Toeplitz Matrix and Nyström Method for Solving Linear Fractional Integro-differential Equation
DOI:
https://doi.org/10.29020/nybg.ejpam.v15i2.4384Keywords:
Systems of linear singular integral equations, Integro-partial differential equations, Picard method, Toeplitz matrix, Nyström methodAbstract
In this paper, the Volterra-Fredholm integral equation is derived from a linear integro-differential equation with a fractional order 0 < α < 1 using Riemann–Liouville fractional integral. The existence and uniqueness of the solution are proved using the Picard method. Popular numerical methods; the Toeplitz matrix, and the product Nystr ̈om are used in the solution. These methods will prove their effective in solving this type of equation. Two examples are solved using the mentioned methods and the estimation error is calculated. Finally, a comparison between the numerical results is made.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 European Journal of Pure and Applied Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.