Data Envelopment Analysis on the Context of Spherical Fuzzy Inputs and Outputs
DOI:
https://doi.org/10.29020/nybg.ejpam.v15i3.4391Keywords:
Efficiency anaysis, Data Envelopement analysis, Spherical trapezoidal Fuzzy number, CCR ModelAbstract
In this study, Data Envelopment Analysis (DEA) models are improved by employing spherical fuzzy sets (SFSs), which is an extension of generalized fuzzy sets. SFSs were recently introduced as a novel type of fuzzy set that allows decision-makers to express their level of uncertainty directly. As a result, SFSs provide a more preferred domain for decision-makers. Fundamental Charnes-Cooper-Rhodes (CCR) model is discussed on the context of spherical trapezoidal fuzzy numbers (STrFNs), which consider each data value’s truth, indeterminacy, and falsehood degrees, and a unique solution technique is implemented. This method converts a spherical fuzzy DEA(SF-DEA) model into three pair of crisp DEA model, which may then be solved using one of many existing approaches. The largest optimal interval is determined for each DMU such that the efficiency score lies inside that interval. Furthermore, an example demonstrates this novel method and clearly explains the DMUs’ ranking technique.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 European Journal of Pure and Applied Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.