On the study of Rainbow Antimagic Connection Number of Corona Product of Graphs
DOI:
https://doi.org/10.29020/nybg.ejpam.v16i1.4520Keywords:
Anti magic labeling., GRAPH COLORINGAbstract
Given that a graph G = (V, E). By an edge-antimagic vertex labeling of graph, we mean assigning labels on each vertex under the label function f : V → {1, 2, . . . , |V (G)|} such that the associated weight of an edge uv ∈ E(G), namely w(xy) = f(x) + f(y), has distinct weight. A path P in the vertex-labeled graph G is said to be a rainbow path if for every two edges xy, x′y ′ ∈ E(P) satisfies w(xy) ̸= w(x ′y ′ ). The function f is called a rainbow antimagic labeling of G if for every two vertices x and y of G, there exists a rainbow x − y path. When we assign each edge xy with the color of the edge weight w(xy), thus we say the graph G admits a rainbow antimagic coloring. The rainbow antimagic connection number of G, denoted by rac(G), is the smallest number of colors induced from all edge weight of antimagic labeling. In this paper, we will study the rac(G) of the corona product of graphs. By the corona product of graphs G and H, denoted by G ⊙ H, we mean a graph obtained by taking a copy of graph G and n copies of graph H, namely H1, H2, ..., Hn, then connecting vertex vi from the copy of graph G to every vertex on graph Hi , i = 1, 2, 3, . . . , n. In this paper, we show the exact value of the rainbow antimagic connection number of Tn ⊙ Sm where Tn ∈ {Pn, Sn, Sn,p, Fn,3}.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 European Journal of Pure and Applied Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.