On the Cospectrality of Hermitian Adjacency Matrices of Mixed Graphs
DOI:
https://doi.org/10.29020/nybg.ejpam.v15i3.4422Keywords:
Adjacency Matrix; Mixed graphs; Hermitian Matrix; Inverse Matrix; Spectrum; Bipartite graphsAbstract
A mixed graph D is a graph that can be obtained from a graph by orienting some of its edges. Let α be a primitive n th root of unity, then the α−Hermitian adjacency matrix of a mixed graph is defined to be the matrix Hα = [hrs] where hrs = α if rs is an arc in D, hrs = α if sr is an arc in D, hrs = 1 if sr is a digon in D and hrs = 0 otherwise. In this paper we study the cospectrality of the Hermitian adjacency matrix of a mixed graph.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 European Journal of Pure and Applied Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.