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Abstract. The backbone of many cybersecurity applications and algorithms require random num-
bers. One of the most commonly used pseudo-random number generators is the Linear Feedback
Shift Register (LFSR), which is fast, computationally inexpensive, and has excellent statistical
properties. Unfortunately LFSRs have a number of weaknesses, some of which were addressed
by decimation-based sequence generators such as the self-shrinking generator (SSG). Regrettably,
the SSG was also found to be vulnerable to attack. In this paper, we propose an improvement
to the SSG called the self-shrinking conflation generator (SSCG). Our approach is based on the
observation that what is discarded during the self-shrinking process of the SSG, is from a cryp-
tographic perspective, just as good as that which is kept. By combining the bits the SSG would
normally discard with those it retains, using the exclusive OR (XOR) operation, we create a mod-
ified SSG bitstream with several improved characteristics. To highlight these improvements, we
provide some mathematical security analysis associated with this approach, apply the National
Institute of Standards and Technology (NIST) statistical test suite to several different bitstreams
created using LFSRs driven by different degree primitive polynomials, and compare our results to
that of the SSG.
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1. Introduction and Background

Cryptographic algorithms are an essential element of many cyber defenses [22]. Cryp-
tographic algorithms are used for tasks such as authentication, data encryption, and digital
signatures, and are the most commonly used privacy protection method in the IoT do-
main [22, 27]. The security of any of these cryptographic algorithms is generally dependent
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V. Kanth, T. Martinsen, P. Stănică / Eur. J. Pure Appl. Math, 15 (4) (2022), 1426-1443 1427

upon the underlying pseudorandom number generator (PRNG) used, since random num-
bers (random bits) are required as input for things like keying material, auxiliary quan-
tities for digital signatures, or generating authentication protocol challenges [12]. Thus,
there is a pervasive need for cryptographically secure pseudorandom number generators
(CSPRNGs). Furthermore, in today’s distributed and mobile computing environment,
devices need inexpensive and secure cryptographic solutions in order to overcome resource
constraints like limited processing power and battery life [21]. In this paper, we present
a novel, computationally cheap, and (we claim) secure method to generate pseudorandom
bits. We simply XOR the discarded sequence as well as the self-shrinking generator (SSG)
of an m-sequence (see Sections 1.2 1.3, for details). We will refer to our generator as a
self-shrinking conflation generator (SSCG). We first investigate the period and the linear
complexity of the discarded sequence, and use these to find an upper bound for the period
and linear complexity of the SSCG. We consider guess-and-determine attacks, as well as
exhaustive search and entropy attacks and argue that these do not apply to SSCG. We
finally use National Institute of Standards and Technology (NIST) statistical tests to fur-
ther validate the properties of the generator, for some sample primitive polynomials, and
display an example in the last appendix of NIST tests on 100 bitstreams of 5 million bits.

1.1. Some definitions

We take F2 and F2n to be the respective two-element (binary) field and the field of
dimension n, and Fn

2 to be the vector space of dimension n over the binary field. The
absolute trace is the map Trn1 : F2n → F2 is

Trn1 (x) = x+ x2 + x2
2
+ · · ·+ x2

n−1
,

for all x ∈ F2n . It is known [16] that the trace is an F2-linear map, invariant under the
Frobenius automorphism (the squaring x→ x2, in the binary case).

1.2. LFSRs and m-sequences background

There are many different approaches to generate random numbers efficiently. One
of the most commonly used approaches to pseudorandom bit generation is the LFSR,
which has both excellent baseline statistical properties [7] and is very fast. To give some
perspective on the ubiquity of LFSRs, a look at the specifications for 3G, LTE, Wi-Fi,
GPS, and Bluetooth reveals how common LFSRs actually are [23]. LFSRs are presented
in great detail in [7] but a small summary is presented here. LFSRs, at the most basic
level are a set of registers in which bits shift every clock cycle. Those bits are combined
with each other based on the mathematical relation defined by a polynomial of the form
f(x) = xn + an−1x

n−1 + · · · + a1x + 1. If the polynomial f(x) is primitive, the length
of the sequence produced is maximal. These sequences are of length 2n − 1, where n is
the highest degree of the polynomial, and are referred to as a maximal length sequence,
or m-sequence for short [7]. For example, take the m-sequence generated by running an
LFSR driven by the primitive polynomial f(x) = x4+x+1. A recurrence relation for this
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polynomial is a4 = a1 + a0. The m-sequence generated by the LFSR with an initial seed
of 1111 is 111100010011010. This example can be found in [8].

Another important concept for our discussion is linear complexity (LC). Linear com-
plexity is defined as the length of the shortest LFSR that can generate a given sequence
[7, 8, 20]. Alternatively, the linear complexity of a sequence is also the least order of
a homogeneous linear recurrence satisfied by that sequence. This fact leads to the pri-
mary weakness of a random sequence generated by an LFSR. An efficient method, called
the Berlekamp-Massey algorithm, is capable of calculating the linear complexity of a se-
quence [5, 9]. In fact, given 2ℓ bits or more of a sequence (that can be generated by a
length ℓ recurrence), the Berlekamp-Massey algorithm recovers the underlying polynomial
used in the LFSR.

Recall that a periodic sequence s = {si}i of period T satisfies si+T = si. The smallest
such T is called a least period. We shall refer to the subsequence s′ = {s0, s1, . . . , sT−1} as
a cycle of s, and if T is the least period, then s′ is a minimal cycle.

We define the linear complexity more precisely below. For a periodic sequence s =
(s0, s1, . . . , sT−1)

∞ (of least period T ) over F2, we let S(x) = s0 + s1x + · · · + sT−1x
T−1

be the polynomial corresponding to the sequence s. It is known [7, 20] that the sequence
s can be represented as the power series∑

i≥0

six
i =

S(x)

1− xT
=

g(x)

f(x)
,

where gcd(g(x), f(x)) = 1,deg(g(x)) < deg(f(x)) (deg represents the degree of the corre-
sponding polynomial). The linear complexity of s, denoted by LC(s), is then

LC(s) = deg

(
1− xT

gcd(S(x), 1− xT )

)
= deg(f(x)).

As one might expect, the linear complexity is less than or equal to the (least) period, more
precisely

LC(s) = T − deg(gcd(S(x), 1− xT )). (1.1)

1.3. The Self-Shrinking Generator (SSG)

A number of different approaches have been used to increase the security of LFSRs.
One of these approaches is decimation or filtering. The idea behind this approach is to
remove bits of the generated sequence in order to destroy its structure [4]. The shrinking
generator and its follow-on, the self-shrinking generator, were two approaches that have
been extensively studied. We concern ourselves here with the self-shrinking generator.
This generator is a special case of the shrinking generator. It only requires one LFSR
to both produce the initial sequence and drive its decimation process [17]. A diagram
depicting the SSG is shown in Figure 1. The original self-shrinking generator can be
described as follows [17]: An input sequence (a0, a1, a2, . . .) can be treated as a sequence
of bit pairs ((a0, a1), (a2, a3), . . .). Given a bit pair (a2i, a2i+1), if the bit a2i = 1, then the
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bit a2i+1 is output. If a2i is zero, the bit pair (a2i, a2i+1) is discarded. While the input
sequence to the SSG need not be an m-sequence from an LFSR, in this work, we use an
m-sequence to drive the self-shrinking process.

Figure 1: SSG implementation flowchart

For example, using the m-sequence repeated twice from our example LFSR in Section 1.2:
111100010011010111100010011010, and applying the shrinking procedure described ear-
lier, results in the output 11110000. It is important to note that while the algorithm
specifies the bit pairs 10 and 11, it would be just as valid to use the bit pairs 00 and 01.
In fact, one of the fundamental contributions of this paper is a comparison of using the
SSG with the leading 0 bit pairs rather than the leading 1 bit pairs. In some cases, the
SSG that uses the leading 0 bit pairs performs better. This will be detailed in Section 2.
The SSG is a substantial improvement over a basic LFSR. Much research has been done
into its properties and weaknesses. For the purpose of comparison, we present the bounds
for the least period and the linear complexity of the SSG in Table 1.

Min Max

Period 2⌊n/2⌋ 2n−1

LC 2⌊n/2⌋−1 2n−1 − (n− 2)

Table 1: Bounds on the period and linear complexity of the self-shrinking generator
from [1, 17]

There are a number of attacks that have been devised against the SSG, and we mention
some of these next. These include exhaustive search and entropy attacks [17]. As time
has passed, more sophisticated attacks have been developed to subvert the cryptographic
properties of the SSG. These include a backtracking-based attack [24], a BDD (Binary
Decision Diagram)-based attack [15], a long keystream attack [18], and the HJ-attack [10].
A formal comparison of our proposed approach against all of these classes of attacks is
left for future work, though we present arguments for why some of these attacks are not
possible in our construction.
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1.4. Related prior work

There have been a handful of attempts to extend the SSG over the past several years.
The first was the generalized self-shrinking generator (GSSG) [11]. Cryptanalysis of the
GSSG showed that it was at most as secure as the SSG [26]. Follow-on attempts included
the modified self-shrinking generator, which used groups of three bits to drive the dis-
carding process [13] and its generalization, the t-modified shrinking generator [2]. Finally,
Chang et al. proposed SSG-XOR, which used chunks of four bits, with the first two bits
driving the discarding process [3]. A diagram of their process can be seen in Figure 2.
Our idea uses a fundamentally different approach than those presented in this section.

Figure 2: SSG-XOR diagram from [3]

2. The SSG using zeroes instead of ones

As was mentioned in Section 1.3, the original SSG algorithm uses the bit pairs 10
and 11. There is not much in the literature regarding using the bit pairs 00 and 01 to
drive the SSG instead of the bit pairs 10 and 11. In fact, using the bit pairs 00 and 01
to drive the SSG sometimes results in sequences that can perform better than their 1 bit
pair counterparts. Table 2 shows a comparison of both approaches using LFSRs driven
by the various polynomials listed below. A more complete table with several primitive
polynomials up to degree 15 can be found in Appendix 6. From this point onward, we
shall be using the notations 1-SSG and 0-SSG to distinguish which first bit was used to
drive the decimation process (1 and 0 respectively).
These examples reveal a few important facts. For a given polynomial, the linear complex-
ity of either approach need not be the same. Additionally, either approach can have a
larger linear complexity than the other. Finally, the bounds on the linear complexity of an
SSG sequence given by [1] do not describe the bounds of the SSG sequence driven by the
bit pairs 00 and 01. We provide an analysis of both the least period and linear complexity
of this SSG approach in the following sections.

One might be tempted to believe that the 0-SSG corresponding to an m-sequence
s is simply the complement of the 1-SSG corresponding to s̄. However, that is not
true, as one can easily see by working out some examples. Let the minimal cycle of



V. Kanth, T. Martinsen, P. Stănică / Eur. J. Pure Appl. Math, 15 (4) (2022), 1426-1443 1431

Polynomial 1-SSG LC 0-SSG LC

x5 + x4 + x2 + x+ 1 13 14

x6 + x5 + x3 + x2 + 1 28 30

x7 + x+ 1 57 62

x8 + x4 + x3 + x2 + 1 121 126

x9 + x4 + 1 249 254

x10 + x3 + 1 504 507

x11 + x5 + x3 + x+ 1 1013 1022

x12 + x6 + x4 + x+ 1 2037 2035

x13 + x4 + x3 + x+ 1 4083 4092

Table 2: Comparison of SSG approaches using either zeroes or ones

the m-sequence s (as in Section 1.3) be S1 = 111100010011010111100010011010. The
minimal cycle of the 0-SSG is then p0 = 0101101 and of the 1-SSG is p1 = 11110000
(observe that we have maximum periods, for this example). Complementing, we get
S̄1 = 000011101100101000011101100101 with the minimal cycle of the corresponding
0-SSG being p′0 = 00001111 = p̄1, and the minimal cycle of the 1-SSG being p′1 = 01000,
and so p0 is not recoverable by the complementation method.

The m-sequence z can be described as the absolute trace si = Trn1 (cα
i), where c ∈ F2n

(determined by the sequence s) and α is a primitive element of the field F2n . The elements
of the 1-SSG, respectively, 0-SSG are then

zi = s2τ(i)+1,

where τ(i) is the unique nonnegative integer such that s2τ(i) = 1 or s2τ(i) = 0 respectively,
and there are i+1 elements that are one or zero respectively in the sequence s0s1 . . . s2τ(i).

Expressing it using the absolute trace, we obtain s2j = Trn1 (cα
2j) = Trn1

(
(c2

n−1
α)2

)
=

T (αj), where T is the nonzero F2-linear map, defined by T (x) = Trn1

(
c2

n−1
x
)
(we used

here the fact that the trace is invariant under the Frobenius automorphism). Thus, as
for the m-sequence, both the 1-SSG and 0-SSG can be written using the absolute trace
function.

2.1. Period of the 0-SSG

Here we shall find the period of the 0-SSG, using a similar approach as in [17].

Theorem 1. Let s be an m-sequence of length 2n−1, generated by a polynomial of degree
n, with the respective 1-SSG and 0-SSG sequences extracted from it. The least period of
the 1-SSG is a divisor of 2n−1, and the least period of the 0-SSG is a divisor of 2n−1 − 1.
Moreover, the respective weights of both the 1-SSG and 0-SSG that are generated by s are
exactly 2n−2 (making the 1-SSG balanced, and 0-SSG almost balanced).
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Proof. Meier and Staffelbach [17] showed the result for the 1-SSG. We will now argue
our claim for the 0-SSG. In any minimal cycle of an m-sequence, the 2-bit blocks 11, 10, 01
occur 2n−2 times and 00 occurs 2n−2 − 1 times. Thus, the 0-SSG of length 2n−1 − 1 will
have Hamming weight (that is, the number of nonzero bits) exactly 2n−2. Since 00 appears
2n−2 − 1 times and 01 occurs 2n−2 times in every minimal cycle of the m-sequence, then
2n−1 − 1 must be a period of the 0-SSG, and hence the least period must be a divisor of
2n−1 − 1.

2.2. Linear complexity of the 0-SSG

In this subsection, we shall find the linear complexity of the 0-SSG. The method used
by Blackburn [1] cannot be applied directly to the 0-SSG as that method requires at least
the sequence to have a power of 2 length, and our 0-SSG, say z, has length 2n−1 − 1.
However, we can circumvent that by adding a single arbitrary bit (which we take to be
0, so that the new sequence is balanced) to a cycle (not necessary the minimal cycle) of
the 0-SSG, and consequently, obtaining a sequence, say z̃, of length 2n−1. We claim that
a period of z̃ is now 2n−1, and give the argument below. First, observe that if a cycle of
z is z0, z1, . . . , z2n−1−2, and so

z = z0, z1, . . . , z2n−1−2, z0, z1, . . . , z2n−1−2, . . . ,

then
z̃ = z0, z1, . . . , z2n−1−2, 0, z0, z1, . . . , z2n−1−2, 0, . . . .

We note that the (balanced) string z0, z1, . . . , z2n−1−2, 0 is of length 2n−1 and becomes a
cycle of z̃. In spite of this modification, we still cannot adapt the proof from Blackburn [1],
since, in fact, the bound 2n−1 − (n− 2) will not hold for the 0-SSG, as we will see in our
next theorem.

Theorem 2. Let n ≥ 3, and s be an m-sequence of length 2n−1, generated by a primitive
polynomial of degree n, along with the associated 1-SSG and 0-SSG sequences. The linear
complexity of the 1-SSG is at most 2n−1 − (n− 2) and of the 0-SSG is at most 2n−1 − 2,
both bounds being attainable. A lower bound for both linear complexities is 2⌊n/2⌋−1.

Proof. The upper bound result on the 1-SSG was shown by Blackburn [1]. The
attainability of the bounds can be seen from Table 2. The lower bound for the 1-SSG
was shown by Meier-Staffelbach [17], and the one for the 0-SSG z can be shown in the
same manner. Let z̃ be the 0-SSG, with 0 inserted at the end of a cycle. The same
argument of [17] shows that LC(z̃) > 2⌊n/2⌋−1. If z can be generated by a recurrence of
degree smaller than 2⌊n/2⌋−1, then it can be generated by a recurrence of order at most
2⌊n/2⌋−1−1 (it has to be odd, since we are working in binary). Then z̃ can be generated by
a recurrence of order one more, namely, at most of order 2⌊n/2⌋−1, which is not possible.

We now concentrate on the upper bound on the complexity. We showed earlier that
the weight of the cycle z0, z1, . . . , z2n−1−2 is exactly 2n−2 and an even number. Therefore,

the associated polynomial Z(x) = z0 + z1x + · · · + z2n−1−2x
2n−1−2 has an even number
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of nonzero coefficients, and since we operate in binary, it will have (x + 1) as a factor.
Thus, deg(gcd(Z(x), 1−x2

n−1−2)) ≥ 1, and consequently, LC(z) ≤ 2n−1− 2, which, as we
observed, is attainable.

We will see later on in Table 4 that this upper bound is attained, for example, for
n = 3, 5, 6, 8, 9, 14. We wondered whether the modification z̃ has a better linear complexity.
It is known [14] that, for example, inserting a bit in the minimal cycle of z of length T ,
generating z̃ of linear complexity

LC(z̃) ≥ min (LC(z), T + 1− LC(z)) .

In our case, T = 2n−1 − 1, and so, LC(z̃) ≥ min
(
LC(z), 2n−1 − LC(z)

)
. As we see from

Table 2, there are examples, n ≥ 5, where the linear complexity of z is maximal, namely,
LC(z) = 2n−1− 2, and so, LC(z̃) ≥ min

(
LC(z), 2n−1 − LC(z)

)
= 2, which is not a useful

bound.

3. Proposed Conflation Approach

Section 1 discussed the various weaknesses in sequences created by a shrinking gener-
ator. Our approach to addressing some of these weaknesses relies on an observation from
Section 1 that what is discarded by the shrinking generator of the SSG is as good as what
was kept. It relies on the fact that although the original SSG algorithm (1-SSG) chose to
discard all bits in the form 00,01 and 10 → 0, 11 → 1, the opposite, discarding all bits
in the form 10,11 and 00 → 0, 01 → 1 is equally as valid, and in some cases better as
demonstrated in our discussion regarding the 0-SSG in Section 2. Our approach generates
both the 1-SSG sequence and the 0-SSG sequence and XORs them to produce the final
output sequence. The full algorithm is shown below. Also, while the data used in this
paper is derived from LFSRs, other sequences can be used to drive the shrinking process.

One important consideration must be taken into account. The intermediate bitstreams
sshrink0 and sshrink1 may not be of the same length as the number of 1’s and 0’s in the
original bitstream is unlikely to be exactly equal. The algorithm uses the minimum length
of either sequence to fix this problem.

In practice, this implementation would not be used. Instead of generating the full
input bitstream (a), we would generate one bit per clock cycle. We would then proceed
by looking at pairs of bits and following the logic from Algorithm 1. The ending condition
would be the number of bits desired. We used our algorithm instead of the practical
implementation to generate the whole SCCG bit sequence in order to more accurately and
easily perform the various statistical tests and evaluations. A hardware implementation
of this more practical algorithm is left for future work.

3.1. Period of SSCG

Theorem 3. Let n be an integer with n > 2. The period of the SSCG is upper bounded
by 2n−1 · (2n−1 − 1).
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Algorithm 1: Combining two shrunken bitstreams via XOR

ShrinkBitstream (a)
inputs : Bitstream a
output: Bistream out
out← ∅
sshrink0 ← ∅
sshrink1 ← ∅
foreach pair of bits (a0, a1) in a do

if (a0, a1) = (1, 0) then
Append 0 to sshrink1;

else if (a0, a1) = (1, 1) then
Append 1 to sshrink1;

else if (a0, a1) = (0, 0) then
Append 0 to sshrink0;

else if (a0, a1) = (0, 1) then
Append 1 to sshrink0;

ind← min(len(sshrink0), len(sshrink1))
for i← 0 to ind do

Append sshrink0[i]⊕ sshrink1[i] to out

return out;

Proof. We rely on three facts to show Theorem 3. In [1], an upper bound for the
period of the 1-SSG is proven to be 2n−1. An upper bound for period of the 0-SSG found
in Section 2.1 is 2n−1 − 1. From [7, 20], the period of the XOR of two sequences is the
product of the periods of the two streams if the periods are coprime. In our case, the 1-SSG
and 0-SSG sequences have periods 2n−1 and 2n−1 − 1, respectively, which are obviously
coprime, and so, the maximum period of the SSCG is 2n−1 · (2n−1 − 1).

Remark 4. In fact, the proof shows that the period of SSCG is exactly per(0 − SSG) ·
per(1− SSG), where per(s) is the least period of the sequence s.

3.2. Linear complexity of SSCG

Theorem 5. The linear complexity of the SSCG is LC(SSCG) ≤ 2n − n.

Proof. We rely on two facts to show Theorem 5. In [1], the maximal linear complexity
of the 1-SSG is proven to be 2n−1 − (n − 2). We also use the fact [7, 20] that the linear
complexity of the XOR of two sequences is the sum of the linear complexities of the two
streams. In our case, our sequences have linear complexity 2n−1 − (n − 2) and 2n−1 − 2
respectively, therefore, LC(SSCG) ≤ 2n − n.



V. Kanth, T. Martinsen, P. Stănică / Eur. J. Pure Appl. Math, 15 (4) (2022), 1426-1443 1435

4. Cryptanalysis

In this section we consider some of the possible attacks against the SSCG based on
the attacks used to break the SSG. Despite the close relationship between the SSCG and
the SSG, some of the attack approaches used against the SSG are not as applicable to the
SSCG due to the XOR addition of the 0-SSG and 1-SSG streams.

4.1. Guess-and-Determine Attacks

There are several variants of guess-and-determine attacks against the SSG. Some ex-
amples of such works are [6], [10], [18], [19], and [25]. Though their approaches are slightly
different, they all depend on an observation most succinctly stated in [25], that given the
decimated sequence a2i, it is possible to determine the original sequence ai. In the case of
the SSCG, with knowledge of either the 1-SSG or the 0-SSG, it would be possible to deter-
mine the original sequence. However, we do not see a method to go from our keystream,
which is an XOR-masked (conflated) sum of the 0-SSG and 1-SSG sequences, and recover
the underlying 1-SSG sequence required in order to carry out these aforementioned at-
tacks. We will be more precise here to convince the reader. Given an m-sequence {ai}i
of feedback polynomial f of degree L, let h(x) =

∑L−1
j=0 hjx

j be a polynomial such that

h(x) ≡ xτ (mod f∗(x)), where τ = 2L−1 is the shift value between the even/odd subse-
quences {a2i}i, {a2i+1}i. The idea of the attack [25] (which improves upon Mihaljević’s
attack [18]) is the following. Since the even and odd indexed subsequences are shifts of
the original {ai}i, then, if a2i = 1, and guessing ℓ (large but fixed number of) bits in the
odd-indexed subsequence, then

bi = a2i+1 =

ℓ−1∑
j=1

hja2(i+j) +

L−1∑
j=ℓ

hja2(i+j) = z∑i−1
j=0 a2j

,

the output of the 1-SSG (we note a typo in [25] in the last sum). Thus, we get a linear
equation in the L−ℓ unknown bits, guessing the first ℓ bits. The key (and used) observation
of [25] is that the more ones in the guessed segment of length ℓ the more linear equations
in the remaining L− ℓ bits one gets. Redoing the argument of [25], we can also find that
the outputs of the 0-SSG, say ws, can be represented as a combination of the even indexed
terms, obtaining, for a2i = 0

bk = a2k+1 =

ℓ−1∑
j=1

hja2(k+j) +

L−1∑
j=ℓ

hja2(k+j) = wk−
∑k−1

j=0 a2j
.

However, the difficulty is the buffering, as the outputs of the 0-SSG and 1-SSG occur
at different clocks and we see no way of finding the indices i, k such that

∑i−1
j=0 a2j =

k −
∑k−1

j=0 a2j , making a known ciphertext attack unsuccessful.
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4.2. Exhaustive search and entropy attacks

The two most basic methods to reconstruct the initial state of the LFSR from a given
SSG output sequence were proposed in [17]. Their proposed attacks made use of short
keystreams requiring O(2.79n) and O(2.75n) computational steps respectively [17]. As our
approach differs from those proposed in [3, 13, 17], our analysis with regards to exhaustive
search is slightly different. Let (b0, b1, b2, . . . , bn) be a portion of the keystream generated
by the SSCG. The bit bk, for some k where 0 ≤ k ≤ n, can be generated by the 4-tuple
(ai, ai+1, ai+2, ai+3), where the sequence a is the output from the chosen LFSR and the
index i is unknown. The bit bk can be either 0 or 1 and the analysis for either case provides
us the difficulty of using these two approaches. The analysis for an arbitrary bit, bk = 1
is presented below.

4-tuple Probability

0000 1/16

0001 1/16

0010 0

0011 1/8

0100 1/16

0101 1/16

0110 1/8

0111 0

1000 0

1001 1/8

1010 1/16

1011 1/16

1100 1/8

1101 0

1110 1/16

1111 1/16

Table 3: Possible 4-tuples for bit output

As we know the value of bk to be 1, we know that certain bit tuples will give us
a value of 0, thus they have probability of 0. The remaining 4-tuples have the values
as specified. It is important to note that this scenario is the best case scenario for the
attacker in which every 4-tuple is independent from the next. In the original SSG, bit
pairs of the form 00 or 01 were discarded. Our approach does not discard these values,
rather we store them for use. Thus, our worst case (from the defender perspective)
for the number of states, given that we need to reconstruct r 4-tuples and there are
q = 4r total bits is: 12

q
4 = 2(log2 12)

q
4 = 21.861q. Again, we point out that this analy-

sis cannot be too accurate but provides a lower bound for the exhaustive search complexity.

The total block entropy can also be determined using the probability values from
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Table 3 as

H = −
(

8

16
log2

1

16
+

4

8
log2

1

8

)
=

7

2
.

The entropy per bit is 7
8 . This means that an entropy search of all q bits would require

2.875q. Our approach is more secure than the SSG and its variants proposed in [3, 17].
This approach is also imperfect in that a block that results in a 0 or 1 need not be of
length 4 but presents a bound on the difficulty of the process.

5. Validation Experiments

The software used in this research was run on laptop running Ubuntu 16.04 with 16 GB
of RAM, written in the Python3 programming language. Table 4 presents both period
and linear complexity results for a polynomial with degree n for the SSCG, as well a
comparison of those same properties with the SSG. Figure 3 shows a linear complexity
profile comparison for the SSG and SSCG using the primitive polynomial x10 + x3 + 1.

n SSG Period SSCG Period SSG LC SSCG LC Theor. Max LC

3 4 12 3 5 5

4 8 56 5 8 12

5 16 240 13 27 27

6 32 992 28 58 58

7 64 4032 59 119 121

8 128 16256 122 248 248

9 256 65280 249 503 503

10 512 261632 504 1011 1014

11 1024 1047552 1015 2035 2037

12 2048 4192256 2038 4072 4084

13 4096 16773120 4085 8175 8179

14 8192 67100672 8180 16370 16370

15 16384 268419072 16371 32571 32753

16 32768 1073709056 32742 65519 65520

Table 4: Comparison of the period and linear complexity of the SSG and the SSCG

The period data for these polynomials matches what we would have expected from the
formula that was presented in Section 3.1. Our values for linear complexity are very close
(or reach) our proposed theoretical maximum linear complexity from Section 3.2. The
SSCG outperforms the SSG in terms of both period and linear complexity. The linear
complexity of the SSCG is approximately double than of the SSG and the period is sev-
eral times greater. We also ran bitstreams produced by the SSCG against the statistical
test suite provided by NIST (NIST SP 800-22) to evaluate the baseline security of pseu-
dorandom number generators for cryptographic applications. The full description of the
testing methodology can be found in [12]. We ran several SSCG bitstreams through the
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Figure 3: LC Comparison between SSG and SSCG for x10 + x3 + 1

NIST suite and were able to pass every test. We have provided output of testing on the
bitstream produced by the polynomial x16+x12+x3+x+1 in the Appendix. Due to space
considerations in the appendix, repeated tests were averaged. We ran the tests against
100 streams of 5 million bits each for analysis for that polynomial. The SSCG bitstreams
passed every test from the suite.

Finally, we make some remarks on the amount of buffer bits required for our approach.
Empirically, we have determined that the amount of buffer bits required is approximately
2n−1 bits where n is the degree of the polynomial. For example, for the polynomial
x12 + x9 + x3 + x2 + 1 with seed 15, the SSCG period was 4192256 and the amount
of buffer bits required was 1044. This is an expected result as when an m-sequence is
repeated twice, the count of the bit pair 00, is one less than the other bit pairs. Over
the course of the SSCG period, which requires the original m-sequence to be repeated 2n

times, we would expect a difference of 2n−1 in the count of 00. Compared to the period
of the SSCG sequence, the buffer amount is rather small.

6. Conclusions

We have presented a computationally inexpensive modification to the Self-Shrinking
Generator that exhibits improved period, linear complexity, and added security against
several known SSG attacks. In the process of doing so, we examined the mathematical
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properties of the 0-SSG, which to this point had not been explored. An analysis of
the period and LC of the 0-SSG in turn allowed us to prove features of the SSCG. In
conjunction with proofs for period and LC, we also presented data where our approach
for the SSCG was implemented. That data matched what we had expected. Finally, we
began a security evaluation of the SSCG by presenting bounds on some basic attacks and
by running bitstreams produced by the SSCG against the NIST standards. While these
positive results are not fully sufficient to put in practice the SSCG, they are valuable
data points for a future, more thorough security evaluation.

There is work that remains to be done. As noted earlier, some classes of attacks that
were envisioned against the SSG are not applicable or practical for the SSCG, but there
are surely other attacks that can be leveraged against the SSCG. Furthermore, an efficient
hardware implementation of the SSCG is a necessary step for more widespread use. There
are several other interesting features of the SSCG that could be explored in the future. For
example, it is interesting to note that while it is known [20, Proposition 4.6] that a random
sequence of period 2n−1 has a linear complexity greater than 2n−1 − 1, the 1-SSG is not
respecting that and the 0-SSG z is closer to respecting the random approach (sure, we
work with the modified z̃ so that the period is exactly 2n−1). Furthermore, one can extend
our approach to the odd characteristic, as well. There are many other such observations
that could be the subject of future research.
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Appendix A: Linear complexity data for 0-SSG versus 1-SSG for a
variety of polynomials

Polynomial 1-SSG LC 0-SSG LC Polynomial 1-SSG LC 0-SSG LC

x2 + x+ 1 2 1 x3 + x+ 1 3 2

x4 + x+ 1 5 3 x5 + x2 + 1 12 12

x5 + x4 + x2 + x+ 1 13 14 x5 + x4 + x3 + x2 + 1 10 12

x6 + x+ 1 28 25 x6 + x5 + x2 + x+ 1 26 30

x6 + x5 + x3 + x2 + 1 28 30 x7 + x+ 1 57 62

x7 + x3 + x2 + x+ 1 58 60 x7 + x3 + 1 59 62

x7 + x5 + x4 + x3 + x2 + x+ 1 59 56 x7 + x4 + x3 + x2 + 1 54 59

x7 + x6 + x4 + x2 + 1 58 57 x7 + x6 + x3 + x+ 1 58 57

x7 + x6 + x5 + x4 + x2 + x+ 1 56 62 x7 + x6 + x5 + x2 + 1 59 60

x8 + x5 + x3 + x+ 1 121 119 x8 + x4 + x3 + x2 + 1 121 126

x8 + x6 + x5 + x+ 1 119 126 x8 + x6 + x4 + x3 + x2 + x+ 1 122 119

x8 + x6 + x5 + x3 + 1 122 119 x8 + x6 + x5 + x2 + 1 122 126

x8 + x7 + x6 + x5 + x2 + x+ 1 122 126 x8 + x7 + x6 + x+ 1 122 126

x9 + x5 + x3 + x2 + 1 245 250 x9 + x4 + 1 249 254

x9 + x6 + x5 + x3 + x2 + x+ 1 249 236 x9 + x6 + x4 + x3 + 1 249 242

x9 + x7 + x6 + x4 + x3 + x+ 1 249 254 x9 + x6 + x5 + x4 + x2 + x+ 1 249 252

x9 + x8 + x5 + x4 + 1 249 254 x9 + x8 + x4 + x+ 1 246 254

x9 + x8 + x6 + x5 + x3 + x+ 1 249 254 x9 + x8 + x6 + x5 + 1 249 242

x9 + x8 + x7 + x3 + x2 + x+ 1 249 250 x9 + x8 + x7 + x2 + 1 247 254

x9 + x8 + x7 + x6 + x5 + x3 + 1 247 250 x9 + x8 + x7 + x6 + x5 + x+ 1 243 252

x10 + x4 + x3 + x+ 1 504 501 x10 + x3 + 1 504 507

x10 + x8 + x3 + x2 + 1 504 501 x10 + x6 + x5 + x3 + x2 + x+ 1 504 507

x10 + x8 + x5 + x+ 1 504 510 x10 + x8 + x4 + x3 + 1 504 510

x10 + x8 + x7 + x6 + x5 + x2 + 1 504 507 x10 + x8 + x5 + x4 + 1 504 510

x10 + x9 + x4 + x+ 1 504 510 x10 + x8 + x7 + x6 + x5 + x4 + x3 + x+ 1 504 507

x10 + x9 + x8 + x6 + x3 + x2 + 1 500 510 x10 + x9 + x6 + x5 + x4 + x3 + x2 + x+ 1 502 510

x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + 1 504 507 x10 + x9 + x8 + x6 + x5 + x+ 1 498 510

x11 + x5 + x3 + x+ 1 1013 1022 x11 + x2 + 1 1015 1017

x11 + x6 + x5 + x+ 1 1011 1007 x11 + x5 + x3 + x2 + 1 1014 1022

x11 + x8 + x5 + x2 + 1 1015 1020 x11 + x7 + x3 + x2 + 1 1014 1020

x11 + x8 + x6 + x5 + x4 + x3 + x2 + x+ 1 1015 1022 x11 + x8 + x6 + x5 + x4 + x+ 1 1013 1010

x11 + x9 + x8 + x7 + x4 + x+ 1 1013 1020 x11 + x9 + x4 + x+ 1 1012 1022

x11 + x10 + x7 + x4 + x3 + x+ 1 1015 1022 x11 + x10 + x3 + x2 + 1 1014 1022

x11 + x10 + x9 + x8 + x3 + x+ 1 1012 1022 x11 + x10 + x8 + x7 + x5 + x4 + x3 + x+ 1 1014 1012

x12 + x9 + x3 + x2 + 1 2038 2035 x12 + x6 + x4 + x+ 1 2037 2035

x12 + x10 + x9 + x8 + x6 + x2 + 1 2037 2046 x12 + x9 + x8 + x3 + x2 + x+ 1 2038 2046

x12 + x11 + x6 + x4 + x2 + x+ 1 2037 2046 x12 + x10 + x9 + x8 + x6 + x5 + x4 + x2 + 1 2038 2046

x12 + x11 + x9 + x7 + x6 + x4 + 1 2038 2035 x12 + x11 + x9 + x5 + x3 + x+ 1 2037 2046

x12 + x11 + x9 + x8 + x7 + x4 + 1 2038 2046 x12 + x11 + x9 + x7 + x6 + x5 + 1 2038 2046

x12 + x11 + x10 + x5 + x2 + x+ 1 2037 2046 x12 + x11 + x9 + x8 + x7 + x5 + x2 + x+ 1 2037 2035

x12 + x11 + x10 + x9 + x8 + x7 + x5 + x4 + x3 + x+ 1 2036 2046 x12 + x11 + x10 + x8 + x6 + x4 + x3 + x+ 1 2037 2046

x13 + x9 + x7 + x5 + x4 + x3 + x2 + x+ 1 4084 4090 x13 + x4 + x3 + x+ 1 4083 4092

x13 + x10 + x9 + x7 + x5 + x4 + 1 4085 4094 x13 + x9 + x8 + x7 + x5 + x+ 1 4084 4094

x13 + x11 + x8 + x7 + x4 + x+ 1 4083 4091 x13 + x10 + x9 + x8 + x6 + x3 + x2 + x+ 1 4085 4089

x13 + x12 + x6 + x5 + x4 + x3 + 1 4084 4094
x13 + x11 + x10 + x9 + x8 + x7 + x6

+x5 + x4 + x3 + x2 + x+ 1
4085 4082

x13 + x12 + x9 + x8 + x4 + x2 + 1 4085 4091 x13 + x12 + x8 + x7 + x6 + x5 + 1 4085 4094

x13 + x12 + x11 + x5 + x2 + x+ 1 4079 4094 x13 + x12 + x10 + x8 + x6 + x4 + x3 + x2 + 1 4085 4094

x13 + x12 + x11 + x9 + x5 + x3 + 1 4084 4091 x13 + x12 + x11 + x8 + x7 + x6 + x4 + x+ 1 4085 4092

x14 + x10 + x6 + x+ 1 8180 8190 x14 + x8 + x6 + x+ 1 8180 8190

x14 + x11 + x6 + x+ 1 8180 8177 x14 + x10 + x9 + x7 + x6 + x4 + x3 + x+ 1 8178 8190

x14 + x12 + x9 + x8 + x7 + x6 + x5 + x4 + 1 8180 8177 x14 + x11 + x9 + x6 + x5 + x2 + 1 8180 8190

x14 + x12 + x11 + x10 + x9 + x7 + x4 + x3 + 1 8180 8190 x14 + x12 + x11 + x9 + x8 + x7 + x6 + x5 + x3 + x+ 1 8179 8190

x14 + x13 + x10 + x8 + x7 + x5 + x4 + x3 + x2 + x+ 1 8178 8190 x14 + x13 + x6 + x5 + x3 + x+ 1 8179 8190

x14 + x13 + x11 + x8 + x5 + x3 + x2 + x+ 1 8179 8190 x14 + x13 + x11 + x6 + x5 + x4 + x2 + x+ 1 8178 8190

x14 + x13 + x12 + x11 + x10 + x9 + x6 + x5 + 1 8179 8177 x14 + x13 + x12 + x11 + x10 + x7 + x6 + x+ 1 8179 8190

x15 + x4 + 1 16371 16382 x15 + x+ 1 16369 16382

x15 + x7 + x6 + x3 + x2 + x+ 1 16365 16382 x15 + x7 + 1 16371 16380

x15 + x10 + x5 + x4 + 1 16367 16382 x15 + x10 + x5 + x+ 1 16371 16375

x15 + x10 + x9 + x7 + x5 + x3 + 1 16371 16382 x15 + x10 + x5 + x4 + x2 + x+ 1 16371 16382

x15 + x11 + x7 + x6 + x2 + x+ 1 16369 16380 x15 + x10 + x9 + x8 + x5 + x3 + 1 16371 16373

x15 + x12 + x5 + x4 + x3 + x2 + 1 16370 16382 x15 + x12 + x3 + x+ 1 16368 16382

x15 + x14 + x13 + x12 + x11 + x10 + x9+
x8 + x7 + x6 + x5 + x4 + x3 + x2 + 1

16371 16382 x15 + x12 + x11 + x8 + x7 + x6 + x4 + x2 + 1 16371 16382

Table 5: Comparison of SSG approaches using either zeroes or ones for a sample of
primitive polynomials up to degree 15
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Appendix B: Output of NIST test suite for 100 bitstreams of 5 million
bits using the polynomial x16 + x12 + x3 + x+ 1

---------------------------------------------------------------------

RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF

PASSING SEQUENCES

---------------------------------------------------------------------

generator is <data/16_stream_full.txt>

---------------------------------------------------------------------

P-VALUE PROPORTION STATISTICAL TEST

---------------------------------------------------------------------

0.020548 98/100 Frequency

0.224821 99/100 BlockFrequency

0.001895 98/100 CumulativeSums

0.035174 98/100 CumulativeSums

0.037566 98/100 Runs

0.289667 100/100 LongestRun

0.224821 99/100 Rank

0.096578 97/100 FFT

0.511764 99/100 NonOverlappingTemplate*

0.437274 99/100 OverlappingTemplate

0.867692 98/100 Universal

0.275709 99/100 ApproximateEntropy

0.537564 88/89 RandomExcursions*

0.293242 88/89 RandomExcursionsVariant*

0.657933 100/100 Serial

0.574903 99/100 Serial

0.455937 97/100 LinearComplexity

*148 NonOverlappingTemplate tests were performed. P-Value and

Proportion shown are averages.

*8 RandomExcursions tests were performed. P-Value and Proportion

shown are averages.

*18 RandomExcursionsVariant tests were performed. P-Value and

Proportion shown are averages.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

The minimum pass rate for each statistical test with the exception

of the random excursion (variant) test is approximately = 96 for a

sample size = 100 binary sequences.

The minimum pass rate for the random excursion (variant) test

is approximately = 85 for a sample size = 89 binary sequences.

For further guidelines construct a probability table using the

MAPLE program provided in the addendum section of the documentation.


