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1. Introduction

The polynomials that will be considered are given by the generating functions (1)-(3)

where B
(α)
n (x; a, b, c) denotes the Bernoulli-type polynomials of order α, E

(α)
n (x; a, b, c)

denotes the Euler-type polynomials of order α and G
(α)
n (x; a, b, c) denotes the Genocchi-

type polynomials of order α with α ∈ Z+, a, b, c are positive real numbers and B =
ln b− ln a > 0. (

t

bt − at

)α

cxt =

∞∑
n=0

B(α)
n (x; a, b, c)

tn

n!
, |t| < 2π

B
(1)
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2
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∞∑
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E(α)
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tn

n!
, |t| < π
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cxt =

∞∑
n=0

G(α)
n (x; a, b, c)
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n!
, |t| < π

B
. (3)
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These polynomials are generalizations of the classical Bernoulli, Euler and Genocchi poly-
nomials, respectively. The Apostol-type of these polynomials were mentioned in [9] in the
introduction of the paper. Fourier series for the tangent type of these polynomials were
obtained in [7] while the Fourier series for the Apostol-Tangent polynomials were obtained
in [6]. Integral representation and explicit formula at rational arguments of tangent poly-
nomials of higher order were derived in [8]. Properties of higher order Apostol-Frobenius-
type poly-Genocchi polynomials with parameters a, b and c were studied in [10]. Other
interesting polynomials related to Bernoulli, Euler and Genocchi were studied in [1–4].

In this paper, the Fourier series for B
(α)
n (x; a, b, c), E

(α)
n (x; a, b, c) and G

(α)
n (x; a, b, c) of

positive integer order α will be derived. The method used here is analytic. In particular,
there will be heavy use of contour integration and residue theory. For elaborate discussion
of these topics see [5].

2. The case α = 1

Lemma 2.1. Let n ≥ 2, N > 1 and CN be the circle about zero of radius R = (2Nπ−ε)/B,
where 0 < ε < 1 and B = ln b− ln a, b > a. For

0 < x <

(
ln a− B

2π − ε

)/
ln c, ln c > 0

we have

lim
N→+∞

∫
CN

cxt

bt − at
dt

tn
= 0.

Proof. ∣∣∣∣∫
CN

cxt

(bt − at)

dt

tn

∣∣∣∣ ≤ ∫
CN

|cxt|
|bt − at|

|dt|
|tn|

.

We will show that under the conditions in the lemma, the function
cxt

(bt − at)
is bounded

on CN .

Write cxt = ext ln c, bt = et ln b, at = et ln a, where t ∈ CN . Let t = γ + iρ. Then

γ =
2Nπ − ε

B
cos θ, ρ =

2Nπ − ε

b
sin θ,

where 0 ≤ θ ≤ 2π. Then

|cxt|
|bt − at|

=
exγ ln c

|e(γ+iρ) ln b − e(γ+iρ) ln a|

=
exγ ln c

eγ ln a[e2γB − 2eγB cos ρB + 1]
1
2
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=
1

eγ[ln a−x ln c][e2γB − 2eγB cos ρB + 1]
1
2

.

With

x <
ln a

ln c
− B

(2π − ε) ln c

=⇒ x ln c < ln a− B

2π − ε

=⇒ x ln c− ln a < − B

2π − ε

=⇒ ln a− x ln c >
B

2π − ε
≥ B

2πN − ε
, ∀ N ≥ 1.

Thus,
1

eγ[ln a−x ln c]
≤ 1

ecosθ
≤ 1

e−1
= e,

and

|cxt|
|bt − at|

≤ e

[e2γB − 2eγB cos ρB + 1]
1
2

.

The denominator of the preceding expression must not be zero. With 0 ≤ θ ≤ 2π, we look
at 3 cases:

Case 1: cos θ < 0
As N → +∞, γ → −∞ and e2γB − 2eγB cos ρB + 1 −→ 1 provided B > 0.

Case 2: cos θ > 0

As N → +∞, γ → +∞ and e2γB − 2eγB cos ρB+1 = e2γB
(
1− 2 cos ρB

eγB
+

1

eγB

)
−→

+∞, provided B > 0.

Case 3: cos θ = 0
Then γ = 0 and e2γB − 2eγB cos ρB+1 = 2− 2 cos ρB, which is nonzero provided that

cos ρB ̸= 1. Because cos θ = 0, we have ρ = ±(2Nπ − ε)/B. Thus,

cos ρB = cos[(±2Nπ − ε)] = 1 iff 2Nπ − ε = 2kπ, for some integer k.

This gives

2(N − k)π = ε,
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which is not possible because 0 < ε < 1.

Thus, under the conditions in the lemma, in all 3 cases cxt/(bt − at) is bounded ∀t ∈ CN .
Let M be a positive integer such that∣∣∣∣ cxt

bt − at

∣∣∣∣ < M .

Then ∣∣∣∣∫
CN

cxt

bt − at
dt

tn

∣∣∣∣ < M

∫
CN

|dt|
|tn|

= M · (2Nπ − ε)2π

(2Nπ − ε)n

Bn−1

=
2MπBn−1

(2Nπ − ε)n−1
−→ 0 as N → +∞ for n ≥ 2.

This completes the proof of the lemma.

Theorem 2.2. Let a, b, c be positive real numbers. The Fourier series of the Bernoulli-type
polynomials Bn(x; a, b, c) is given by

Bn(x; a, b, c)

n!
= − 1

B

∑
k∈Z+

etk(x ln c−ln a)

tnk
,

valid for

0 < x <

(
ln a− B

2π − ε

)/
ln c, ln c > 0

where tk = 2kπi/B, B = ln b− ln a > 0.

Proof. When α = 1, the generating function (1) reduces to

t

bt − at
cxt =

∞∑
n=0

Bn(x; a, b, c)
tn

n!
, |t| < 2π

B
.

Applying the Cauchy Integral Formula yields

Bn(x; a, b, c)

n!
=

1

2πi

∫
C

cxt

bt − at
dt

tn
,

where C is a circle with center at 0 and radius less than
2π

B
. Let

f(t) =
cxt

(bt − at)tn
.
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The function f(t) has simple poles at t such that bt − at = 0 and a pole at t = 0 of order
n. Let tk be those values of t such that bt − at = 0. These values are obtained as follows.

bt − at = 0

et ln b − et ln a = 0

(et ln b = et ln a)e−t ln a

log(et(ln b−ln a) = 1)

t(ln b− ln a) = log 1 = i Arg 1 + 2kπi

t =
2kπi

B
,

where B = ln b− ln a.

Let tk = 2kπi/B, k ∈ Z. Now let CN be the circle described in Lemma 2.1. Applying
the Residue Theorem, we have

lim
N→+∞

1

2πi

∫
CN

cxt

bt − at
dt

tn
= Res(f(t), t = 0) +

∑
k∈Z,k ̸=0

Res(f(t), t = tk).

By Lemma 2.1,

0 =Res(f(t), t = 0) +
∑

k∈Z,k ̸=0

Res(f(t), t = tk)

0 =
Bn(x; a, b, c)

n!
+

∑
k∈Z,k ̸=0

Res(f(t), t = tk)

=⇒Bn(x; a, b, c)

n!
= −

∑
k∈Z,k ̸=0

Res(f(t), t = tk).

Computing the residue at tk:

Res(f(t), t = tk) = lim
t→tk

(t− tk)
2cxt

(bt − at)tn

=
2cxtkt−n

k

µ
,

where

µ =
d

dt
(bt − at)|t=tk

=
d

dt
(et ln b − et ln a)|t=tk

= (ln b etk ln b − ln a etk ln a)
e−tk ln a

e−tk ln a
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= etk ln a(ln b etk(ln b−ln a) − ln a)

= etk ln a(ln b− ln a)

= B · etk ln a.

Thus,

Res(f(t), t = tk) =
cxtkt−n

k

B · etk ln a

=
etk(x ln c−ln a)

B · tnk
.

Consequently,
Bn(x; a, b, c)

n!
= − 1

B

∑
k∈Z,k ̸=0

etk(x ln c−ln a)

tnk
.

Lemma 2.3. Let a, b, c be positive real numbers. Let n ≥ 1, N > 1 and CN be the circle
about zero of radius R = ((2N + 1)π − ε)/B, where 0 < ε < 1 and B = ln b− ln a, b > a.
For

0 < x <

(
ln a− B

π − ε

)/
ln c, ln c > 0

we have

lim
N→+∞

∫
CN

cxt

bt + at
dt

tn+1
= 0.

Proof. We will show that the function
cxt

bt + at
is bounded on CN under the conditions

in Lemma 2.3.

From the proof of Lemma 2.1,

|cxt|
|bt + at|

=
exγ ln c

eγ ln a[e2γB + 2eγB cos ρB + 1]
1
2

,

where here,

γ =
(2N + 1)π − ε

B
cos θ,

ρ =
(2N + 1)π − ε

B
sin θ,

0 ≤ θ ≤ 2π. With

x <
ln a

ln c
− B

(π − ε) ln c

=⇒ ln a− x ln c >
B

π − ε
≥ B

(2N + 1)π − ε
, ∀ N ≥ 0.
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Then
1

eγ(ln a−x ln c)
≤ 1

ecos θ
≤ 1

e−1
= e.

Thus,
|cxt|

|bt + at|
≤ e

[e2γB + 2eγB cos ρB + 1]
1
2

.

The expression e2γB+2eγB cos ρB+1 must not be zero. The results for the cases cos θ < 0
and cos θ > 0 obtained in the proof of Lemma 2.1 still hold. We reconsider here the case
cos θ = 0.

In the case θ = 0, γ = 0 and

e2γB + 2eγB cos ρB + 1 = 2 + 2 cos ρB,

which is nonzero provided that cos ρB ̸= −1. Since cos θ = 0, we have ρ = (±1)
(2N + 1)π − ε

B
.

Thus,

cos ρB = cos(±(2N + 1)π − ε) = −1 iff (2N + 1)π − ε = (2k + 1)π,

for some integer k. Equivalently,

(2N + 1)π − (2k + 1)π = ε

2(N − k)π = ε,

which is not possible because 0 < ε < 1. Thus, under the conditions in the Lemma, the

function
cxt

bt + at
is bounded on CN as N → +∞.

Let M∗ be a positive integer such that

|cxt|
|bt + at|

< M∗, ∀t ∈ CN .

Then ∣∣∣∣∫
CN

cxt

bt + at
· dt

tn+1

∣∣∣∣ ≤ ∫
CN

∣∣∣∣ cxt

bt + at

∣∣∣∣ |dt|
|tn+1|

<
M∗ (2N + 1)π − ε

B
· 2π(

(2N + 1)π − ε

B

)n+1

<
2M∗πBn

((2N + 1)π − ε)n
,

which goes to zero as N → +∞.
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Theorem 2.4. Let a, b, c be positive real numbers. The Fourier series of the Euler-type
polynomials En(x; a, b, c) is given by

En(x; a, b, c)

n!
=

2

B

∑
k∈Z

etk(x ln c−ln a)

tn+1
k

,

valid for

0 < x <

(
ln a− B

π − ε

)/
ln c, ln c > 0

where tk = (2k + 1)πi/B, B = ln b− ln a > 0.

Proof. When α = 1, the generating function (2) reduces to(
2

bt + at

)
cxt =

∞∑
n=0

En(x; a, b, c)
tn

n!
, |t| < π

B
.

Applying the Cauchy Integral Formula,

En(x; a, b, c)

n!
=

1

2πi

∫
C

2cxt

(bt + at)tn+1
dt ,

where C is a circle about zero of radius
π

B
. Let

g(t) =
2cxt

(bt + at)tn+1
.

The function g(t) has a pole at t = 0 of order n+1 and simple poles at the values of t such
that bt + at = 0. These values are tk = (2k + 1)πi/B, k ∈ Z which are obtained similarly
as those in Theorem 2.2. Let CN be the circle described in Lemma 2.3. From the Residue
Theorem,

lim
N→+∞

1

2πi

∫
CN

g(t)d(t) = Res(g(t), t = 0) +
∑
k∈Z

Res(g(t), t = tk).

By Lemma 2.3, we have

En(x; a, b, c)

n!
= −

∑
k∈Z

Res(g(t), t = tk).

Computing the residues of g(t) at tk:

Res(g(t), t = tk) = lim
t→tk

(t− tk)
2ext ln c

bt + at
t−n−1

=
2extk ln ct−n−1

k

ν
,
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where

ν =
d

dt
(bt + at)|t=tk

= ((ln b)etk ln b + (ln a)etk ln a)
e−tk ln a

e−tk ln a

= etk ln a[(ln b)etk(ln b−ln a) + ln a]

= etk ln a[− ln b+ ln a]

= −B · etk ln a.

Thus,

Res(g(t), t = tk) =
2etkx ln ct−n−1

k

−B · etk ln a

=
2etk(x ln c−ln a)

−B · tn+1
k

.

Consequently,
En(x; a, b, c)

n!
=

2

B

∑
k∈Z

etk(x ln c−ln a)

tn+1
k

.

Theorem 2.5. Let a, b, c be positive real numbers. The Fourier series of the Genocchi-type
polynomials Gn(x; a, b, c) is given by

Gn(x; a, b, c)

n!
=

2

B

∑
k∈Z

etk(x ln c−ln a)

tnk
,

valid for

0 < x <

(
ln a− B

π − ε

)/
ln c, ln c > 0

where tk = (2k + 1)πi/B, B = ln b− ln a > 0.

Proof. The theorem follows from Theorem 2.4.

3. The case α ≥ 2

Lemma 3.1. Let a, b, c be positive real numbers. Let n ≥ α ≥ 2, α ∈ Z+, N > 1 and CN be
the circle about zero of radius R = (2Nπ− ε)/B, where 0 < ε < 1 and B = ln b− ln a > 0.
For

0 < x <

(
α ln a− B

2π − ε

)/
ln c, ln c > 0

we have

lim
N→+∞

∫
CN

cxt

(bt − at)α
dt

tn−α+1
= 0.
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Proof. We will show that the function
cxt

(bt − at)α
is bounded on CN . From Lemma 2.1,

|bt − at| = eγ ln a[e2γB − 2eγB cos ρB + 1]
1
2 ,

where t ∈ CN , t = γ + iρ. That is,

γ =
2Nπ − ε

B
cos θ, ρ =

2Nπ − ε

B
sin θ,

0 ≤ θ ≤ 2π. Then

|bt − at|α = eαγ ln a[e2γB − 2eγB cos ρB + 1]
α
2 ,

and ∣∣∣∣ cxt

(bt − at)α

∣∣∣∣ = exγ ln c

eαγ ln a[e2γB − 2eγBcosρB + 1]
α
2

.

Impose that α ln a− x ln c >
B

2Nπ − ε
, ∀N ≥ 1.

This is satisfied when

α ln a− x ln c >
B

2π − ε
.

Equivalently, impose that

0 < x <

(
α ln a− B

2π − ε

)/
ln c.

Then
1

eγ(α ln a−x ln c)
<

1

ecos θ
≤ 1

e−1
= e.

Consequently, ∣∣∣∣ cxt

(bt − at)α

∣∣∣∣ < e

[e2γB − 2eγB cos ρB + 1]
α
2

.

It follows from Lemma 2.1 that the right hand side above is bounded on CN as N → +∞.
That is, there is a constant M such that∣∣∣∣ cxt

(bt − at)α

∣∣∣∣ < M, t ∈ CN and 0 < x <

(
α ln a− B

2π − ε

)/
ln c.

Thus, ∣∣∣∣∫
CN

cxt

(bt − at)α
dt

tn−α+1

∣∣∣∣ < M

∫
CN

|dt|
|tn−α+1|

<
M · 2Nπ − ε

B
· 2π(

2Nπ − ε

B

)n−α+1
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=
2πMBα−n

(2Nπ − ε)n−α
, n ≥ α.

−→ 0 as N → +∞.

Lemma 3.2. For a, b, c ∈ R+, x ∈ R, ν, α ∈ Z+ with fixed ν ≥ α,

B(α)
ν (x; a, b, c) =

ν∑
l=0

(
ν

l

)
B

(α)
l (0; a, b, c)(x ln c)ν−l.

Proof. (
t

bt − at

)α

cxt · cyt =

( ∞∑
n=0

B(α)
n (x; a, b, c)

tn

n!

)( ∞∑
n=0

(yt ln c)n

n!

)
(

t

bt − at

)α

c(x+y)t =

∞∑
n=0

n∑
l=0

B
(α)
l (x; a, b, c)

tl

l!

(yt ln c)n−l

(n− l)!
· n!
n!

∞∑
n=0

B(α)
n (x+ y; a, b, c)

ty

n!
=

∞∑
n=0

n∑
l=0

(
n

l

)
B

(α)
l (x; a, b, c)(y ln c)n−l t

n

n!
.

Thus,

B(α)
n (x+ y; a, b, c) =

n∑
l=0

(
n

l

)
B

(α)
l (x; a, b, c)(y ln c)n−l.

Take y = z, x = 0. Then

Bα
n (z; a, b, c) =

n∑
l=0

(
n

l

)
B

(α)
l (0; a, b, c)(z ln c)n−l

Now take n = ν and z = x, we have

B(α)
ν (x; a, b, c) =

ν∑
l=0

(
ν

l

)
B

(α)
l (0; a, b, c)(x ln c)v−l.

Theorem 3.3. Let a, b, c be positive real numbers, N,n, α ∈ Z+ with n ≥ α ≥ 2, N > 1
and CN be the circle about zero of radius R = (2Nπ − ε)/B, where 0 < ε < 1 and

B = ln b − ln a > 0. The Fourier series of the Bernoulli-type polynomials B
(α)
n (x; a, b, c)

of order α is given by
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B
(α)
n (x; a, b, c)

n!
= −

∑
k∈Z,k ̸=0

(
α−1∑
ν=0

(α− n− 1)α−1−ν

ν!(α− 1− ν)!
(2kπi)νB(α)

ν (x; a, b, c)

)
e2kπi(x ln c−α ln b)

(2kπi)n
,

valid for 0 < x <

(
α ln a− B

2π − ε

)/
ln c, ln c > 0, where B

(α)
ν (x; a, b, c) is given in

Lemma 3.2.
Proof. Applying the Cauchy Integral Formula to (1),

B
(α)
n (x; a, b, c)

n!
=

1

2πi

∫
C

cxt

(bt − at)α
dt

tn+1−α
,

where C is a circle about the origin with radius less than
2π

B
. Let

fα(t) =
cxt

(bt − at)αtn−α+1
, n > α.

The function fα(t) has a pole of order n − α + 1 at t = 0 and a pole of order α at the

zeros of bt − at which are given by tk =
2kπi

B
, k ∈ Z. Now let CN , N > 1 be the circle

described in Lemma 3.1. Applying the Residue Theorem,

lim
N→+∞

1

2πi

∫
CN

cxt

(bt − at)α
dt

tn−α+1
= Res(fα(t), t = 0) +

∑
k∈Z,k ̸=0

Res(fα(t), t = tk).

By Lemma 3.1,

0 = Res(fα(t), t = 0) +
∑

k∈Z,k ̸=0

Res(fα(t), t = tk)

0 =
B

(α)
n (x; a, b, c)

n!
+

∑
k∈Z,k ̸=0

Res(fα(t), t = tk)

⇐⇒
Bα

n (x; a, b, c)

n!
= −

∑
k∈Z,k ̸=0

Res(fα(t), t = tk). (4)

Computing the residues at tk:

Res(fα(t), t = k) =
1

(α− 1)!
lim
t→tk

dα−1

dtα−1
(t− tk)

α

(
ext ln c

(bt − at)α

)
1

tn−α+1

=
1

(α− 1)!
lim
t→tk

dα−1

dtα−1

[
(t− tk)

α

(bt − at)α
ext ln c

tn−α+1

]
. (5)
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Taking x = 0 in (1) gives (
t

bt − at

)α

=
∞∑
n=0

B(α)
n (0; a, b, c)

tn

n!
.

Replacing t 7→ t− tk and writing bt = et ln b, at = et ln a,

(t− tk)
α

(e(t−tk) ln b − e(t−tk) ln a)α
=

∞∑
n=0

B(α)
n (0; a, b, c)

(t− tk)
n

n!
. (6)

Multiplying and dividing the left hand side of (6) by eαtk ln b gives

(t− tk)
αeαtk ln b

(et ln b − et ln aetkB)α
=

∞∑
n=0

B(α)
n (0; a, b, c)

(t− tk)
n

n!
. (7)

With tk = (2kπi)/B, we have etkB = e2kπi = 1. Thus, (7) becomes

(t− tk)
αeαtk ln b

(bt − at)α
=

∞∑
n=0

B(α)
n (0; a, b, c)

(t− tk)
n

n!

(t− tk)
α

(bt − at)α
= e−αtk ln b

∞∑
n=0

B(α)
n (0; a, b, c)

(t− tk)
n

n!
. (8)

Substituting (8) to (5) gives,

Res(fα(t), t = tk) =
e−αtk ln b

(α− 1)!
lim
t→tk

dα−1

dtα−1

(
ext ln c

tn−α+1

∞∑
n=0

Bn(0; a, b, c)
(t− tk)

n

n!

)
.

The derivatives will be obtained using Leibniz Rule. This is done as follows. Recalling
the Leibniz Rule for derivatives,

dn

dtn
(fg) =

n∑
k=0

(
n

k

)(
dn−k

dtn−k
f

)(
dk

dtk
g

)
.

Let f = tα−n−1, g = ext ln c
∑∞

n=0B
(α)
n (0; a, b, c)

(t− tk)
n

n!
.

Then

dα−1

dtα−1
(fg) =

α−1∑
ν=0

(
α− 1

ν

)(
dd−1−ν

dtd−1−ν
f

)(
dν

dtν
g

)
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=
α−1∑
ν=0

(
α− 1

ν

)
(α− n− 1)α−1−νt

α−n−1−(α−1−ν)

(
dν

dtν
g

)

=
α−1∑
ν=0

(
α− 1

ν

)
(α− n− 1)α−1−νt

−n+ν

(
dν

dtν
g

)
, (9)

where the notation (n)k is designed as

(n)k = n(n− 1)(n− 2)...(n− k + 1).

Also,

(α− n− 1)α−1−ν = (−1)α−1−ν(n− α+ 1)(n− α+ 2)(n− α+ 3)... ((n− α) + α− ν − 1)

= (−1)α−1−ν ⟨n− α+ 1⟩α−ν−1 .

On the other hand,

dν

dtν
g =

dν

dtν

( ∞∑
n=0

B(α)
n (0; a, b, c)

(t− tk)
n

n!
· ext ln c

)

=
ν∑

l=0

(
ν

l

)
dν−l

dtv−l
et(x ln c) · dl

dtl

( ∞∑
n=0

B(α)
n (0; a, b, c)

(t− tk)
n

n!

)

=
ν∑

l=0

(
ν

l

)
(x ln c)ν−lext ln c

∑
n≥l

B(α)
n (0; a, b, c)(n)l

(t− tk)
n−l

n!
.

Now take the limit as t → tk. Then

lim
t→tk

dν

dtν
g =

ν∑
l=0

(
ν

l

)
(x ln c)v−letkx ln cB

(α)
l (0; a, b, c).

Substituting to (9) and taking the limit as t → tk will yield

lim
t→k

dα−1

dtα−1
(fg) =

α−1∑
ν=0

(
α− 1

ν

)
(α− n− 1)α−1−ν t−n+ν

k

ν∑
l=0

(
ν

l

)
(x ln c)ν−letk ln cB

(α)
l (0; a, b, c)

=

α−1∑
ν=0

(
α− 1

ν

)
(α− n− 1)α−1−ν t−n+ν

k etk ln c

(
ν∑

l=0

(
ν

l

)
(x ln c)v−lB

(α)
l (0; a, b, c)

)
. (10)
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Applying Lemma 3.2 to (10),

lim
t→k

dα−1

dtα−1
(fg) =

α−1∑
ν=0

(
α− 1

ν

)
(α− n− 1)α−1−νt

−n+ν
k etk ln cB(α)

ν (x; a, b, c).

Thus,

Res(fα(t), t = tk) =
etk(x ln c−α ln b)

tnk

α−1∑
ν=0

(α− n− 1)α−1−ν

ν!(α− 1− ν)!
tνkB

(α)
ν (x; a, b, c). (11)

The desired Fourier series is obtained by substituting (11) to (4).

Taking α = 1, the Fourier series in Theorem 3.3 reduces to that in Theorem 2.2. For
α = 2, Theorem 3.3 gives the Fourier series of the Bernoulli-type polynomials of order 2.

This is given by

B
(2)
n (x; a, b, c)

n!
=

−1

B2

∑
k∈Z,k ̸=0

(−n+ 1 + x ln c)
e2kπi(x ln c−2 ln b)

(2kπi)n
,

valid under the conditions in Theorem 3.3.

Lemma 3.4. Let a, b, c be positive real numbers with b > a, n, α ∈ Z+ with n ≥ α, N > 1
and CN be the circle about zero of radius R = ((2N + 1)π − ε)/B, where 0 < ε < 1 and
B = ln b− ln a. For ln c > 0 and

0 < x <

(
α ln a− B

π − ε

)/
ln c (12)

we have

lim
N→+∞

∫
CN

cxt

(bt + at)α
dt

tn+1
= 0.

Proof. From the proof of Lemma 3.2,

|bt + at|α = eαγ ln a[e2γB + 2eγB cos ρB + 1]
α
2 , t ∈ CN

where t = γ + iρ =
(2N + 1)π − ε

B
(cos θ + i sin θ), 0 ≤ θ ≤ 2π.

Thus,

γ =
(2N + 1)π − ε

B
cos θ, ρ =

(2N + 1)π − ε

B
sin θ.
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For x satisfying (12), it follows that

α ln a− x ln c >
B

π − ε
≥ B

(2N + 1)π − ε
, ∀N ≥ 1.

Then
1

eγ[α ln a−x ln c]
=

1

e
(2N+1)−ε

B
cos θ[α ln a−x ln c]

<
1

ecos θ
< e.

Consequently,∣∣∣∣ cxt

(bt + at)α

∣∣∣∣ = |cxt|
|bt + at|α

=
1

eγ[α ln a−x ln c][e2γB + 2eγB cos ρB + 1]
α
2

<
e

(e2γB + 2eγB cos ρB + 1)
α
2

.

The expression e2γB + 2eγB cos ρB + 1 ̸= 0 ∀t ∈ CN as discussed in Lemma 2.3. Thus, ∃
an integer M s.t. ∣∣∣∣ cxt

(bt + at)α

∣∣∣∣ < M, ∀t ∈ CN .

Hence, ∣∣∣∣∫
CN

cxt

(bt + at)α
dt

tn+1

∣∣∣∣ ≤ M

∫
CN

|dt|
|tn+1|

= M ·

(2N + 1)π − ε

B
· 2π(

(2N + 1)π − ε

B

)n+1

=
2πMBn

((2N + 1)π − ε)n+1
, n > 1.

−→ 0 as N → +∞.

Lemma 3.5. For a, b, c ∈ R+, x ∈ R, ν, α ∈ Z+ with fixed ν ≥ α ≥ 2,

E(α)
ν (x; a, b, c) =

ν∑
l=0

(
ν

l

)
E

(α)
l (0; a, b, c)(x ln c)v−l.

Proof. The proof is done similarly as that of Lemma 3.2.

Theorem 3.6. Let a, b, c be positive real numbers with b > a, N , n, α ∈ Z+, n ≥ α ≥ 2,
N > 1 and CN be the circle about zero of radius R = ((2N +1)π− ε)/B, where 0 < ε < 1
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and B = ln b − ln a. The Fourier series of the Euler-type polynomials E
(α)
n (x; a, b, c) of

order α is given by

E
(α)
n (x; a, b, c)

n!
=

−2α

(α− 1)!

∑
k∈Z

α−1∑
ν=0

(
α− 1

ν

)
(−n− 1)α−1−νB

(α)
ν (x; a, b, c)

etk(x ln c−α ln b)

tn+α−ν
k

,

valid for

0 < x <

(
α ln a− B

π − ε

)/
ln c, ln c > 0.

Proof. Applying the Cauchy-Integral Formula to (2),

E
(α)
n (x; a, b, c)

n!
=

1

2πi

∫
C

2αcxt

(bt + at)α
dt

tn+1
,

where C is a circle about zero of radius less than
π

B
. Let

gα(t) =
cxt

(bt + at)αtn+1
.

Then
E

(α)
n (x; a, b, c)

2α(n!)
=

1

2πi

∫
C
gα(t)dt.

The function gα(t) has a pole of order n + 1 at t = 0 and a pole of order α at the zeros
of bt + at which are given by tk = ((2k + 1)πi)/B, k ∈ Z. Applying the Residue Theorem
and taking the limit as N → +∞,

lim
N→+∞

1

2πi

∫
C
gα(t)dt = Res(gα(t), t = 0) +

∑
k∈Z

Res(gα(t), t = tk).

It follows from Lemma 3.4 that

E
(α)
n (x; a, b, c)

2α(n!)
= −

∑
k∈Z

Res(gα(t), t = tk).

Computing the residues at tk:

Res(gα(t), t = tk) =
1

(α− 1)!
lim
t→tk

dα−1

dtα−1

(
(t− tk)

α cxt

(bt + at)α
· 1

tn+1

)
. (13)

Now use (7). With tk = (2k + 1)πi/B, etkB = e(2k+1)πi = −1. Thus, (7) becomes,

(t− tk)
αeαtk ln b

(et ln b + et ln a)α
=

∞∑
n=0

B(α)
n (0; a, b, c)

(t− tk)
n

n!
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(t− tk)
α

(bt + at)α
= e−αtk ln b

∞∑
n=0

B(α)
n (0; a, b, c)

(t− tk)
n

n!
. (14)

Substituting (14) to (13),

Res(gα(t), t = tk) =
e−αtk ln b

(α− 1)!
lim
t→tk

dα−1

dtα−1

(
cxtt−n−1

∞∑
n=0

B(α)
n (0; a, b, c)

(t− tk)
n

n!

)
.

Applying the Leibniz Rule for differentiation,

Res(gα(t), t = tk) =
etk(x ln c−α ln b)

(α− 1)!

α−1∑
ν=0

(
α− 1

ν

)
(−n− 1)α−1−ν t−n−α+ν

k B(α)
ν (x; a, b, c).

Thus,

E
(α)
n (x; a, b, c)

n!
= − 2α

(α− 1)!

∑
k∈Z

etk(x ln c−α ln b)
α−1∑
ν=0

(
α− 1

ν

)
(−n− 1)α−1−ν t−n−α+ν

k B(α)
ν (x; a, b, c)

= − 2α

(α− 1)!

∑
k∈Z

α−1∑
ν=0

(
α− 1

ν

)
(−n− 1)α−1−ν B(α)

ν (x; a, b, c)
etk(x ln c−α ln b)

tn+α−ν
k

,

which is the desired Fourier series of E
(α)
n (x; a, b, c).

Taking α = 1, the Fourier series in Theorem 3.6 reduces to that in Theorem 2.4.
For α = 2, the Fourier series is given by

E
(2)
n (x; a, b, c)

22(n!)
= −

∑
k∈Z

(−n− 1)B
(2)
0 (x; a, b, c)

etk(x ln c−2 ln b)

tn+2
k

+B
(2)
1 (x; a, b, c)

etk(x ln c−2 ln b)

tn+1
k

,

where

B
(2)
0 (x; a, b, c) =

1

B2
, (15)

B
(2)
1 (x; a, b, c) =

x ln c

B2
+

ln ab− (ln b)2 − ln b ln a− (ln a)2

B2
. (16)

Lemma 3.7. Let a, b, c be positive real numbers with b > a. Let N,n, α ∈ Z+, N > 1

and CN be the circle about zero with raidus R =
(2N + 1)π − ε

B
, where 0 < ε < 1 and

B = ln b− ln a. For

0 < x <

(
α ln a− B

π − ε

)/
ln c, ln c > 0

we have

lim
N→+∞

∫
CN

cxt

(bt + at)α
dt

tn−α+1
= 0.
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Proof. This follows from Lemma 3.4.

Lemma 3.8. For a, b, c ∈ R+, x ∈ R, ν, α ∈ Z+ with fixed ν ≥ α,

G(α)
ν (x; a, b, c) =

ν∑
l=0

(
ν

l

)
G

(α)
l (0; a, b, c)(x ln c)ν−l.

Proof. The proof is done similarly as that of Lemma 3.2.

Theorem 3.9. Let a, b, c be positive real numbers with b > a. Let N,n, α ∈ Z+ with
n ≥ α ≥ 2, N > 1 and CN be the circle about zero of radius R = ((2N + 1)π − ε)/B,
where 0 < ε < 1 and B = ln b− ln a. The Fourier series of the Genocchi-type polynomials

G
(α)
n (x; a, b, c) of order α is given by

G
(α)
n (x; a, b, c)

n!
= − 2α

(α− 1)!

∑
k∈Z

α−1∑
ν=0

(
α− 1

ν

)
(α−n−1)α−1−ν B(α)

ν (x; a, b, c)
etk(x ln c−α ln b)

tn−ν
k

.

Proof. Applying the Cauchy Integral Formula to (3),

G
(α)
n (x; a, b, c)

n!
=

2α

2πi

∫
C

cxt

(bt + at)α
dt

tn−α+1
,

where C is a circle about zero of radius < π/B. Let

hα(t) =
cxt

(bt + at)αtn−α+1
.

This function has a pole of order n − α + 1 at t = 0 and a pole of order α at the zeros
of bt + at. These poles are given by tk = (2k + 1)πi/B, k ∈ Z. Applying the Residue
Theorem and taking the limit as N → +∞,

lim
N→+∞

1

2πi

∫
C
hα(t)dt = Res(hα(t), t = 0) +

∑
k∈Z

Res(hα(t), t = tk).

It follows from Lemma 3.7 that

G
(α)
n (x; a, b, c)

n! 2α
= −

∑
k∈Z

Res(hα(t), t = tk), (17)

where

Res(hα(t), t = tk) =
1

(α− 1)!
lim
t→tk

dα−1

dtα−1

(
(t− tk)

α cxt

(bt + at)α
· 1

tn+1−α

)
.

From (14),

Res(hα(t), t = tk) =
e−αtk ln b

(α− 1)!
lim
t→tk

dα−1

dtα−1

(
cxtt−n+α−1

∞∑
n=0

B(α)
n (0; a, b, c)

(t− tk)
α

n!

)
.
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Following the computation in the Euler-type polynomials,

Res(hα(t), t = tk) =
etk(x ln c−α ln b)

(α− 1)!

α−1∑
ν=0

(
α− 1

ν

)
(α− n− 1)α−1−ν t−n+ν

k B(α)
ν (x; a, b, c).

(18)
Substituting (18) to (17) gives the desired Fourier series.

Taking α = 1, the Fourier series in Theorem 3.9 reduces to that in Theorem 2.5. Taking
α = 2 and n = 4, the series gives

G
(2)
4 (x; a, b, c)

22(4!)
= −

∑
k∈Z

{
−3B

(2)
0 (x; a, b, c)

e(2k+1)πi(x ln c−2 ln b)

((2k + 1)πi)4

+ B
(2)
1 (x; a, b, c)

e(2k+1)πi(x ln c−2 ln b)

((2k + 1)πi)3

}

where B
(2)
0 (x; a, b, c) and B

(2)
1 (x; a, b, c) are given in (15) and (16), respectively.

4. Some Remarks

The Fourier series expansions obtained in this paper for B
(α)
n (x; a, b, c), E

(α)
n (x; a, b, c)

and G
(α)
n (x; a, b, c) are useful in establishing the asymptotic formulas of these polynomials.

It would then be interesting to investigate the asymptotic behavior of these polynomials.
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