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Abstract. With the aim of applying the Dokdo structure to BE-algebra, the notions of (weak)
Dokdo BE-subalgebra and Dokdo BE-filter are introduced, and their properties are investigated.
The relationship between weak Dokdo BE-subalgebra, Dokdo BE-subalgebra and Dokdo BE-filter
is established. The conditions under which Dokdo structure can be weak Dokdo BE-subalgebra
and Dokdo BE-filter, and the condition under which weak Dokdo BE-subalgebra can be Dokdo
BE-subalgebra are explored. Characterizations of Dokdo BE-filter are provided.
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1. Introduction

Soft sets and fuzzy sets (interval value, bipolar) are useful tools for solving the problem
of maintaining uncertainty in everyday life. Fuzzy sets are an extension of an existing
set using fuzzy logic, and interval-valued fuzzy sets are also an extension of fuzzy sets
whose membership degree range is a subinterval of [0,1]. As an extension of fuzzy sets,
bipolar fuzzy sets whose membership degree range is [—1,1] are a very useful tool for
considering positive information and negative information at the same time. Soft set theory
is a generalization of fuzzy set theory. (Bipolar, interval-valued) fuzzy set theory and
soft set theory are good mathematical tools for dealing with uncertainty in a parametric
manner, and have many applications in medical diagnosis and decision making etc. In
the information age, there is a growing need to use hybrid structures in various fields.
It has become necessary to study hybrid structures based on logical algebra to present
the mathematical tools needed to meet these needs. Hybrid structures dealing with two
or more different concepts at the same time have the advantage of reducing the loss of
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information when addressing uncertainty issues. In line with this background and need,
Jun [5] introduced a new type of hybrid structure called Dokdo structure, where “Dokdo”
is the name of the most beautiful island in Korea, using the concepts of bipolar fuzzy set,
soft set and interval-valued fuzzy and first applied it to the algebraic structure BCK/BCI-
algebras (see [5, 6]). In 2007, H. S. Kim and Y. H. Kim [7] introduced the notion of
a BE-algebra as a dualization of a generalization of a BCK-algebra. They defined and
studied the concept of a filter in BE-algebras. In [1, 11], S. S. Ahn et al. and A. Rezaei
et al. studied fuzzy BE-algebras. G. Dymek and A. Walendziak [2] developed the theory
of fuzzy filters in BE-algebras.

For the purpose of applying the Dokdo structure to BE-algebra, we introduce (weak)
Dokdo BE-subalgebra and Dokdo BE-filter and study its characteristics. We investigate
the relationship between weak Dokdo BE-subalgebra, Dokdo BE-subalgebra and Dokdo
BE-filter. We explore the conditions under which Dokdo structure can be weak Dokdo
BE-subalgebra and Dokdo BE-filter, and the condition under which weak Dokdo BE-
subalgebra can be Dokdo BE-subalgebra. We discuss the characterization of Dokdo BE-
filter.

2. Preliminaries

2.1. Basic concepts about BE-algebras

43 9

A BE-algebra (see [7]) is defined to be a set X together with a binary operation
and a special element “1” satisfying the conditions:

(BE1) (Va € X) (axa=1),

(BE2) (Va € X) (ax1=1),

(BE3) (Va € X) (1*xa=a),

(BE4) (Va,b,c € X) (a* (bxc) =bx(ax*c)).

The order relation “ <” in a BE-algebra X is defined as follows:

(Va,be X)(a<b & axb=1). (1)
Every BE-algebra X satisfies the following conditions (see [7]):

(Va,b e X)(ax(bxa)=1), (2)
(Va,b e X)(a*((axb)xb)=1). (3)

A BE-algebra X is said to be self-distributive (see [7]) if it satisfies:

(Va,b,ce X)(z* (bxc) = (x*b)x(xx*c)). (4)
A subset A of a BE-algebra X is called
o a BE-subalgebra of X (see [7]) if it satisfies:

(Va,b € A)(axbe A), (5)
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e an n-fold weak BE-subalgebra of X (see [4]) if it satisfies:
(Va,b e A)(a" xb e A), (6)

where n is a natural number with n > 2 and a” *b = a* (a* (---(axb)---)) in
which a appears n times. The n-fold weak BE-subalgebra with n = 2 is called a
weak BE-subalgebra.

e a BE-filter of X (see [7]) if it satisfies:

1e A, (7)
(Va,be X)(axbe A,ae A = be A). (8)

2.2. Basic concepts about Dokdo structures

Let X be a set. A bipolar fuzzy set in X (see [8]) is an object having the form

¢ ={(a,¢ (a),¢"(a) | a € X} (9)

where ¢~ : X — [-1,0] and ¢T : X — [0, 1] are mappings. The bipolar fuzzy set which is
described in (9) is simply denoted by ¢ := (X;07,¢™).
A bipolar fuzzy set can be reinterpreted as a function:

G X = [-1,0] x [0,1], z+ (¢ (2), 01 (2)).

Let U be an initial universe set and X be a set of parameters. For any subset A of
X, a pair (¢°, A) is called a soft set over U (see [9]), where ¢® is a mapping described as
follows:

cps:A%2U

where 2V is the power set of U. If A = X, the soft set (¢°, A) over U is simply denoted
by ¢* only.

A mapping ¢ : X — [[0,1]] is called an interval-valued fuzzy set (briefly, an IVF set)
in X (see [3, 12]) where [[0, 1]] is the set of all closed subintervals of [0,1], and members
of [[0,1]] are called interval numbers and are denoted by @, b, ¢, etc., where @ = [a~,a™]
with0<a™ <at < 1.

For every two interval numbers @ and b, we define

a=<blorb-a) & a <b”, at <bT, (10)
a=b < a=<b b=a, (11)
rmin{a, b} = [min{a~, b~ }, min{a™, b }]. (12)

Let U be an initial universe set and X a set of parameters. A triple Dok, := (¢, ¢°,
@) is called a Dokdo structure (see [5]) in (X,U) if ¢ : X — [—1,0] x [0, 1] is a bipolar
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fuzzy set in X, ¢* : X — 2V is a soft set over U and % : X — [[0,1]] is an interval-valued
fuzzy set in X.
The Dokdo structure Dok, := (¢, ¢°, ¢) in (X,U) can be represented as follows:

Dok, := (¢,¢°,¢) : X—w[lm [0,1]) x 27 x [[0, 1]],
= (¢(), 9" (), $(x))
where $(z) = (¢~ (¢), ¢ (2) and $(z) = [B1(2), Gr(@)]

Given a Dokdo structure Dok, := (¢, ¢°, $) in a Dokdo universe (X, U), we consider
the following sets:

(13)

S (max. min) = 4 7 ¢ X_ ¢~ (z) <max{¢~(y), o (2)}
Pl )‘{w@5“X¢<mzlm¢<>ww»}’
v

G(s,—) ={z e X | ¢~ (x) < s}, ot +) ={z € X |¢"(2) > t},
(P(Svt) *QB(S —)ﬂgﬁ(t,—i—),
oo ={ze X [¢*(x) 2a}, ga:={zeX|[p(r)za},

where (s,t) € [-1,0] x [0,1], a € 2V and @ = [ar, ag].

3. Dokdo BE-subalgebras

Let U be an initial universe set and X a set of parameters. We say that the pair (X, U)
is called a Dokdo BE-universe if X is a BE-algebra. In what follows, let (X,U) denote
the Dokdo BE-universe unless otherwise specified.

Definition 1. A Dokdo structure Dok, := (¢, ¢°, §) is called a Dokdo BE-subalgebra of
(X,U) if it satisfies:

(Vz,y € X) ((z*y) € ¢(max, mln)) (14)
(Va,y € X) (¢°(z xy) 2 ¢*(x) N¢*(y)), (15)
(Vz,y € X) (¢(x *y) = mmin{@(x), §(y)}) - (16)

Example 1. Let (X,U) be a BE-Dokdo universe in which U =7 and X = {1,2,3,4,5,6}

@y,

is a BE-algebra (see [1]) with a binary operation “«” given in the table below.

S T W DN %
e e R
— =N == DN DN
— N W N W W
== R R
— =N R B Ot Ot
=N Wk Ot O
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Let Dok, := (¢, ¢°, ¢) be a Dokdo structure in (X,U = Z) which is defined as follows:

X ¢(x) ¢*(2) ¢(x)

1 (=0.7,08) 2Z [0.4,0.8]
2 (=0.6,0.5) 87 0.3,0.6]
3 (=0.3,0.2) 47 [0.1,0.5]
4 (-0.5,0.4) 8N 0.3,0.7]
5  (—04,0.3) 16N [0.2,0.6]
6  (—0.3,0.2) 16N 0.1,0.5]

It is routine to verify that Dok, := (¢, ¢®, §) is a Dokdo BE-subalgebra of (X,U = 7).

Definition 2. A Dokdo structure Dok, := (¢, ¢°, @) is called a weak Dokdo BE-subalgebra
of (X,U) if it satisfies:

(Va,y € X) (I’E:(cx;)y) € p(max, min)) , (17)
(Vo,y € X) (p°(z * (z*y)) 2 ¢*(x) N¢*(y)) (18)
(Vo,y € X) (@(z x (z xy)) = rmin{@(z), p(y)}) - (19)

Example 2. Let (X,U) be a BE-Dokdo universe in which U =7 and X = {1,2,3,4} is

“y

a BE-algebra (see [10]) with a binary operation “«” given in the table below.

W N %
e e ]
— == NN
N = N W W
— N DN

Define a Dokdo structure Dok, := (¢, ¢*, @) in (X,U) as follows:

Dok, := (¢, @) : X = ([1,0] x [0,1]) x 27 x [[0, 1],
N ((—0.46,0.73),Z,[0.41,0.73)) if z = 1,
((—0.36,0.63),N,[0.32,0.64]) otherwise.

It is routine to check that Dok, == (¢, ¢°, @) is a weak Dokdo BE-subalgebra of (X,U).
Lemma 1. Fvery Dokdo BE-subalgebra is a weak Dokdo BE-subalgebra.

Proof. The proof is straightforward.

The converse of Lemma 1 may not be true as seen in the following example.

Example 3. Let (X,U) be a BE-Dokdo universe in which U =7Z and X ={1,2,3,4} is

Gy,

a BE-algebra (see [10]) with a binary operation “«” given in the table below.
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B~ W N | %
el e
N o W w
— N WO

2
2
1
4
3

Define a Dokdo structure Dok, := (¢, ¢°, @) in (X,U) as follows:

Doky = (¢, 0%, @) : X — ([~1,0] x [0,1]) x 2Y x [[0,1]],
((—0.46,0.73),7Z,[0.41,0.73])  if 2 =1,
z+— < ((—0.36,0.63),27Z,[0.32,0.64]) if x € {2,4},
((—0.27,0.58), 2N, [0.29,0.59]) if x = 3.

It is routine to check that Dok, := (¢, ¢°, §) is a weak Dokdo BE-subalgebra of (X,U).

But it is not a Dokdo BE-subalgebra of (X,U) since (22*2 = 2 §é ¢(max, min), p*(2x4) =
©*(3) = 2N 2 2Z = ¢*(2) N ¢*(4), or (2 x4) = §(3) = [029 0.59] # [0.32,0.64] =

rmin{5(2), p(4)}.

We explore the conditions under which the converse of Lemma 1 becomes true.

v
—~

Theorem 1. If a weak Dokdo BE-subalgebra Dok, := (¢, ¢°, @) of (X,U) satisfies:

) ey € #(max, min),

(Vo,y € X) | @*(xxy) 2 °(z * (zxy)), ; (20)
(x xy) = ¢z * (x x y))

then Dok, := (¢, ¢®, @) is a Dokdo BE-subalgebra of (X,U).

Proof. For every z,y € X, we have

¢ (xxy) <7 (wx (v xy)) <max{p™(z), ¢ (y)}

and $T(z xy) > ¢ (z* (z*y)) > min{o" (x), o (y)}. Hence (i oy € $(max, min). Also,

)
P (zxy) 2 ¢ (l‘*(ﬂc*y)) 2 ¢*(2) N (y) and G(x+y) = G(x* (wxy)) = rmin{H(x), ¢(y)}-
Therefore Dok, := (¢, ¢°, @) is Dokdo BE-subalgebra of (X, U).

Proposition 1. If Dok, := (¢, ¢°, ) is a weak Dokdo BE-subalgebra of (X,U), then
(i) ¢~ (1) is a lower bound of {¢~ (z) |z € X},
(ii) @™ (1) is an upper bound of {p~ (z) |z € X},

(iii) (Vo € X) (¢*(1) 2 ¢*(2), ¢(1) = ¢(x)).
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Proof. Let Dok, := (¢, ¢°, ¢) be a weak Dokdo BE-subalgebra of (X,U). For every

x € X, if we use (BE1) and (BE2), then = x?g(;;;c) € ¢(max, min) which implies that

(z,7)
v~ (1) < max{e™(2),¢" (2)} = ¢~ (2)
and
p"(1) = min{e" (z), ¢ (2)} = " (2)
Hence (i) and (ii) are valid. Also, ¢*(1) = *(x * (z xz)) 2 ¢*(z) N ¢*(z) = ¢*(x) and
¢(1) = @(x * (z * 2)) = rmin{p(x), p(2)} = ().
The combination of Lemma 1 and Proposition 1 leads to the following corollary.

Corollary 1. If Dok, := (¢, ¢°, ¢) is a Dokdo BE-subalgebra of (X,U), then the results
(i), (ii), and (iii) in Proposition 1 are valid.

Proposition 2. Every weak Dokdo BE-subalgebra Dok, := (¢, ¢°, ¢) of (X,U) satisfies:

—N—
€ 6
+ |
NN
[l
ASEIRS
+ |
Gl
N———
—~
[\
=

(V:U,y S X) ( MUW S @(max,min) =

(Vo,y € X) (¢°(y) 2 ¢°(y* (y*x 7)) = ¢°(y) = ¢°(1)), (22)
(Vr,y € X)(@(y) = @y * (yx2)) = &(y) = H(1)).

Proof. Assume that m € ¢(max, min), cps(g)J D¢¥(y*x(y*x)) and p(y) =
€

P(y*(y*z)) for all z,y € X. If we take z = 1 and use (BE2), then (13171) = J
p(max, min), ¢*(y) 2 ¢*(y * (y x 1)) = ¢*(1) and &(y) = Gy * (y * 1)) = ¢(1).
combination of these and Proposition 1 leads to ¢~ (y) = ¢~ (1), o7 (y) = ¢ (1), ¢*(y) =

¢*(1) and @(y) = @(1).

Corollary 2. Every Dokdo BE-subalgebra Dok, := (¢, ¢°, @) of (X,U) satisfies (21),
(22) and (23).
Theorem 2. If Dok, := (¢, ¢°, ¢) is a weak Dokdo BE-subalgebra of (X,U), then the
nonempty sets (ﬁ(s,t) 05 and ¢ are weak BE-subalgebras of X for all (s,t) € [—1,0] x
[0,1], « €2V and @ = [a—,at].
Proof. Let (s,t) € [-1,0] x [0,1], a € 2V and a@ = [a~, a™] be such that ¢(s,t), ¢S and
+

o
P are nonempty. Let z,y € @(s,t) N s N Pz. Then ¢~ () < s, o (y) < s, o7 (z) > t,
et(y) > t, ¢°(x) 2 @, ¢*(y) 2 @, $(2) = a and H(y) = a. Hence

@ (zx (zxy)) <max{e”(z),¢ (y)} <s,
¢ (2 x (zxy)) = min{e" (2),¢" (y)} 2 ¢,
and so x * (x xy) € o(s,t). Also we have ¢*(z * (x x y)) 2 ¢*(x) N p*(y) 2 a and

Sz * (x xy)) = rmin{@(z),p(y)} = a, that is, z * (x xy) € ¢5 and = * (x *xy) € @a.
Therefore ¢(s,t), ¢: and ¢z are weak BE-subalgebras of X.
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Corollary 3. If Dok, = (¢, ¢°, ¢) is a Dokdo BE-subalgebra of (X,U), then the
nonempty sets o(s,t), ¢ and @s are weak BE-subalgebras of X for all (s,t) € [—1,0] X
[0,1], « €2V and @ = [a—,a™].

The following example shows that the converse of Theorem 2 may not be true.

Example 4. Let (X,U) be the BE-Dokdo universe in Example 1. Define a Dokdo structure
Dok, = (¢, ¢*, ¢) in (X,U) as follows:

Dok, = (¢,¢°, @) : X — ([—1,0] x [0,1]) x 2Y x [[0, 1],

(—0.85,0.71), Z, [0.42,0.76]) if x =1,
(—0.66,0.53), 47, [0.29,0.58]) if z =2,
(—0.44,0.57), 4Z, [0.29,0.58]) if = =3,
(—0.44,0.53), 47, [0.29,0.58]) if z = 4,
(—0.44,0.53), 4Z, [0.29,0.58))
(—0.72,0.68), 27, [0.33,0.72])

X —

if x =25,
if x =6.

(
(
(
(
(
(

s

It is routine to verify that the nonempty sets ¢(s,t), ¢ and @z are weak BE-subalgebras
of X for all (s,t) € [-1,0] x [0,1], a € 2V and @ = [a™,a™]. But Dok, := (¢, ¢°, @) is

not a weak Dokdo BE-subalgebra of (X,U) because of % = ﬁ ¢ ¢(max, min).

We provide conditions for a Dokdo structure to be a weak Dokdo BE-subalgebra.

Theorem 3. Given a Dokdo structure Dok, := (¢, ¢°, ¢) in (X,U), if the nonempty sets
o(s,—), o(t,+), ¢5 and @a are weak BE-subalgebras of X for all (s,t) € [—1,0] x [0, 1],
a €2V and a = [a™,a"], then Dok, = (¢, ¢°, §) is a weak Dokdo BE-subalgebra of
(X, 0).

Proof. Assume that ¢(s, —), ¢(t,+), ¢5 and @z are nonempty weak BE-subalgebras
of X for all (s,t) € [~1,0] x [0,1], a € 2V and @ = [a~,aT]. If there exist z,y € X such

that x?iw;)y) ¢ ¢(max, min), then

o~ (2 x (xxy)) > max{p™(2), ¢~ (y)} or o™ (x* (2 * y)) < min{e™ (), " (y)}.

It follows that 2,y € ¢(s,—) N G(t,+), 7 (2 y) & (s, —) and z % (& 5 y) & G(t, +) for
s := max{¢~ (z),p (y)} and t := min{p™*(2),p"(y)}. This is a contradiction, and thus
xx(T*y)

(z,y) - -
P(xz) = a and ¢(y) = b. If we take a := oz Ny and ¢ := rmin{a, b}, then z,y € 5 N @z
and so x x (x *y) € ¢;, N @s. Hence

€ ¢(max,min) for all z,y € X. For every x,y € X, let ¢*(z) = o, ¢*(y) = oy,

Pz x(rxy)) 2 a=az Nay =¢*(z) N e*(y)
and .
$(x s (x+y)) = ¢ = rmin{a, b} = rmin{@(x), &(y)}.
Therefore Dok, := (¢, ¢°, ¢) is a weak Dokdo BE-subalgebra of (X,U).
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4. Dokdo BE-filters

Definition 3. A Dokdo structure Dok, := (¢, ¢*, ¢) in (X, U) is called a Dokdo BE-filter
of (X,U) if it satisfies:

(Va € X) < o) € $lmax, min), > , (24)

©*(1) 2 ¢°(z), P(1) = ()
m € ¢(max, min),
(Vo,y € X) | ¢*(y) 2 ¢*(z) Ng*(z x y), : (25)
¢(y) = rmin{p(x), p(x *y) }

Example 5. Let (X,U) be a BE-Dokdo universe in which U = N and X = {1,2,3,4,5}

Q@

is a BE-algebra (see [7]) with a binary operation “«” given in the table below.

U W N | %
i
— o= N NN
= W= W W Ww
e S Y
= W = Ot Ot Ot

Let Dok, := (¢, ¢°, ¢) be a Dokdo structure in (X,U = N) given in the table below.

X P(z) ¢*(z) ¢(x)

1 (—06,08) 2N 0.4,0.9]
2 (=0.6,0.8) 2N [0.4,0.9]
3 (—0.3,0.6) AN 0.2,0.5]
4 (-0.5,0.4) 8N 0.3,0.7]
5  (—0.3,0.4) 8N 0.2,0.5]

Through routine calculations, we can confirm that Dok, = (¢, ¢®, @) in (X,U) is a
Dokdo BE-filter of (X,U =N).

Proposition 3. Every Dokdo BE-filter Dok, := (¢, ¢°, @) of (X,U) satisfies:

(Va,y € X) <g; <y = { >y€ P(max, mm)) o) > (26)
G € <,0 max, min)
Vz,y,ze X) [z <yxz = () N*(y) , (27)
* rmln{SO( ) #(y)}
y*m € ¢(max, min) (yfy € ¢(max, min)
CoyeX) ([ Gusn=em, | = { ¢moem | @

Py *x) =¢(1) o(x) = @(y)
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Proof. If © < y, then z xy = 1 and so (26) is derived from the definition of Dokdo
BE-filter. Let z,y,z € X be such that x < yx*z. Then = * (y % z) = 1, and so

and

and
¢(2) = rmin{(y), ¢y * 2)} = rmin{(y), rmin{P(x), p(z * (y * 2)) } }
— rmin{@(y), rmin{3(z), $(1)}} = min{$(y), (z)}.
Let z,y € X be such that % € ¢(max, min), @*(y * ) = ¢*(1) and ¢(y * ) = ¢(1). It
follows that
¢ (x) <max{p~ (y),¢ (y =)} <max{y (y),¢ (1)} =¢ (y)

and
o*(z) = min{p*(y), o  (y * 2)} > min{p™(y), o™ (1)} = " (),

that is, (ymiy) € p(max, min). Also, we get

©*(z) 2 0°(y) N*(y*x) = ©*(y) N °(1) = ¢°(y)

and
p(x) = rmin{p(y), o(y * 2)} = rmin{@(y), (1)} = 4(y)-
This completes the proof.

Theorem 4. Every Dokdo BE-filter is a (weak) Dokdo BE-subalgebra.
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Proof. Let Dokw = (¢, ¢*°, @) be a Dokdo BE-filter of (X,U). Since x < y * x for all
z,y € X, we have ~ Ga) ) € ¢(max, min), *(y*xz) D ¢*(z), and @(y *xx) = @(x) by (26). It
follows from (25) that

¢ (y*xz) <o (z) <max{p (y), ¢ (y*2)} <max{p (z),¢ (y)},
e (yxx) > oF(x) > min{e"(y),¢" (y *x)} > min{e™ (z), " ()},
P (yxx) 2 ¢*(x) 2 9*(y) N@°(y x ) 2 ©°(2) N °(y),

Py x x) = @(x) = rmin{@(y), p(y * z)} = rmin{p(x), p(y)}-

Therefore Dok, := (¢, ¢°, ¢) is a Dokdo BE-subalgebra, and hence a weak Dokdo BE-
subalgebra of (X, U).

The converse of Theorem 4 may not be true as seen in the following example.

Example 6. (i) Let Dok, := (¢, ¢°, ¢) be the Dokdo BE-subalgebra of (X,U) which is
described in Example 1 It is not a Dokdo BE-filter of (X,U) since ¢*(5) = 16N 2 8N =

©*(2)Ne*(2%5) o "G5 5*3) 5?2) ¢ p(max, min).

(ii) Let Dok, = (¢, ¢°, ¢) be the weak Dokdo BE-subalgebra of (X,U) which is
described in Example 3. 1t is not a Dokdo BE-filter of (X,U) since (223 3 = (234) ¢

¢(max, min) or @(3) = [0.29,0.59] # [0.32,0.64] = rmin{@(2), p(2 * 3)}.

Proposition 4. Let (X,U) be a Dokdo BE-universe in which X is a self-distributive BE-
algebra. If Dok, := (¢, ¢°, @) is a Dokdo BE-filter of (X,U), then the next assertions
are equivalent.

)yl € $(max, min),

(Vo,y € X) | ¢%(y*x) 2 *(y* (y * ), : (29)
Ply*z) = oy * (yxx))

Gty eyt € P(max, min),

(Vz,y,2 € X) | o*((zxy)*(zxx)) D ¢*(z*(y*x)), |- (30)
P((zxy) * (2 x2)) = (2 * (y x x))

Proof. Let x,y,z € X. Since X is self-distributive, we have
Assume that (29) is valid. Using (BE4), (26) and (29), we have

((zxy) x z))

P ((zxy)* (zxx)) =9 (2 ((2%
o (2% (y*x))

<@ (zx(z2x((zxy) x2))) <

and

T ((zxy) = (2 2) =" (2% ((zxy) * 7))
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> ot (zx (2% ((zxy) x2))) = o7 (2% (y * 7)),

that is, M% € ¢(max, min). Also, we have

P ((zxy) * (zxx)) = ©°(2 % ((z xy) * x))
2@z (zx((2xy)*2)) 2 (2 * (y*2)),
and
P((z*xy) x (zxx)) = P(2* ((z xy) * 7))
= @(zx(zx((zxy) x2))) = ¢z * (y * ).

Conversely, suppose that (30) is valid. If we put y := z in (30) and use (BE1) and
(BE3), then

(zx(zxx), 2x(2*x)

P 1*(2*30)

y € ¢(max, min),

P (zxw) = "1 (24 2)) = (2 2) % (2 ¥2)) 2 (2 % (2 % 2)

and p(zxx) =@(1x (zxx)) = p((z%2) x (2% x)) = (2 * (2 xx)). This proves (29).

Proposition 5. Let (X,U) be a Dokdo BE-universe in which X is a self-distributive
BE-algebra. Then every Dokdo BE-filter Dok, := (¢, ¢°, @) of (X,U) satisfies:

Y*T o .
ez, o) © $(max, min),

(Vo,y,2€ X) | @*(y*a) D9°(yx2)Ne*(zx2), |- (31)
Py * ) = rmin{G(y * 2), (2 * )}

Proof. Using (BE1), (BE2), (BE4) and (4), we have y x z < (2 x z) % (y * z) for all
x,y,z € X. Hence (31) is derived from (27).

Theorem 5. If a Dokdo structure Dok, := (¢, ¢°, ¢) in (X,U) satisfies (27), then it is
a Dokdo BE-filter of (X,U).

Proof. Since v < z x1 for all x € X, we have (m%) € ¢(max, min), *(1) 2 ¢*(x),
and @(1) = @¢(x) by (27). Since x xy < z *xy for all z,y € X, it follows from (27) that
Gy € P(max,min), ©*(y) 2 ¢*(z) N¢*(x *y), and G(y) = rmin{(z), (z * y)}. So,
Dok, = (¢, ¢°, ¢) is a Dokdo BE-filter of (X, U).

Corollary 4. If a Dokdo structure Dok, := (¢, ¢°, @) in (X,U) satisfies (27), then it is
a (weak) Dokdo BE-subalgebra of (X,U).
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Theorem 6. A Dokdo structure Dok, = (¢, ¢°, ¢) in (X,U) is a Dokdo BE-filter of
(X,U) if and only if it satisfies (24) and

Trxz

@)y © $(max, min),
(@ 2) 2 ¢ (x* (y*2)) Ne*(y), (32)

(Vx,y,z € X) ( ©°

@z * z) = rmin{p(z  (y * 2)), p(y)}
= (¢
Y

Proof. Assume that Dok, @) is a Dokdo BE-filter of (X,U) and let z,y, z €

X. Then o~ (z % z) < max{cp (y), ™ ,(y s (z % 2))} = max{p (), (z * (y * z))} and
et (zx2) > min{p(y), o (y*(zx2))} = min{e™ (y), o (z* (y*2))}, that is, Wii)y) c
$(max, min). Also, we have

7

P*(x*2) 29°(y) N°(y* (% 2)) = *(y) N°(z * (y x 2))

and
P * z) = rmin{B(y), $(y * (v * 2)) } = rmin{@(y), p( * (y * 2)) }-

Conversely, suppose that Dok, := (¢, ¢°, @) satisfies (24) and (32). If we put = 1 in

(32) and use (BE3), then we get T = (1*(11;2)711) € ¢(max, min), p*(z) = (1 x z) D

% (1% (y * 2)) N@*(y) = ¢*(y * 2) N ¢*(y) and

P(2) = p(1x 2) = rmin{p(1 * (y * 2)), &(y) } = rmin{@(y * 2), &(y)}
for all y,z € X. Therefore Dok, := (¢, ¢°, ¢) is a Dokdo BE-filter of (X, U).

Theorem 7. A Dokdo structure Dok, = (¢, ¢°, ¢) in (X,U) is a Dokdo BE-filter of
(X, U) if and only if it satisfies:
(Z*i) € ¢(max, min),
(Vz,y € X) | ¢*(y*2) 2 ¢°(2), :
Py *x) = ()

(ax(bxx))*x

((l;fb) € ¢(max, min),
((ax (bxx))*x) 2 ¢(a) Ne*(b), : (34)
(a* (bxw))*x) = rmin{p(a), o(b)}

Proof. Assume that Dok, := (¢, ¢°, ¢) is a Dokdo BE-filter of (X, U) and let x,y,a,b €
X. Then

(33)

(Vx,y,a,b € X)

S

[

&(

o (yxx) <max{p™ (), ¢ (z* (y*z))} = max{e™ (), ¢ (1)} = ¢ (x)

and
¢ (yxx) > min{p*(z),¢" (z * (y * )} = min{p™ (), p" (1)} = ¢™(2),

that is, % € ¢(max, min). Also, we obtain

O (yxx) 2 0% (x) N@*(x* (y*xx)) = ¢*(x) N (1) = ¢*(x)
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and
@y x ) = rmin{@(z), p(z * (y * x))} = rmin{p(z), (1)} = ¢(x).

Hence (33) is valid. The following facts can be obtained by using (3), (26), and Theorem
6.

¢ ((ax (bxx))+x) < max{p™ ((ax (bxx))* (bxx)), ¢ ()} < max{p (a), ¢ (b)},
¢ ((ax (bxx)) *a) > min{p*((a* (bxx)) * (b)), 0" (b)} > min{p™(a), " (b)},
P ((ax (bxxz))xx) 2 ((ax (bxx))* (bxx)) NE*(b) 2 ¢*(a) Ne°(D),

P(ax (bxx))xx) = rmin{@((a* (bxx)) * (bxx)),p(b)} = rmin{@(a), p(b)}.

Thus (34) is valid.
Conversely, suppose that Dokw = (¢, ¢°, p) satisfies (33) and (34). If we take y = x
n (33) and use (BE1), then —— = A% € ¢(max, min), *(1) = ¢*(x * z) D ¢*(z), and

&(1) = ¢(x *x) = ¢(x) for al(lxa;r)e X.(w’lging (BE1), (BE3) and (34), we have
y)=¢ (Ixy) =@ (((xxy) x (xxy)) xy) <max{e™ (zxy),¢ ()},
y) = ¢ (Lxy) =" (((zxy) = (zxy)) *y) = min{e" (2 xy),0" (2)},
“(y) = " (Lxy) = @™ (((z xy) * (x5 y)) xy) 2 ¢°(x xy) N (),
Py) = p(1+y) = G(((x +y) * (z xy)) *x y) = rmin{p(x * y), p(x)}.

Consequently, Dok, := (¢, ¢°, ¢) is a Dokdo BE-filter of (X, U).

o ( @
et (y) =
©

5. Conclusion

To apply the Dokdo structure to BE-algebra, we introduced (weak) Dokdo BE-subalgebra
and Dokdo BE-filter and study its characteristics. We investigated the relationship be-
tween weak Dokdo BE-subalgebra, Dokdo BE-subalgebra and Dokdo BE-filter. We ex-
plored the conditions under which Dokdo structure can be weak Dokdo BE-subalgebra
and Dokdo BE-filter, and the condition under which weak Dokdo BE-subalgebra can be
Dokdo BE-subalgebra. We discussed the characterization of Dokdo BE-filter.
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