On Movable Strong Resolving Domination in Graphs
DOI:
https://doi.org/10.29020/nybg.ejpam.v15i3.4440Keywords:
Movable strong resolving dominating set, movable strong resolving domination number, lexicographic productAbstract
Let G be a connected graph. A strong resolving dominating set S is a 1-movable strong resolving dominating set of G if for every v ∈ S, either S \ {v} is a strong resolving dominating set or there exists a vertex u ∈ (V (G) \ S) ∩ NG(v) such that (S \ {v}) ∪ {u} is a strong resolving dominating set of G. The minimum cardinality of a 1-movable strong resolving dominating set of G,
denoted by γ1 msR(G) is the 1-movable strong resolving domination number of G. A 1-movable strong resolving dominating set with cardinality γ1msR(G) is called a γ1msR-set of G. In this paper, we study this concept and the corresponding parameter in graphs resulting from the join, corona and lexicographic product of two graphs. Specifically, we characterize the 1-movable strong resolving
dominating sets in these types of graphs and determine the exact values of their 1-movable strong resolving domination numbers.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 European Journal of Pure and Applied Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.