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Abstract. In this paper, we introduce and initiate the study of outer-connected semitotal domi-
nation in graphs. Given a graph G without isolated vertices, a set S of vertices of G is a semitotal
dominating set if every vertex outside of S is adjacent to a vertex in S and every vertex in S is
of distance at most 2 units from another vertex in S. A semitotal dominating set S of G is an
outer-connected semitotal dominating set if either S = V (G) or S ̸= V (G) satisfying the prop-
erty that the subgraph induced by V (G) \ S is connected. The smallest cardinality γ̃t2(G) of an
outer-connected semitotal dominating set is the outer-connected semitotal domination number of
G. First, we determine the specific values of γ̃t2(G) for some special graphs and characterize graphs
G for specific (small) values of γ̃t2(G). Finally, we investigate the outer-connected semitotal dom-
inating sets in the join, corona, and composition of graphs and, as a consequence, we determine
their corresponding outer-connected semitotal domination numbers.
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1. Introduction

In 2014, the concept of semitotal domintion was introduced and investigated by
W. Goddard, M. Henning, and C. McPillan (see [6]). Accordingly, it strengthens the
concept of domination but relaxes the concept of total domination. Semitotal domination
was further studied by M. Henning and A. Marcon (see [8]) in 2014 and 2016, by G. Hao
and W. Zhuang (see [7]) in 2018, and by I. Aniversario et al. [1] in 2019.

In this present paper, inspired by the work of J. Cyman [4], on outer-connected dom-
ination, we introduce and initiate the study of the outer-connected semitotal domination
in graphs. We investigate the concept in some special graphs and in graphs under some
binary operations, such as the join, corona, and lexicographic products of graphs.
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2. Terminology and Notation

The symbols V (G) and E(G) denote the vertex set and edge set, respectively, of a
graph G. For S ⊆ V (G), |S| is the cardinality of S. In particular, |V (G)| and |E(G)|
are the order and size, respectively, of G. The induced subgraph ⟨S⟩ is the graph with
vertex set S and such that uv ∈ E(⟨S⟩) if and only if u, v ∈ S and uv ∈ E(G). All graph
terminologies that are not introduced but are being used here are adopted from [2].

Given two graphs G and H with disjoint vertex sets, the join G+H of graphs G and H,
is the graph with vertex-set V (G+H) = V (G)∪V (H) and edge-set E(G + H) = E(G)
∪ E(H) ∪ {uv : u ∈ V (G) and v ∈ V (H)}. The corona of G and H is the graph G ◦ H
obtained by taking one copy of G and |V (G)| copies of H, and then joining the ith vertex
of G to every vertex of the ith copy of H. The lexicographic product or composition of G
and H, denoted by G[H], is the graph with vertex set V (G[H]) = V (G)×V (H) and edge
set E(G[H]) satisfying the following conditions: (u1, v1)(u2, v2) ∈ E(G[H]) if and only if
either u1u2 ∈ E(G) or u1 = u2 and v1v2 ∈ E(H).

For vertex u of G, all vertices adjacent to u constitute the set NG(u) called the open
neighborhood of u. The closed neighborhood of u in G is the set NG[u] = NG(u) ∪ {u}.
If S ⊆ V (G), the open neighborhood of S in G is the set NG(S) = ∪u∈SNG(u). The closed
neighborhood of S in G is the set NG[S] = NG(S)∪S. We define NG(S) = ∪v∈SNG(v) and
NG[S] = S ∪NG(S). A set S ⊆ V (G) is a dominating set of G if NG[S] = V (G). Thus, S
is a dominating set of G if and only if for each v ∈ V (G) \ S, there exists u ∈ S such that
uv ∈ E(G). A set S ⊆ V (G) is a total dominating set of G if for every v ∈ V (G), there
exists u ∈ S such that uv ∈ E(G). The minimum cardinality of a dominating set (resp.
total dominating set) of G, denoted by γ(G) (resp. γt(G)), is the domination number
(resp. total domination number) of G. A dominating set (resp. total dominating set)
S of G with |S| = γ(G) (resp. |S| = γt(G)) is called a γ-set (resp. γt-set) of G. The
authors always refer to [3] for the introduction and more comprehensive discussion of the
development of the concept of domination in graphs.

A set S ⊆ V (G) of a graph G = (V,E) is called an outer-connected dominating set of
G if the following hold: (i) S is a dominating set of G, and (ii) either S = V (G) or the
induced subgraph ⟨V (G) \ S⟩ of V (G) \ S is connected. The cardinality of a minimum
outer-connected dominating set of G is called the outer-connected domination number of
G, and is denoted by γ̃(G). For a graph G without isolated vertices, a set S ⊆ V (G) is a
total outer-connected dominating set if S is a total dominating set of G and the subgraph
induced by V (G) \ S is connected. The minimum cardinality of a total outer-connected
dominating set in G is the total outer-connected domination number denoted by γ̃t(G). We
refer to [4] and [5] for the introduction and results concerning outer-connected domination
and total outer-connected domination, respectively, that are of interest in this study.

Suppose that G has no isolated vertices. A set S ⊆ V (G) is a semitotal dominating set
of G if S is a dominating set in G such that for every x ∈ S there exists y ∈ S \ {x} for
which dG(x, y) ≤ 2. The smallest cardinality of a semitotal dominating set in G, denoted
by γt2(G), is called a semitotal domination number of G. A semitotal dominating set of G
with cardinality γt2(G) is called a γt2-set. Some results on semitotal domination in graphs
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are found in [1, 6–8].
A semitotal dominating set S is an outer-connected semitotal dominating set of G

if either S = V (G) or S ̸= V (G) and the induced subgraph ⟨V (G) \ S⟩ is connected.
The smallest cardinality of an outer-connected semitotal dominating set in G, denoted
by γ̃t2(G), is called the outer-connected semitotal domination number of G. An outer-
connected semitotal dominating set in G with cardinality γ̃t2(G), is called a γ̃t2-set.

For the purposes of this study, we write for v ∈ V (G),

N2
G(v) = {u ∈ V (G) \ {v} : dG(u, v) ≤ 2},

and write for S ⊆ V (G),
N2

G(S) = ∪v∈SN
2
G(v).

3. Results

Observe that an outer-connected semitotal dominating set is both a semitotal dominat-
ing set and an outer-connected dominating set. On the other hand, a total outer-connected
dominating set is an outer-connected semitotal dominating set. Thus,

max{2, γt2(G), γ̃(G)} ≤ γ̃t2(G) ≤ γ̃t(G). (1)

Strict inequalities in Equation 1 can be attained for a graph. To see this, consider
the graph G in Figure 1. It can be verified that {a, b, c, d}, {x, y, z, w}, {x, y, z, w, a, b}
and {a, b, c, d, x, y, z} are γt2-set, γ̃-set, γ̃t2-set and γ̃t-set, respectively. Thus, γ̃(G) = 4 =
γt2(G), γ̃t2(G) = 6 and γ̃t(G) = 7.
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Figure 1: Graph G with max{2, γt2(G), γ̃(G)} < γ̃t2(G) < γ̃t(G)

Proposition 1. For path Pn on n ≥ 2 vertices

γ̃t2(Pn) =


2, if n = 2

n− 1, if 3 ≤ n ≤ 5

n− 2, if n ≥ 6.

Proof. The case where n = 2 is obvious. Assume n ≥ 3. Let S ⊆ V (Pn), be γ̃t2 -
set of Pn with S ̸= V (Pn). Then P = ⟨V (Pn) \ S⟩ is a path. Suppose that [x, y, z] is a
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geodesic in P . Then y /∈ NPn [S], a contradiction. Thus, |V (P )| = 1 or 2. Consequently,
γ̃t2(Pn) = |S| ≥ n − 2. It is can readily be verified that if 3 ≤ n ≤ 5, |S| = n − 1. That
is, γ̃t2(Pn) = n− 1. Suppose that n ≥ 6. Put Pn = [x1, x2, . . . , xn]. Since S = {x1, x2, x5,
x6, . . . , xn} is an outer-connected semitotal dominating set of Pn, γ̃t2(Pn) ≤ |S| = n − 2.
Therefore, γ̃t2(Pn) = n− 2.

Proposition 2. For cycle Cn on n ≥ 3 vertices

γ̃t2(Cn) =

{
2, if n = 3

n− 2, if n ≥ 4.

Proof. The case for n = 3 is trivial. Assume that n ≥ 4, and say C = [x1, x2, . . . , xn, x1].
Since {x3, x4, . . . , xn} is an outer-connected semitotal dominating set of Cn, γ̃t2(Cn) ≤
n − 2. Following similar arguments used above, if S ⊆ V (Cn) is a γ̃t2- set of Cn and
P = ⟨V (Cn) \ S⟩, then P is a path with 1 ≤ |V (P )| ≤ 2. Consequently, γ̃t2(Cn) = |S| ≥
n− 2.

Proposition 3. For complete multipartite graph Kn1,n2,...,nt of order n = n1+n2+ ...+nt,
where 1 ≤ n1 ≤ n2 ≤ · · · ≤ nt and t ≥ 2,

γ̃t2(Kn1,n2,...,nt) =

{
n2, if t = 2 and n1 = 1, n2 ≥ 2

2, else.

Proof. Put G = Kn1,n2,...,nt , and let U1, U2, . . ., Ut be the partite sets of G. First,
observe that if nt = 1, then G = Kt and γ̃t2(G) = 2. Assume that nt ≥ 2. We consider
the following cases:

Case 1: Suppose that n1 = 1. We consider the following subcases:

Subcase 1.1: If t = 2 and n2 ≥ 2, then G = K1,n2 , a star of order n ≥ 3. If S ⊆ V (G)
is an outer-connected semitotal dominating set of G, then either |S| = n − 1 = n2 or
|S| = n. Thus, γ̃t2(G) = n2.

Subcase 1.2: Suppose that t ≥ 3 and n1 = n2 = 1 such that G is not a path. Pick
u ∈ U2 and v ∈ U3. Then S = {u, v} is an outer-connected semitotal dominating set of G.
Thus, γ̃t2(G) = 2.

Subcase 1.3: Suppose that t ≥ 3 and n2 ≥ 2. Pick u ∈ U1 and v ∈ U2. Then
S = {u, v} is an outer-connected semitotal dominating set of G. Thus, γ̃t2(G) = 2.

Case 2: Suppose that t ≥ 2 and nk ≥ 2 for all k ∈ {1, 2, . . . , t}. Pick u ∈ U1 and v ∈ U2.
Then S = {u, v} is an outer-connected semitotal dominating set of G.

Proposition 4. Let G be a connected graph of order n ≥ 2. Then

(i) γ̃t2(G) = 2 if and only if G can be obtained from a connected graph H of order n− 2
by adding to H vertices u and v such that dG(u, v) = 1 or 2 and {u, v} dominates
V (H).
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(ii) γ̃t2(G) = n if and only if G = K2.

Proof. Statement (i) is clear. By Proposition 3, if n = 2, then γ̃t2(Kn) = 2 = n.
Assume that γ̃t2(G) = n. Suppose that n ≥ 3. By Proposition 3, G ̸= Kn. Let [u, v, z] be
a geodesic in G. Put S = V (G) \ {v}. Then S is a semitotal dominating set with V (G) \
S = {v}. Thus S is an outer-connected semitotal dominating set of G. Consequently,
γ̃t2(G) ≤ n− 1, a contradiction. Therefore, n = 2. This proves (ii).

Proposition 5. Let G be any graph with nontrivial components C1, C2, . . ., Ck of orders
n1, n2, . . ., nk, respectively. Then

γ̃t2(G) = min{γ̃t2(Cj) +

k∑
i=1,i ̸=j

ni : j = 1, 2, . . . , k}.

Proof. Put α = min{γ̃t2(Cj) +
∑k

i=1,i ̸=j ni : j = 1, 2, . . . , k}. Let j ∈ {1, 2, . . . , k},
and choose a γ̃t2-set Sj of Cj . Since S =

(
∪k
i=1;i ̸=jV (Ci)

)
∪ Sj is an outer-connected

semitotal dominating set of G, γ̃t2(G) ≤ |S| = γ̃t2(Cj) +
∑k

i=1,i ̸=j ni. Since j is arbitrary,
γ̃t2(G) ≤ α.

Let S ⊆ V (G) be an outer-connected semitotal dominating set of G. Since S is a
semitotal dominating set of G, Sj = S ∩ V (Cj) is a semitotal dominating set of Cj for
all j = 1, 2, . . . , k. First, we claim that there exists j ∈ {1, 2, . . . , k} for which Si =
V (Ci) for all i except possibly when i = j. Suppose that, to the contrary, there exist
distinct i, j ∈ {1, 2, . . . , k} such that Si ̸= V (Ci) and Sj ̸= V (Cj). Pick u ∈ V (Ci) \
Si and v ∈ V (Cj) \ Sj . Observe that ⟨V (G) \ S⟩ does not have a path joining u
and v, a contradiction and thus, the claim is established. This means that, S = Sj ∪(
∪k
i=1,i ̸=jV (Ci)

)
for some j. Next, we claim that Sj is an outer-connected semitotal

dominating set of Cj . If S = V (G), then Sj = V (Cj) and we are done. Suppose that
S ̸= V (G). Since Sj is a semitotal dominating set, it is left to verify that ⟨V (Cj) \ Sj⟩ is
connected. But since V (Cj) \ Sj = V (G) \ S, the conclusion follows. Thus,

|S| = |Sj |+
k∑

i=1,i ̸=j

ni ≥ γ̃t2(Cj) +

k∑
i=1,i ̸=j

ni ≥ α.

Since S is arbitrary, γ̃t2(G) ≥ α.

Proposition 6. Let G be a nontrivial graph.

(i) If G is connected, then γ̃t2(G+K1) = 2.

(ii) If G is disconnected with components C1, C2, . . ., Ck of orders n1, n2, . . ., nk,
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respectively, satisfying that n1 ≤ n2 ≤ · · · ≤ nk, then

γ̃t2(G+K1) = min{
k∑

j=1

γ(Cj), 2 +
k−1∑
j=1

nj}.

Proof. Put V (K1) = {u}. To prove (i), suppose that G is connected. Since G is
nontrivial, G contains at least two vertices which are not cutvertices. Pick a non-cutvertex
v of G. Then S = {u, v} is an outer-connected semitotal dominating set of G +K1. By
Equation 1, γ̃t2(G+K1) = 2.

To prove (ii), suppose that G is disconnected with components C1, C2, . . ., Ck of
orders n1, n2, . . ., nk, respectively, and satisfying that n1 ≤ n2 ≤ · · · ≤ nk. If nk = 1,
then G+K1 is a star, and the result follows from (i). It is worth noting that in this case,

k∑
j=1

γ(Cj) = k = |V (G)|.

Assume nk ≥ 2. First, let Sj ⊆ V (Cj) be a γ-set of Cj for all j = 1, 2, . . . , k. Then
S = ∪k

j=1Sj is a semitotal dominating set of G +K1. Since u ∈ V (G +K1) \ S, S is an
outer-connected semitotal dominating set of G+K1. Thus,

γ̃t2(G+K1) ≤ |S| =
k∑

j=1

γ(Cj).

Next, let S =
(
∪k−1
j=1V (Cj)

)
∪ {u, v}, where v ∈ V (Ck) which is a non-cutvertex of Ck.

Then S is an outer-connected dominating set of G+K1. This means that

γ̃t2(G+K1) ≤ 2 +
k−1∑
j=1

nj .

Thus,

γ̃t2(G+K1) ≤ min{
k∑

j=1

γ(Cj), 2 +

k−1∑
j=1

nj}.

Now, to get the other inequality, let S ⊆ V (G + K1) be a γ̃t2-set of G + K1. Then
Sj = S ∩ V (Cj) is a dominating set of Cj for all j ∈ {1, 2, . . . , k}. If u /∈ S, then

γ̃t2(G+K1) = |S| =
k∑

j=1

|Sj | ≥
k∑

j=1

γ(Cj).

Suppose that u ∈ S. Since ⟨V (G+K1) \ S⟩ is connected, V (G+K1) \ S = V (Cj) \ Sj for
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some j. Moreover, since S is a γ̃t2-set of G, j = k. Thus,

S =
(
∪k−1
i=1 V (Ci)

)
∪ Sk ∪ {u}

so that

γ̃t2(G+K1) = |S| = 1 + |Sk|+
k−1∑
j=1

nj ≥ 2 +
k−1∑
j=1

nj .

Therefore,

γ̃t2(G+K1) ≥ min{
k∑

j=1

γ(Cj), 2 +
k−1∑
j=1

nj}.

Suppose that Cj = K1 for all j ∈ {1, 2, . . . , k− 1} in Proposition 3. If γ(Ck) = 1, then

k∑
j=1

γ(Cj) < 2 +

k−1∑
j=1

nj .

On the other hand, if γ(Ck) ≥ 3, then

k∑
j=1

γ(Cj) > 2 +
k−1∑
j=1

nj ,

and attain equality if γ(Ck) = 2.

Theorem 1. [1] Let G and H be nontrivial graphs, and S ⊆ V (G + H). Then S is a
semitotal dominating set in G+H if and only if one of the following holds:

(i) S ⊆ V (G) is a nonsingleton dominating set in G;

(ii) S ⊆ V (H) is a nonsingleton dominating set in H;

(iii) S ∩ V (G) ̸= ∅ and S ∩V(G) ̸= ∅.

Theorem 2. Let G and H be any nontrivial graphs, and S ⊆ V (G + H), then S is an
outer-connected semitotal dominating set in G+H if and only if one of the following holds:

(i) S ⊆ V (G) and one of the following holds:

(a) S = V (G) and H is connected;

(b) S ̸= V (G) and S is a nonsingleton dominating set in G.

(ii) S ⊆ V (H) and one of the following holds:

(a) S = V (H) and G is connected;
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(b) S ̸= V (H) and S is a nonsingleton dominating set in H.

(iii) S ∩ V (G) ̸= ∅ and S ∩ V (H) ̸= ∅ such that if S ̸= V (G + H), then one of the
following holds:

(a) V (G) ⊆ S and ⟨V (H) \ S⟩ is connected;

(b) V (H) ⊆ S and ⟨V (G) \ S is a connected;

(c) V (G) \ S ̸= ∅ and V (H) \ S ̸= ∅.

Proof. Assume that S is an outer-connected semitotal dominating set of G + H.
Suppose that S ⊆ V (G). If S = V (G), then H = ⟨V (G+H) \ S⟩ is connected, and (i)(a)
holds. Suppose that S ̸= V (G). Since S is a semitotal dominating set of G + H, S is
a nonsingleton dominating set of G, and (i)(b) holds. Similarly, if S ⊆ V (H), then (ii)
holds. Now, assume that SG = S ∩ V (G) ̸= ∅ and SH = S ∩ V (H) ̸= ∅. Suppose further
that S ̸= V (G + H). Statement (iii)(a) follows from the fact that if V (G) ⊆ S, then
⟨V (G+H) \ S⟩ = ⟨V (H) \ SH⟩ is connected. Similarly, if V (H) ⊆ S, then (iii)(b) holds.
If both (iii)(a) and (iii)(b) do not hold, then necessarily, (iii)(c) holds.

Conversely, suppose that S ̸= V (G+H) satisfying condition (i). Then S ⊆ V (G) and
is a nonsingleton dominating set of G. By Theorem 1, S is semitotal dominating set of
G +H. If S = V (G), then ⟨V (G +H) \ S⟩ = H, which by (i)(a) is connected. Suppose
that S ̸= V (G). Then ⟨V (G+H) \ S⟩ = ⟨(V (G) \ S) ∪ V (H)⟩ is clearly connected. This
makes S an outer-connected semitotal dominating set of G +H. Similarly, if (ii) holds,
then S is an outer-connected semitotal dominating set of G + H. Finally, suppose that
(iii) holds. By Theorem 1, S is a semitotal dominating set of G + H. If V (G) ⊆ S,
then ⟨V (G + H) \ S⟩ = ⟨V (H) \ S⟩, which is connected by (iii)(a). Similarly, if (iii)(b)
holds, then S is an outer-connected semitotal dominating set of G+H. Following similar
arguments as above, if (iii)(c) holds then S is an outer-connected semitotal dominating
set of G+H.

Corollary 1. For all nontrivial graphs G and H, γ̃t2(G+H) = 2.

Proof. Pick u ∈ V (G) and v ∈ V (H). By Theorem 2, S = {u, v} is an outer-
connected semitotal dominating set of G + H. Thus, γ̃t2(G + H) ≤ 2. Finally, by (1),
γ̃t2(G+H) = 2.

Theorem 3. Let G be a nontrivial connected graph and S ⊆ V (G ◦ K1). Then S is an
outer-connected semitotal dominating set of G◦K1 if and only if one of the following holds
for S:

(i) S = V (G ◦K1) \ V (Kv
1 ) for some v ∈ V (G);

(ii) S = A∪
(
∪v∈V (G)V (Kv

1 )
)
, where A ⊆ V (G) is an outer-connected dominating set of

G.
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Proof. Put V (K1) = {x}. Then V (Kv
1 ) = {xv}. Assume that S is an outer-connected

semitotal dominating set of G ◦K1. We consider two cases:

Case 1: Suppose that xv /∈ S for some v ∈ V (G). Since S is a dominating set of G ◦K1,
v ∈ S. Since xv ∈ V (G ◦K1) \S and ⟨V (G ◦K1) \S⟩ is connected, V (G ◦K1) \S = {xv}.
That is, S = V (G ◦K1) \ {xv}. In this case, (i) holds.

Case 2: Suppose that xv ∈ S for all v ∈ V (G). Define A = S ∩ V (G). Then

S = A ∪
(
∪v∈V (G){xv}

)
.

We claim that A is an outer-connected dominating set of G. First, let v ∈ V (G)\A. Then
xv ∈ S. Since S is a semitotal dominating set of G ◦ K1, there exists u ∈ S for which
dG◦K1(x

v, u) ≤ 2. Because v /∈ S, u ∈ A ∩NG(v). Since v is arbitrary, A is a dominating
set of G. Note further that , V (G) \ A = V (G ◦K1) \ S. Thus, A is an outer-connected
dominating set of G. In this case, (ii) holds.

Conversely, obviously, if condition (i) holds for S, then S is an outer-connected semi-
total dominating set of G ◦ K1. Now, suppose that condition (ii) holds for S. Since
∪v∈V (G){xv} is a dominating set of G ◦K1, S is a dominating set of G ◦K1. Let u ∈ S.
We consider the following cases:

Case 1: Suppose that u = xv for some v ∈ V (G). If v ∈ S, then we pick v for dG(u, v) ≤ 2.
Suppose that v /∈ S. Since A is a dominating set of G and v ∈ V (G) \ A, there exists
w ∈ A ⊆ S such that wv ∈ E(G) ⊆ E(G ◦K1). Since dG◦K1(u,w) = 2, w is the desired
vertex.

Case 2: Suppose that u ∈ V (G). In this case, we pick xu ∈ S. Note that uxu ∈ E(G◦K1).

The above cases show that S is a semitotal dominating set of G ◦ K1. Finally, since A
is an outer-connected dominating set of G, ⟨V (G) \ A⟩ = ⟨V (G ◦ K1) \ S⟩ is connected.
Therefore, S is an outer-connected semitotal dominating set of G ◦K1.

Corollary 2. For nontrivial connected graph G of order n,

γ̃t2(G ◦K1) = n+ γ̃(G).

Proof. In view of Theorem 3,

γ̃t2(G ◦K1) = min{2n− 1, n+ γ̃(G)} = n+ γ̃(G).

Theorem 4. Let G and H be nontrivial connected graphs, and let S ⊆ V (G◦H). Then S
is an outer-connected semitotal dominating set of G ◦H if and only if one of the following
holds for S:
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(i) There exists v ∈ V (G) and B ⊆ V (Hv) such that

S = (V (G ◦H) \ V (Hv)) ∪B,

where either B = V (Hv) or ⟨V (Hv) \B⟩ is connected.

(ii)
S = A ∪ (∪x∈AV (Hx)) ∪

(
∪x∈V (G)\ASx

)
, (2)

where A ⊆ V (G) and Sx ⊆ V (Hx) for all x ∈ V (G) \A satisfying the following:

(a) ⟨V (G) \A⟩ is connected;

(b) For each x ∈ V (G) \ A, Sx is a dominating set of Hx. Moreover, if |Sx| = 1,
then A ∩NG(x) ̸= ∅.

Proof. Assume that S is an outer-connected semitotal dominating set of G ◦ H. If
S = V (G◦H), then (i) holds. In what follows, we assume that S ̸= V (G◦H). We consider
two cases:

Case 1: Suppose that V (G) ⊆ S. Since ⟨V (G◦H)\S⟩ is connected, there exists v ∈ V (G)
and B ⊆ V (Hv) such that V (G ◦H) \ S = V (Hv) \B. That is,

S = (V (G ◦H) \ V (Hv)) ∪B

and ⟨V (Hv) \B⟩ is connected.

Case 2: Suppose that V (G) ⊈ S. Put A = S ∩ V (G). If A = ∅, then (2) trivially holds
with Sx = S ∩ V (Hx) for all x ∈ V (G). Suppose that A ̸= ∅. Since ⟨V (G ◦ H) \ S⟩ is
connected and V (G) \ A ̸= ∅, V (Hx) ⊆ S for all x ∈ A. Put Sx = S ∩ V (Hx) for all
x ∈ V (G)\A. Then Equation (2) holds for S. Statement (ii)(a) follows immediately from
the connectedness of ⟨V (G ◦H) \S⟩. Now, let x ∈ V (G) \A and u ∈ V (Hx) \Sx. Since S
is a dominating set of G◦H and u /∈ S, there exists w ∈ S for which uw ∈ E(G◦H). Since
x /∈ S, w ̸= x so that w ∈ Sx. This means that Sx is a dominating set of Hx. Suppose
further that |Sx| = 1, say Sx = {u}. Because S is a semitotal dominating set of G ◦ H,
there exists w ∈ S \ {u} such that dG◦H(u,w) ≤ 2. Since w /∈ Sx, w ∈ A ∩ NG(x), and
Statement (ii)(b) holds.

Conversely, suppose that condition (i) holds. Since V (G) ⊆ S, S is a semitotal domi-
nating set of G◦H. Moreover, V (G◦H) \ S = V (Hv) \ B so that S is an outer-connected
semitotal dominating set of G ◦H. Now, suppose that condition (ii) holds for S. By con-
dition (ii)(b), S is a dominating set of G ◦H. Suppose that A = ∅. Then S =

⋃
x∈V (G)

Sx,

and by condition (ii)(b), Sx is a nonsingleton dominating set of Hx for all x ∈ V (G). Note
that for each x ∈ V (G), dG◦H(u, v) ≤ 2 for all u, v ∈ Sx. It follows that S is a semitotal
dominating set of G◦H. Further, since V (G) ⊆ V (G◦H)\S, ⟨V (G◦H)\S⟩ is connected.
Finally, suppose that A ̸= ∅. Let x ∈ S. If x ∈ A, then V (Hx) ⊆ S. Pick u ∈ V (Hx).
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Then we have u ∈ S and dG◦H(x, u) = 1. If x ∈ V (Hv) for some v ∈ A, then v is the
desired vertex in S for which dG◦H(x, v) ≤ 2. Next, suppose that x ∈ V (Hv) for some
v ∈ V (G) \A. If |Sv| ≥ 2, then pick u ∈ Sv \ {x}. Then u ∈ S and dG◦H(x, u) ≤ 2. Lastly,
suppose that |Sv| = 1, i.e., Sv = {x}. By condition (ii)(b), the exists z ∈ A∩NG(v). Then
z ∈ S and dG◦H(x, z) = 2. We have shown that S is a semitotal dominating set of G ◦H.
Condition (ii)(a) implies further that S is an outer-connected semtiotal dominating set of
G ◦H.

Corollary 3. Let G and H be nontrivial connected graphs of orders n and m, respectively.

(i) If γ(H) = 1, then γ̃t2(G ◦H) ≤ min{2n, n+mγ̃(G)}.

(ii) If γ(H) ≥ 2, then

γ̃t2(G ◦H) ≤ min{nγ(H), γ̃(G) (1 +m− γ(H)) + nγ(H)}

Proof. Let A ⊆ V (G) be a γ̃-set of G. For each v /∈ A, let Sv ⊆ V (H) be a γ-set of
Hv. Define

S = A ∪

(⋃
v∈A

V (Hv)

)
∪

 ⋃
v∈V (G)\A

Sv

 .

Since S satisfies Theorem 4(ii), S is an outer-connected semitotal dominating set of G◦H.
Thus,

γ̃t2(G ◦H) ≤ |S|
= |A|+m|A|+ (n− |A|) γ(H)

= γ̃(G) +mγ̃(G) + (n− γ̃(G))γ(H)

= γ̃(G) (1 +m− γ(H)) + nγ(H).

In particular, if γ(H) = 1, then γ̃t2(G ◦H) ≤ n+mγ̃(G).

To complete the desired results, for the case where γ(H) = 1, let y ∈ V (H) for which
NH [y] = V (H). Pick a z ∈ V (H) \ {y} and define Sv = {z, y} for all v ∈ V (G). On the
other hand, if γ(H) ≥ 2, then choose Sv ⊆ V (Hv) to be a γ-set of Hv for all v ∈ V (G). In
any case, S =

⋃
v∈V (G)

Sv satisfies Theorem 4(ii). Thus, S is an outer-connected semitotal

dominating set of G ◦H. This means that if γ(H) = 1, then

γ̃t2(G ◦H) ≤ |S| = 2n.

For γ(H) ≥ 2,
γ̃t2(G ◦H) ≤ |S| = nγ(H).

Corollary 4. Let G and H be nontrivial connected graphs of orders n and m, respectively.
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(i) If γ(H) = 1, then γ̃t2 ((G+K1) ◦H) = min{2n+ 2, n+m+ 1}.

(ii) If γ(H) ≥ 2, then

γ̃t2 ((G+K1) ◦H) = min{(n+ 1)γ(H), γ̃(G) (1 +m− γ(H)) + nγ(H)}

Proof. Put K = (G+K1) ◦H, and α = min{2n+2, n+m+1}. By Corollary 3, with
γ̃(G+K1) = 1, we have γ̃t2(K) ≤ α.

Now, let S ⊆ V (K) be an outer-connected semitotal dominating set of K. Since S is
a dominating set of K, S ∩ V (Hx + x) ̸= ∅ for all x ∈ V (G + K1). First, suppose that
S ∩ V (G +K1) = ∅. By Theorem 4(ii), S ∩ V (Hx) is a nonsingleton dominating set of
Hx + x for all x ∈ V (G + K1). This means that |S| ≥ 2(n + 1) = 2n + 2 ≥ α. Next,
suppose that S ∩ V (G+K1) ̸= ∅. Clearly, if V (G+K1) ⊆ S, then |S| ≥ 2n+ 2. Assume
that V (G+K1)\S ̸= ∅. Let w ∈ S∩V (G+K1). Since S is an outer-connected semitotal
dominating set of K and V (G+K1) \ S ⊆ V (K) \ S, V (Hw) ⊆ S. This means that

|S| ≥ |V (Hw + w)|+
∑

x∈V (G+K1)\{w}

|S ∩ V (Hx + x)| ≥ m+ 1 + n ≥ α.

Since S is arbitrary, γ̃t2(K) ≥ α.

Similar arguments will prove (ii).

It is worth noting that the wheel graphs and the fan graphs are among the graphs
represented by G+K1 in Corollary 4.

Theorem 5. [1] Let G and H be nontrivial connected graphs, and let C = ∪x∈S({x} ×
Tx) ⊆ V (G[H]). Then C is a semitotal dominating set in G[H] if and only if one of the
following holds:

(i) S is a total dominating set in G;

(ii) S is a semitotal dominating set in G and for each x ∈ S \NG(S), Tx is a dominating
set in H;

(iii) S is a dominating set in G, such that, Tx is a dominating set in H for each x ∈
S \NG(S), and |Tx| ≥ 2 for each x ∈ S \N2

G(S).

For C ⊆ V (G[H]), define CG = {x ∈ V (G) : (x, y) /∈ C for some y ∈ V (H)}.

Theorem 6. Let G be a nontrivial connected graph and n ≥ 2, and C = ∪x∈S ({x} × Tx) ̸=
V (G[Kn]). Then C is an outer-connected semitotal dominating set of G[Kn] if and only
if each of the following holds:

(i) One of the following holds:

(a) S is a semitotal dominating set in G.
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(b) S is a dominating set in G such that |Tx| ≥ 2 for each x ∈ S \ N2
G(S).

(ii) Exactly one of the following holds:

(a) CG = {x} for some x ∈ V (G).

(b) |CG| ≥ 2 and for each distinct u, v ∈ CG, G has a u-v geodesic P for which
either S ∩ V (P ) = ∅ or |Tx| < n for each x ∈ S ∩ V (P ).

Proof. Assume that C is an outer-connected semitotal dominating set of G[Kn]. Since
C is a semitotal dominating set of G[Kn] and every nonempty subset of V (Kn) is a
dominating set of Kn, (i) holds by Theorem 5. To show (ii), if |CG| = 1, then (ii)(a)
holds. Suppose that |CG| ≥ 2, and let u, v ∈ CG with u ̸= v. Pick z, w ∈ V (Kn) such
that (u, z), (v, w) /∈ C. Since ⟨V (G[Kn]) \ C⟩ is connected, there exists a (u, z)-(v, w)
geodesic [(u, z) = (x1, y1), (x2, y2), . . . , (xn, yn) = (v, w)] in G[Kn] such that (xk, yk) /∈ C
for all k = 1, 2, . . . , n. It implies that for some k1 < k2 < · · · < kr in {1, 2, . . . , n},
P = [u = xk−1, xk2 , . . . , xkr = v] is a u-v geodesic in G. If V (P ) ∩ S = ∅, then we are
done. Suppose that V (P )∩S ̸= ∅, and let xkj ∈ S ∩V (P ). Necessarily, ykj /∈ Txkj

. Thus,

Txkj
̸= V (Kn). This shows that (ii)(b) holds.

Conversely, condition (i) implies that C is a semitotal dominating set of G[Kn] by
Theorem 5. If condition (ii)(a) holds, then

V (G[Kn]) \ C =

{
{x} × V (Kn), if x /∈ S

{x} × (V (Kn) \ Tx) , if x ∈ S,

and C is an outer-connected semitotal dominating set of G[H]. Now, suppose that condi-
tion (ii)(b) holds. Let (u, z), (v, w) ∈ V (G[Kn]) \ C be distinct.

Case 1: u ̸= v
Since u, v ∈ CG, G has a u-v geodesic P = [u = x1, x2, . . . , xn = v] as being described in

(ii)(b). If S∩V (P ) = ∅, then for any y ∈ V (Kn), [(u, z), (x2, y), (x3, y), . . . , (xn−1, y), (v, w)]
is a (u, z)-(v, w) path in ⟨V (G[Kn]) \ C⟩. Suppose that S ∩ V (P ) ̸= ∅. Put y1 = z and
w = yn. For each k ∈ {2, . . . , n − 1}, pick any yk ∈ V (Kn) whenever xk /∈ S; otherwise,
pick yk ∈ V (Kn) \ Txk

. Then [(u, z) = (x1, y1), (x2, y2), . . . , (xn−1, yn−1), (xn, yn) = (v, w)]
is a (u, z)-(v, w) path in ⟨V (G[Kn]) \ C⟩.

Case 2: u = v
Pick x ∈ CG \ {u}. Let P = [x = x1, x2, . . . , xn−1, xn = u] be a x-u geodesic in G

as described in condition (ii)(b). In particular, xn−1 ∈ CG. Pick y ∈ V (Kn) such that
(xn−1, y) /∈ C. Then [(u, z), (xn−1, y), (v, w)] is a (u, z)-(v, w) path in ⟨V (G[Kn]) \ C⟩.

The above cases imply that ⟨V (G[Kn]) \ C⟩ is connected. Therefore, C is an outer-
connected semitotal dominating set of G[Kn].

Now, we provide proof for the following lemma, which is very useful to get the desired
result in this section. The lemma is given without proof in [1].
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Lemma 1. [1] If G is a nontrival connected graph and S ⊆ V (G) is a dominating set in
G, then

γt2(G) ≤ 2|S \N2
G(S)|+ |S ∩N2

G(S)|.

Proof. Let S ⊆ V (G) be a dominating set of G. For each x ∈ S \ N2
G(S), pick

ux ∈ V (G) such that xux ∈ E(G). Then S∗ = S ∪ {ux : x ∈ S \ N2
G(G)} is a semitotal

dominating set of G. Thus,

γt2(G) ≤ |S∗| = |S ∩N2
G(S)|+ 2|S \N2

G(S)|.

Corollary 5. Let G be a nontrivial connected graph and n ≥ 2. Then

γ̃t2(G[Kn]) = γt2(G).

Proof. Let S ⊆ V (G) be a γt2-set of G. Choose v ∈ V (Kn) and define C = S × {v}.
Since conditions (i)(a) and (ii)(b) of Theorem 6 hold for C, C is an outer-connected
semitotal dominating set of G[Kn]. Consequently, γ̃t2(G[Kn]) ≤ |S| = γt2(G).

Let C =
⋃
x∈S

({x} × Tx) ⊆ V (G[Kn]) be an outer-connected semitotal dominating set

of G[Kn]. By Theorem 6, S is a dominating set of G. If S is a semitotal dominating set
of G, then

γt2(G) ≤ |S| ≤
∑
x∈S

|Tx| = |C|.

Suppose that S is not a semitotal dominating set in G. Let S1 = S \ N2
G(S) and S2 =

S ∩N2
G(S). By Theorem 6,

C =

 ⋃
x∈S1

({x} × Tx)

 ∪

 ⋃
x∈S2

({x} × Tx)

 ,

where |Tx| ≥ 2 for all x ∈ S1. Thus,

|C| =
∑
x∈S1

|Tx|+
∑
x∈S2

|Tx|

≥ 2|S1|+ |S2|
= 2|S \N2

G(S)|+ |S ∩N2
G(S)|.

By Lemma 1, γt2(G) ≤ |C|.
Since C is arbitrary, γt2(G) ≤ γt2(G[Kn]).
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