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1. Introduction

Several authors studied the Pettis integrability of Banach space valued functions (see
for example [1],[10],[11],[13],[14],[12],[18] and references therein) and especially of dual Ba-
nach space valued functions ([2],[17],[19]). Similarly, the study of Pettis integrability for
multifunctions has been the focus of various papers (for example [9],[15] and [22]). In this
note, we are interested in Pettis integrability for scalarly integrable functions of L1

E′ [E].
Our study is based on the truncation technique that has been adopted in ([5],[6]) to state
some Komlós type theorems for Bochner integrable functions and in [16] to provide a
Komlós type theorem in L1

E′ [E]. It is well known that a strongly measurable and scalarly
integrable function f : Ω → E is Pettis integrable if and only if the set {⟨x′, f⟩ : ∥x′∥ ≤ 1}
is uniformly integrable in L1

R(µ) ([14] Theorem 5.2). We give a characterization of Pet-
tis integrability for scalarly integrable function (non-necessary strongly measurable) with
norm measurable function (Proposition 1) and, when E is a separable Banach space, we es-
tablish that a function f ∈ L1

E′ [E] is Pettis integrable if and only if its truncated function
1{∥f∥≤n}f is Pettis integrable for all n ≥ 1 (Corollary 1). We also give some criteria that
guarantee the Pettis integrability of the limit of a Pettis integrable L1

E′ [E]-convergent se-
quence. More precisely, we show that if a sequence of Pettis integrable functions bounded
in L1

E′ [E] converges weakly a.e. in E′ (resp. converges pointwise in L∞
R (µ)

⊗
E′′) to a

scalarly integrable function f , then f is Pettis integrable Theorem 2 (resp. Theorem 4).
It is important to note that a bounded scalarly integrable function is not in general Pettis
integrable, one can find some examples in [2],[19]. We note that the results in [16] will
play an important role for the development of this work and a version of Theorem 4 in
[16] with Pettis integrable functions is given (Theorem 6).

∗Corresponding author.
DOI: https://doi.org/10.29020/nybg.ejpam.v15i4.4528

Email addresses: sabiri.noureddine@gmail.com (N. Sabiri), guessousjssous@yahoo.fr (M. Guessous)

https://www.ejpam.com 1512 © 2022 EJPAM All rights reserved.



N. Sabiri, M. Guessous / Eur. J. Pure Appl. Math, 15 (4) (2022), 1512-1520 1513

2. Notations and Preliminaries

Let (Ω,F , µ) be a complete probability space, E a Banach space and E′ its topological
dual. The weak topology σ(E,E′) on E (resp. the weak* topology σ(E′, E) on E′) will be
referred to by the symbol ”w” (resp. ”w*”). A function f : Ω → E (resp f : Ω → E′) is
w-measurable (resp w*-measurable), if for any x′ ∈ E′, (resp x ∈ E) the function ⟨f, x′⟩ :
ω 7→ ⟨f(ω), x′⟩ (resp ⟨f, x⟩ : ω 7→ ⟨f(ω), x⟩) is measurable. Two functions f, g : Ω → E
(resp f, g : Ω → E′) are w-equivalent (resp w*-equivalent), if ⟨f, x′⟩ = ⟨g, x′⟩ µ − a.e. for
every x′ ∈ E′, (resp ⟨f, x⟩ = ⟨g, x⟩ µ− a.e. for every x ∈ E). A function f : Ω → E (resp
f : Ω → E′) is scalarly integrable (resp w*-scalarly integrable) if for every x′ ∈ E′ the
function ⟨f, x′⟩ (resp for every x ∈ E the function ⟨f, x⟩) is µ-integrable. If f : Ω → E is
scalarly integrable, then ([7] Lemma 1. p. 52) for every A ∈ F there exists x′′f (A) in E′′

such that, for every x′ ∈ E′

⟨x′′f (A), x′⟩ =
∫
A
⟨f, x′⟩ dµ,

the element x′′f (A) is called the Dunford integral of f over A and denoted by (D)−
∫
A fdµ.

By definition, f is Pettis integrable if (D) −
∫
A fdµ ∈ E for all A ∈ F and we write

(P ) −
∫
A fdµ instead of (D) −

∫
A fdµ. Also, ([7] p. 53) if f : Ω → E′ is w*-scalarly

integrable then for every A ∈ F there exists x′f (A) in E′ such that, for every x ∈ E

⟨x′f (A), x⟩ =
∫
A
⟨f, x⟩ dµ,

the element x′f (A) is called the weak* integral (or Gelfand integral) of f over A and

denoted by (w∗) −
∫
A fdµ. A sequence (fn) of E-valued scalarly integrable functions

converges pointwise on L∞
R (µ)

⊗
E′ to an E-valued scalarly integrable function f if

∀h ∈ L∞
R (µ),∀x′ ∈ E′,

∫
Ω
h⟨fn, x′⟩ dµ →

∫
Ω
h⟨f, x′⟩ dµ,

or equivalently ([8] Theorem 7. p. 291) for every x′ ∈ E′, the sequence (⟨fn, x′⟩)n is
bounded in L1

R(µ) and

∀A ∈ F ,

∫
A
⟨fn, x′⟩ dµ →

∫
A
⟨f, x′⟩ dµ.

Let P 1
E(µ) denote the (quotient) space of Pettis integrable E-valued functions. The weak

topology on P 1
E(µ) is the weak topology induced by the duality (P 1

E(µ), L
∞
R (µ)

⊗
E′). If

E is separable and f : Ω → E′ is w*-measurable, the function ∥f(.)∥ is measurable [20]
however, this is not always the case if E is a general Banach space ([14] Example 3.3). With
E being separable, the Banach space (L1

E′ [E] , N1) ([3],[21],[16]) is simply the (quotient)
space of w*-scalarly integrable functions f : Ω → E′ such that ∥f(.)∥ is µ-integrable, and

N1(f) =

∫
Ω
∥f(ω)∥ dµ(ω), f ∈ L1

E′ [E] .
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Finally, we recall that a set H of L1
R(µ) is uniformly integrable (briefly UI) if it is bounded

and

lim
µ(A)→0

sup
f∈H

∫
A
|f | dµ = 0.

A set K of L1
E′ [E] is UI [16] if the set {∥f(.)∥ : f ∈ K} is UI in L1

R(µ), and we say that a
set H of E-valued scalarly integrable functions is scalarly uniformly integrable briefly SUI
(resp w-scalarly uniformly integrable briefly WSUI), if the set {⟨x′, f⟩ : ∥x′∥ ≤ 1, f ∈ H}
(resp for each x′ ∈ E′, the set {⟨x′, f⟩ : f ∈ H}) is UI in L1

R(µ).

3. Pettis integrability and truncation

By ([10] p.82), if f : Ω → E is Pettis integrable then {f} is SUI and the converse
remains true if f is strongly measurable ([14] Theorem 5.2). For the instance of L1

E′ [E],
we give some characterizations of the Pettis integrability by the mean of the associated
truncated functions. Our work build on the following ([4], Theorem 3.1):

Theorem 1. Let E be a Banach space, (fn) a sequence of E-valued Pettis integrable
functions and f : Ω → E a scalarly integrable function satisfying:

(i) {f} is SUI,

(ii) (fn) converges pointwise on L∞
R (µ)

⊗
E′ to f .

Then f is Pettis integrable.

The next lemma is useful.

Lemma 1. If f : Ω → E is scalarly integrable and ∥f(.)∥ is measurable, then the sequence
(1{∥f∥≤n}f)n converges pointwise on L∞

R (µ)
⊗

E′ to f .

Proof. Let h ∈ L∞
R (µ) and x′ ∈ E′. We have

h(ω)⟨1{∥f∥≤n}f(ω), x
′⟩ → h(ω)⟨f(ω), x′⟩ ∀ω ∈ Ω,

and
|h(ω)⟨1{∥f∥≤n}f(ω), x

′⟩| ≤ ∥h∥∞|⟨f(ω), x′⟩| a.e.,

then by the Lebesgue dominated convergence theorem∫
Ω
|⟨h(ω)1{∥f∥≤n}f(ω)− f(ω), x′⟩|dµ(ω) → 0,

and therefore ∫
Ω
h(ω)⟨1{∥f∥≤n}f(ω), x

′⟩dµ(ω) →
∫
Ω
h(ω)⟨f(ω), x′⟩dµ(ω).
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Proposition 1. If f : Ω → E is scalarly integrable and ∥f(.)∥ is measurable, then f is
Pettis integrable if and only if

(i) {f} is SUI, and

(ii) 1{∥f∥≤n}f is Pettis integrable for all n ≥ 1.

Proof. If f is Pettis integrable then {f} is SUI and 1{∥f∥≤n}f is Pettis integrable
∀n ≥ 1. The converse follows from Theorem 1 and Lemma 1.

The above result gives a characterization of Pettis integrability for scalarly integrable
function with measurable norm function (compare with Theorem 5.2 in [14]) and it can be
seen as a generalization for the case of strongly measurable functions since, if f : Ω → E is
strongly measurable then ∥f(.)∥ is measurable and hence 1{∥f∥≤n}f is Bochner then Pettis
integrable. We obtain the following characterization of Pettis integrability in L1

E′ [E].

Corollary 1. Let E be a separable Banach space and f ∈ L1
E′ [E]. Then f is Pettis

integrable iff 1{∥f∥≤n}f is Pettis integrable for all n ≥ 1.

Proof. As E is separable then ∥f(.)∥ is measurable. The direct implication is immediate
we show the converse. For every x′′ ∈ E′′ the function ⟨f(.), x′′⟩ is measurable a simple
limit of (⟨1{∥f∥≤n}f(.), x

′⟩)n. For all ω ∈ Ω and x′′ ∈ BE′′ , we have |⟨f(ω), x′′⟩| ≤ ∥f(ω)∥.
As ∥f(.)∥ ∈ L1

R(µ) then {f} is SUI. Therefore we apply Proposition 1.

From now, we suppose that E is separable. If (fn) is a convergent sequence of Pettis
integrable functions of L1

E′ [E], when does (fn) have a Pettis integrable limit? Here the
convergence is taken in the sense of weak convergence a.e. or the pointwise convergence
on L∞

R (µ)
⊗

E′′. The following result is an analogue of Vitali’s convergence theorem for
Pettis integrable functions.

Lemma 2. Let f ∈ L1
E′ [E] be a scalarly integrable function. Suppose that there exists a

sequence of Pettis integrable functions (fn) such that

(i) (fn) is WSUI, and

(ii) for each x′′ ∈ E′′, limn→∞⟨fn, x′′⟩ = ⟨f, x′′⟩ a.e.

Then f is Pettis integrable and (fn) converges weakly to f in P 1
E′(µ).

Proof. As ∥f(.)∥ is integrable then {f} is SUI. We apply Theorem 1 and Vitali’s
theorem in L1

R(µ).

Theorem 2. Let (fn)n∈N a bounded sequence in L1
E′ [E].

If (fn) w*-converges a.e. to a function f : Ω → E′ then f ∈ L1
E′ [E].

If fn is Pettis integrable for all n and (fn) w-converges a.e. to f , then f is Pettis integrable.
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Proof. As (fn(ω))n w*-converges a.e. to f(ω) we have

∥f(ω)∥ ≤ lim inf
n

∥fn(ω)∥ a.e.

By Fatou’s lemma and the boundedness of (fn) in L1
E′ [E] we get∫

Ω
∥f∥dµ ≤ lim inf

n

∫
Ω
∥fn∥dµ < ∞,

thus f ∈ L1
E′ [E].

Now suppose that fn is Pettis integrable for all n and (fn) w-converges a.e. to f . Then f is
w-measurable with ∥f(.)∥ is integrable, so that f is scalarly integrable. By Lemma 2 in [16]
there exists a subsequence (gn) of (fn) such that (1{∥gn∥<n}gn) is UI and (gn−1{∥gn∥<n}gn)
converges a.e. to 0 in E′, hence (1{∥gn∥<n}gn) is WSUI and weakly converges a.e. to f . It
remains to use Lemma 2 to conclude that f is Pettis integrable.

Now we give a criterion of the σ(L1
E′ [E] , L∞

R (µ)
⊗

E)-compactness for L1
E′ [E]-bounded

subsets.

Theorem 3. Let H a bounded subset of L1
E′ [E]. Then H is σ(L1

E′ [E] , L∞
R (µ)

⊗
E)-

sequentially relatively compact if and only if for each x ∈ E the set Hx = {⟨f, x⟩ : f ∈ H}
is UI in L1

R(µ).

Proof. If H is σ(L1
E′ [E] , L∞

R (µ)
⊗

E)-sequentially relatively compact then for each
x ∈ E, Hx is σ(L1

E′ [E] , L∞
R (µ))-sequentially relatively compact and equivalently is UI

in L1
R(µ). Conversely, let (fn) a sequence of H. By Theorem 2 in [16] there exists a

subsequence (f ′
n) of (fn) and a function f ∈ L1

E′ [E] such that, for every subsequence (hn)
of (f ′

n)

(⟨ 1
n

n∑
i=1

hi(ω)) w*-converges a.e. to f(ω).

For every x ∈ E, the sequence (⟨ 1n
n∑

i=1
hi, x⟩)n is UI in L1

R(µ) since Hx it is, then by the

Vitali’s theorem in L1
R(µ)

∀A ∈ F ,

∫
A
⟨ 1
n

n∑
i=1

hi, x⟩dµ →
∫
A
⟨f, x⟩ dµ. (1)

As (1) is valid for every subsequence (hn) of (f ′
n), by an elementary property of Cesàro

convergence in R we get

∀A ∈ F ,∀x ∈ E

∫
A
⟨f ′

n, x⟩dµ →
∫
A
⟨f, x⟩ dµ.

It follows by the boundedness of (fn) in L1
E′ [E] that

∀h ∈ L∞
R (µ), ∀x ∈ E,

∫
Ω
h⟨f ′

n, x⟩dµ →
∫
Ω
h⟨f, x⟩ dµ.
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Thus (fn) is σ(L
1
E′ [E] , L∞

R (µ)
⊗

E)-sequentially relatively compact.

The next result show that if a sequence of Pettis integrable functions bounded in
L1
E′ [E] converges pointwise in L∞

R (µ)
⊗

E′′ to a scalarly integrable function f , then f is
Pettis integrable.

Theorem 4. Let f : Ω → E′ and (fn) a bounded sequence of L1
E′ [E].

(1) If f is w*-scalarly integrable and

∀A ∈ F ,∀x ∈ E,

∫
A
⟨fn, x⟩ dµ →

∫
A
⟨f, x⟩ dµ, (2)

then f ∈ L1
E′ [E].

(2) If f is scalarly integrable, fn is Pettis integrable for all n and

∀A ∈ F ,∀x′′ ∈ E′′,

∫
A
⟨fn, x′′⟩ dµ →

∫
A
⟨f, x′′⟩ dµ, (3)

then f is Pettis integrable.

Proof. (1) By the Vitali-Hahn-Saks theorem ([7] Corollary I.4.10) for each x ∈ E
the sequence (⟨fn, x⟩)n is UI in L1

R(µ). Applying Theorem 3 to (fn) we have that (fn)
is σ(L1

E′ [E] , L∞
R (µ)

⊗
E)-sequentially relatively compact, so there exists a subsequence

(f ′
n) converging σ(L1

E′ [E] , L∞
R (µ)

⊗
E) to a g ∈ L1

E′ [E]. Then we have

∀A ∈ F ,∀x ∈ E,

∫
A
⟨f ′

n, x⟩ dµ →
∫
A
⟨g, x⟩ dµ. (4)

By (2) and (4) we get

∀A ∈ F ,∀x ∈ E,

∫
A
⟨g, x⟩ dµ =

∫
A
⟨f, x⟩ dµ,

hence
∀x ∈ E, ⟨g, x⟩ = ⟨f, x⟩. a.e.

It follows by the separability of E that ∥g∥ = ∥f∥ a.e. and therefore f ∈ L1
E′ [E].

(2) Now suppose that f is scalarly integrable, fn is Pettis integrable for each n and (3) is
satisfied and let us prove that f is Pettis integrable. By Theorem 1 it is enough to check
that {f} is SUI, which is the case since ∥f(.)∥ is integrable.

The next result is an immediate application of the above theorem.

Corollary 2. The subset of L1
E′ [E] of Pettis integrable functions is norm closed.
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Proof. Let (fn) a norm convergent sequence of Pettis integrable functions of L1
E′ [E]

and f its limit in L1
E′ [E], there exists a subsequence (f ′

n) of (fn) such that

lim
n

∥f ′
n(ω)− f(ω)∥ = 0 a.e.

So f is w-measurable and

∀A ∈ F ,∀x′′ ∈ E′′,

∫
A
⟨fn, x′′⟩ dµ →

∫
A
⟨f, x′′⟩ dµ.

By Theorem 4 (2) f is Pettis integrable.

By combining Theorem 2 and Theorem 4 we have the following.

Theorem 5. Let (fn) a bounded sequence of L1
E′ [E]. Suppose that the following hold:

(1) fn w*-converges a.e. to a function f ,

(2) fn is Pettis integrable for each n,

(3) for each k ∈ N∗ there is a scalarly integrable function vk such that

∀A ∈ F , ∀x′′ ∈ E′′,

∫
A
⟨1{∥fn∥≤k}fn, x

′′⟩ dµ →
∫
A
⟨vk, x′′⟩ dµ. (5)

Then f is Pettis integrable.

Proof. By (1) and Theorem 2 we get f ∈ L1
E′ [E], so by Corollary 1 we have to prove

that 1{∥f∥≤k}f is Pettis integrable for every k ∈ N∗. Fix k ∈ N∗ and applying Theorem 4
(2) to vk and (1{∥fn∥≤k}fn)n we get that vk is Pettis integrable. As (1{∥fn∥≤k}fn)n is WSUI
and by (1) is w*-converges a.e. to 1{∥f∥≤k}f , it follows by the Vitali’s theorem in L1

R(µ)
that

∀A ∈ F ,∀x ∈ E,

∫
A
⟨1{∥fn∥≤k}fn, x⟩ dµ →

∫
A
⟨1{∥f∥≤k}f, x⟩ dµ. (6)

By (5) and (6) we get

∀x ∈ E, ⟨1{∥f∥≤k}, x⟩ = ⟨vk, x⟩ a.e.

Being E separable, it follows that vk = 1{∥f∥≤k}f a.e. and therefore 1{∥f∥≤k}f is Pettis
integrable.

We finish this work by the following version of Theorem 4 in [16] with Pettis integrable
functions. Recall that Rwc(E′) denoted the set of nonempty convex ball weakly compact
subsets of E′.

Theorem 6. Let (fn) be a bounded sequence in L1
E′ [E]. Suppose that fn is Pettis integrable

for all n ∈ N and there exist a Rwc(E′)-valued multifunction Γ such that fn(ω) ∈ Γ(ω) for
a.e. ω ∈ Ω and for all n ∈ N. Then there exists a Pettis integrable function f ∈ L1

E′ [E]
and a subsequence (gn) of (fn) such for every subsequence (hn) of (gn) the following holds
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(j) ( 1n

n∑
i=1

hi) w-converges a.e. to f.

(jj) (1{∥hn∥<n}hn) converges σ(L1
E′ [E] , (L1

E′ [E])′) (weakly) to f in L1
E′ [E] and (hn −

1{∥hn∥<n}hn) converges a.e. to 0 in E′.

Proof. By Theorem 4 in [16] there exists a function f ∈ L1
E′ [E] and a subsequence

(gn) of (fn) such that (j) and (jj) hold. Now since ( 1n

n∑
i=1

hi) is bounded in L1
E′ [E] and

weak converges a.e. to f , it follows by Theorem 2 that f is Pettis integrable.
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