Some Properties of g-Groups
DOI:
https://doi.org/10.29020/nybg.ejpam.v15i3.4396Keywords:
g-group, g-subgroup, group, homomorphism, zero elementAbstract
A nonempty set G is a g-group [with respect to a binary operation ∗] if it satisfies the following properties: (g1) a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ G; (g2) for each a ∈ G, there exists an element e ∈ G such that a ∗ e = a = e ∗ a (e is called an identity element of a); and, (g3) for each a ∈ G, there exists an element b ∈ G such that a ∗ b = e = b ∗ a for some identity element e
of a. In this study, we gave some important properties of g-subgroups, homomorphism of g-groups, and
the zero element. We also presented a couple of ways to construct g-groups and g-subgroups.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 European Journal of Pure and Applied Mathematics

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the journal, the author(s) accept(s) the transfer of copyright of the article to European Journal of Pure and Applied Mathematics.
European Journal of Pure and Applied Mathematics will be Copyright Holder.