example [16][15][18]

References

- [1] Mehiddin Al-Baali, Yasushi Narushima, and Hiroshi Yabe. A family of three-term conjugate gradient methods with sufficient descent property for unconstrained optimization. *Computational Optimization and Applications*, 60(1):89–110, 2015.
- [2] Neculai Andrei. An unconstrained optimization test functions collection. *Adv. Model. Optim*, 10(1):147–161, 2008.
- [3] Neculai Andrei. A new three-term conjugate gradient algorithm for unconstrained optimization. *Numerical Algorithms*, 68(2):305–321, 2015.
- [4] Saman Babaie-Kafaki. Two modified scaled nonlinear conjugate gradient methods. Journal of Computational and Applied Mathematics, 261:172–182, 2014.
- [5] Jonathan Barzilai and Jonathan M Borwein. Two-point step size gradient methods. *IMA journal of numerical analysis*, 8(1):141–148, 1988.
- [6] YH Dai and Ya-xiang YUAN. Convergence properties of the fletcher-reeves method. *IMA Journal of Numerical Analysis*, 16(2):155–164, 1996.
- [7] Yuhong Dai and Yaxiang Yuan. Convergence properties of beale-powell restart algorithm. Science in China Series A: Mathematics, 41(11):1142–1150, 1998.
- [8] Zhifeng Dai and Fenghua Wen. Another improved wei–yao–liu nonlinear conjugate gradient method with sufficient descent property. *Applied Mathematics and Computation*, 218(14):7421–7430, 2012.

REFERENCES 794

[9] Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with performance profiles. *Mathematical Programming*, 91(2):201–213, jan 2002.

- [10] XiaoLiang Dong, Hongwei Liu, and Yubo He. A self-adjusting conjugate gradient method with sufficient descent condition and conjugacy condition. *Journal of Optimization Theory and Applications*, 165(1):225–241, 2015.
- [11] Yunda Dong. A practical pr+ conjugate gradient method only using gradient. Applied Mathematics and Computation, 219(4):2041–2052, 2012.
- [12] Reeves Fletcher and Colin M Reeves. Function minimization by conjugate gradients. The computer journal, 7(2):149–154, 1964.
- [13] Basim A Hassan. A new formula for conjugate parameter computation based on the quadratic model. *Indonesian Journal of Electrical Engineering and Computer Science*, 3(3):954–961, 2019.
- [14] Basim A Hassan, Sawsan S Ismael, and Osam M Taher. A new spectral gradient coefficient is based on the convex combination of the two different conjugate coefficients for optimization. *International Journal of Enhanced Research in Science*, *Technology Engineering*, 7(2):44–50, 2018.
- [15] Basim Abbas Hassan, Zeyad M. Abdullah, and Hawraz N. Jabbar. A descent extension of the dai yuan conjugate gradient technique. *Indonesian Journal of Electrical Engineering and Computer Science*, 16(2):661, nov 2019.
- [16] Basim Abbas Hassan, Hussein O. Dahawi, and Azzam S. Younus. A new kind of parameter conjugate gradient for unconstrained optimization. *Indonesian Journal of Electrical Engineering and Computer Science*, 17(1):404, jan 2020.
- [17] Magnus R Hestenes and Eduard Stiefel. Methods of conjugate gradients for solving. Journal of research of the National Bureau of Standards, 49(6):409, 1952.
- [18] Hawraz N. Jabbar and Basim A. Hassan. Two-versions of descent conjugate gradient methods for large-scale unconstrained optimization. *Indonesian Journal of Electrical Engineering and Computer Science*, 22(3):1643, jun 2021.
- [19] Hailin Liu. A mixture conjugate gradient method for unconstrained optimization. In 2010 Third International Symposium on Intelligent Information Technology and Security Informatics, pages 26–29. IEEE, 2010.
- [20] Elijah Polak and Gerard Ribiere. Note sur la convergence de méthodes de directions conjuguées. ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique, 3(R1):35–43, 1969.
- [21] Boris Teodorovich Polyak. The conjugate gradient method in extremal problems. USSR Computational Mathematics and Mathematical Physics, 9(4):94–112, 1969.

REFERENCES 795

[22] Aseel M Qasim, Zinah F Salih, and Basim A Hassan. A new conjugate gradient algorithms using conjugacy condition for solving unconstrained optimization. *Indonesian Journal of Electrical Engineering and Computer Science*, 24(3):1654–1660, 2021.

- [23] Marcos Raydan. On the barzilai and borwein choice of steplength for the gradient method. *IMA Journal of Numerical Analysis*, 13(3):321–326, 1993.
- [24] Jian Wang and Xuebin Chi. Cg global convergence properties with goldstein line-search. Bulletin of the Brazilian Mathematical Society, 36(2):197–204, 2005.
- [25] Shengwei Yao, Xiwen Lu, and Bin Qin. A modified conjugacy condition and related nonlinear conjugate gradient method. *Mathematical Problems in Engineering*, 2014:1–9, 2014.
- [26] Gonglin Yuan and Xiwen Lu. A modified prp conjugate gradient method. *Annals of Operations Research*, 166(1):73–90, 2009.
- [27] Li Zhang, Weijun Zhou, and Dong-Hui Li. A descent modified polak—ribière—polyak conjugate gradient method and its global convergence. *IMA Journal of Numerical Analysis*, 26(4):629–640, 2006.
- [28] Li Zhang, Weijun Zhou, and Donghui Li. Global convergence of a modified fletcher–reeves conjugate gradient method with armijo-type line search. *Numerische mathematik*, 104(4):561–572, 2006.
- [29] Anwa Zhou, Zhibin Zhu, Hao Fan, and Qian Qing. Three new hybrid conjugate gradient methods for optimization. *Applied Mathematics*, 2(3):303, 2011.
- [30] G Zoutendijk. Nonlinear programming, computational methods. *Integer and nonlinear programming*, pages 37–86, 1970.