EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 15, No. 4, 2022, 1512-1520 ISSN 1307-5543 — ejpam.com Published by New York Business Global

Pettis integrability in $L_{E'}^1[E]$ related to the truncation

Noureddine Sabiri^{1,*}, Mohamed Guessous¹

¹ Department of Mathematics and Computer Science, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco.

Abstract. We study the Pettis integrability in terms of truncation. We focus our study particularly on space $L_{E'}^1[E]$.

2020 Mathematics Subject Classifications: 28A20, 28A25, 40A05, 46G10 Key Words and Phrases: Convergence, Dual space, Gelfand integral, Pettis integral, Truncation

1. Introduction

Several authors studied the Pettis integrability of Banach space valued functions (see for example [1],[10],[11],[13],[14],[12],[18] and references therein) and especially of dual Banach space valued functions ([2],[17],[19]). Similarly, the study of Pettis integrability for multifunctions has been the focus of various papers (for example [9],[15] and [22]). In this note, we are interested in Pettis integrability for scalarly integrable functions of $L_{E'}^1[E]$. Our study is based on the truncation technique that has been adopted in ([5],[6]) to state some Komlós type theorems for Bochner integrable functions and in [16] to provide a Komlós type theorem in $L^1_{E'}[E]$. It is well known that a strongly measurable and scalarly integrable function $f: \Omega \to E$ is Pettis integrable if and only if the set $\{\langle x', f \rangle : ||x'|| \le 1\}$ is uniformly integrable in $L^1_{\mathbb{R}}(\mu)$ ([14] Theorem 5.2). We give a characterization of Pettis integrability for scalarly integrable function (non-necessary strongly measurable) with norm measurable function (Proposition 1) and, when E is a separable Banach space, we establish that a function $f \in L_{E'}^1[E]$ is Pettis integrable if and only if its truncated function $1_{\{\|f\| \le n\}}f$ is Pettis integrable for all $n \ge 1$ (Corollary 1). We also give some criteria that guarantee the Pettis integrability of the limit of a Pettis integrable $L_{E'}^1[E]$ -convergent sequence. More precisely, we show that if a sequence of Pettis integrable functions bounded in $L^1_{E'}[E]$ converges weakly a.e. in E' (resp. converges pointwise in $L^\infty_{\mathbb{R}}(\mu) \bigotimes E''$) to a scalarly integrable function f, then f is Pettis integrable Theorem 2 (resp. Theorem 4). It is important to note that a bounded scalarly integrable function is not in general Pettis integrable, one can find some examples in [2], [19]. We note that the results in [16] will play an important role for the development of this work and a version of Theorem 4 in [16] with Pettis integrable functions is given (Theorem 6).

DOI: https://doi.org/10.29020/nybg.ejpam.v15i4.4528

Email addresses: sabiri.noureddine@gmail.com (N. Sabiri), guessousjssous@yahoo.fr (M. Guessous)

^{*}Corresponding author.

2. Notations and Preliminaries

Let $(\Omega, \mathcal{F}, \mu)$ be a complete probability space, E a Banach space and E' its topological dual. The weak topology $\sigma(E, E')$ on E (resp. the weak* topology $\sigma(E', E)$ on E') will be referred to by the symbol "w" (resp. "w*"). A function $f: \Omega \to E$ (resp $f: \Omega \to E'$) is w-measurable (resp w*-measurable), if for any $x' \in E'$, (resp $x \in E$) the function $\langle f, x' \rangle$: $\omega \mapsto \langle f(\omega), x' \rangle$ (resp $\langle f, x \rangle : \omega \mapsto \langle f(\omega), x \rangle$) is measurable. Two functions $f, g: \Omega \to E$ (resp $f, g: \Omega \to E'$) are w-equivalent (resp w*-equivalent), if $\langle f, x' \rangle = \langle g, x' \rangle \mu - a.e.$ for every $x' \in E'$, (resp $\langle f, x \rangle = \langle g, x \rangle \mu - a.e.$ for every $x \in E$). A function $f: \Omega \to E$ (resp $f: \Omega \to E'$) is scalarly integrable (resp w*-scalarly integrable) if for every $x' \in E'$ the function $\langle f, x' \rangle$ (resp for every $x \in E$ the function $\langle f, x \rangle$) is μ -integrable. If $f: \Omega \to E$ is scalarly integrable, then ([7] Lemma 1. p. 52) for every $A \in \mathcal{F}$ there exists $x''_f(A)$ in E'' such that, for every $x' \in E'$

$$\langle x_f''(A), x' \rangle = \int_A \langle f, x' \rangle d\mu,$$

the element $x_f''(A)$ is called the Dunford integral of f over A and denoted by $(D) - \int_A f d\mu$. By definition, f is Pettis integrable if $(D) - \int_A f d\mu \in E$ for all $A \in \mathcal{F}$ and we write $(P) - \int_A f d\mu$ instead of $(D) - \int_A f d\mu$. Also, ([7] p. 53) if $f: \Omega \to E'$ is w*-scalarly integrable then for every $A \in \mathcal{F}$ there exists $x_f'(A)$ in E' such that, for every $x \in E$

$$\langle x_f'(A), x \rangle = \int_A \langle f, x \rangle d\mu,$$

the element $x_f'(A)$ is called the weak* integral (or Gelfand integral) of f over A and denoted by $(w^*) - \int_A f d\mu$. A sequence (f_n) of E-valued scalarly integrable functions converges pointwise on $L^\infty_\mathbb{R}(\mu) \bigotimes E'$ to an E-valued scalarly integrable function f if

$$\forall h \in L_{\mathbb{R}}^{\infty}(\mu), \forall x' \in E', \quad \int_{\Omega} h\langle f_n, x' \rangle d\mu \to \int_{\Omega} h\langle f, x' \rangle d\mu,$$

or equivalently ([8] Theorem 7. p. 291) for every $x' \in E'$, the sequence $(\langle f_n, x' \rangle)_n$ is bounded in $L^1_{\mathbb{R}}(\mu)$ and

$$\forall A \in \mathcal{F}, \quad \int_A \langle f_n, x' \rangle \, d\mu \to \int_A \langle f, x' \rangle \, d\mu.$$

Let $P_E^1(\mu)$ denote the (quotient) space of Pettis integrable E-valued functions. The weak topology on $P_E^1(\mu)$ is the weak topology induced by the duality $(P_E^1(\mu), L_{\mathbb{R}}^{\infty}(\mu) \otimes E')$. If E is separable and $f: \Omega \to E'$ is w*-measurable, the function ||f(.)|| is measurable [20] however, this is not always the case if E is a general Banach space ([14] Example 3.3). With E being separable, the Banach space $(L_{E'}^1[E], \overline{N}_1)$ ([3],[21],[16]) is simply the (quotient) space of w*-scalarly integrable functions $f: \Omega \to E'$ such that ||f(.)|| is μ -integrable, and

$$\overline{N}_1(f) = \int_{\Omega} \|f(\omega)\| d\mu(\omega), \qquad f \in L^1_{E'}[E].$$

Finally, we recall that a set H of $L^1_{\mathbb{R}}(\mu)$ is uniformly integrable (briefly UI) if it is bounded and

$$\lim_{\mu(A)\to 0} \sup_{f\in H} \int_A |f| \, d\mu = 0.$$

A set K of $L^1_{E'}[E]$ is UI [16] if the set $\{\|f(.)\|: f \in K\}$ is UI in $L^1_{\mathbb{R}}(\mu)$, and we say that a set H of E-valued scalarly integrable functions is scalarly uniformly integrable briefly SUI (resp w-scalarly uniformly integrable briefly WSUI), if the set $\{\langle x', f \rangle : \|x'\| \leq 1, f \in H\}$ (resp for each $x' \in E'$, the set $\{\langle x', f \rangle : f \in H\}$) is UI in $L^1_{\mathbb{R}}(\mu)$.

3. Pettis integrability and truncation

By ([10] p.82), if $f: \Omega \to E$ is Pettis integrable then $\{f\}$ is SUI and the converse remains true if f is strongly measurable ([14] Theorem 5.2). For the instance of $L_{E'}^1[E]$, we give some characterizations of the Pettis integrability by the mean of the associated truncated functions. Our work build on the following ([4], Theorem 3.1):

Theorem 1. Let E be a Banach space, (f_n) a sequence of E-valued Pettis integrable functions and $f: \Omega \to E$ a scalarly integrable function satisfying:

- (i) $\{f\}$ is SUI,
- (ii) (f_n) converges pointwise on $L^{\infty}_{\mathbb{R}}(\mu) \bigotimes E'$ to f.

Then f is Pettis integrable.

The next lemma is useful.

Lemma 1. If $f: \Omega \to E$ is scalarly integrable and ||f(.)|| is measurable, then the sequence $(1_{\{||f|| \le n\}}f)_n$ converges pointwise on $L^{\infty}_{\mathbb{R}}(\mu) \bigotimes E'$ to f.

Proof. Let $h \in L^{\infty}_{\mathbb{R}}(\mu)$ and $x' \in E'$. We have

$$h(\omega)\langle 1_{\{\|f\| \le n\}} f(\omega), x' \rangle \to h(\omega)\langle f(\omega), x' \rangle \quad \forall \omega \in \Omega,$$

and

$$|h(\omega)\langle 1_{\{\|f\| \le n\}} f(\omega), x' \rangle| \le \|h\|_{\infty} |\langle f(\omega), x' \rangle|$$
 a.e.,

then by the Lebesgue dominated convergence theorem

$$\int_{\Omega} |\langle h(\omega) 1_{\{\|f\| \le n\}} f(\omega) - f(\omega), x' \rangle | d\mu(\omega) \to 0,$$

and therefore

$$\int_{\Omega} h(\omega) \langle 1_{\{\|f\| \le n\}} f(\omega), x' \rangle d\mu(\omega) \to \int_{\Omega} h(\omega) \langle f(\omega), x' \rangle d\mu(\omega).$$

Proposition 1. If $f: \Omega \to E$ is scalarly integrable and ||f(.)|| is measurable, then f is Pettis integrable if and only if

- (i) $\{f\}$ is SUI, and
- (ii) $1_{\{\|f\| \le n\}} f$ is Pettis integrable for all $n \ge 1$.

Proof. If f is Pettis integrable then $\{f\}$ is SUI and $1_{\{||f|| \le n\}}f$ is Pettis integrable $\forall n > 1$. The converse follows from Theorem 1 and Lemma 1.

The above result gives a characterization of Pettis integrability for scalarly integrable function with measurable norm function (compare with Theorem 5.2 in [14]) and it can be seen as a generalization for the case of strongly measurable functions since, if $f: \Omega \to E$ is strongly measurable then ||f(.)|| is measurable and hence $1_{\{||f|| \le n\}}f$ is Bochner then Pettis integrable. We obtain the following characterization of Pettis integrability in $L_{E'}^1[E]$.

Corollary 1. Let E be a separable Banach space and $f \in L^1_{E'}[E]$. Then f is Pettis integrable iff $1_{\{||f|| \le n\}}f$ is Pettis integrable for all $n \ge 1$.

Proof. As E is separable then ||f(.)|| is measurable. The direct implication is immediate we show the converse. For every $x'' \in E''$ the function $\langle f(.), x'' \rangle$ is measurable a simple limit of $(\langle 1_{\{||f|| \le n\}} f(.), x' \rangle)_n$. For all $\omega \in \Omega$ and $x'' \in B_{E''}$, we have $|\langle f(\omega), x'' \rangle| \le ||f(\omega)||$. As $||f(.)|| \in L^1_{\mathbb{R}}(\mu)$ then $\{f\}$ is SUI. Therefore we apply Proposition 1.

From now, we suppose that E is separable. If (f_n) is a convergent sequence of Pettis integrable functions of $L^1_{E'}[E]$, when does (f_n) have a Pettis integrable limit? Here the convergence is taken in the sense of weak convergence a.e. or the pointwise convergence on $L^{\infty}_{\mathbb{R}}(\mu) \bigotimes E''$. The following result is an analogue of Vitali's convergence theorem for Pettis integrable functions.

Lemma 2. Let $f \in L^1_{E'}[E]$ be a scalarly integrable function. Suppose that there exists a sequence of Pettis integrable functions (f_n) such that

- (i) (f_n) is WSUI, and
- (ii) for each $x'' \in E''$, $\lim_{n \to \infty} \langle f_n, x'' \rangle = \langle f, x'' \rangle$ a.e.

Then f is Pettis integrable and (f_n) converges weakly to f in $P_{E'}^1(\mu)$.

Proof. As ||f(.)|| is integrable then $\{f\}$ is SUI. We apply Theorem 1 and Vitali's theorem in $L^1_{\mathbb{R}}(\mu)$.

Theorem 2. Let $(f_n)_{n\in\mathbb{N}}$ a bounded sequence in $L^1_{E'}[E]$. If (f_n) w*-converges a.e. to a function $f:\Omega\to E'$ then $f\in L^1_{E'}[E]$. If f_n is Pettis integrable for all n and (f_n) w-converges a.e. to f, then f is Pettis integrable. *Proof.* As $(f_n(\omega))_n$ w*-converges a.e. to $f(\omega)$ we have

$$||f(\omega)|| \le \liminf_{n} ||f_n(\omega)|| \quad a.e.$$

By Fatou's lemma and the boundedness of (f_n) in $L^1_{E'}[E]$ we get

$$\int_{\Omega} \|f\| d\mu \le \liminf_{n} \int_{\Omega} \|f_n\| d\mu < \infty,$$

thus $f \in L^1_{E'}[E]$.

Now suppose that f_n is Pettis integrable for all n and (f_n) w-converges a.e. to f. Then f is w-measurable with ||f(.)|| is integrable, so that f is scalarly integrable. By Lemma 2 in [16] there exists a subsequence (g_n) of (f_n) such that $(1_{\{||g_n|| < n\}}g_n)$ is UI and $(g_n - 1_{\{||g_n|| < n\}}g_n)$ converges a.e. to 0 in E', hence $(1_{\{||g_n|| < n\}}g_n)$ is WSUI and weakly converges a.e. to f. It remains to use Lemma 2 to conclude that f is Pettis integrable.

Now we give a criterion of the $\sigma(L_{E'}^1[E], L_{\mathbb{R}}^{\infty}(\mu) \otimes E)$ -compactness for $L_{E'}^1[E]$ -bounded subsets.

Theorem 3. Let H a bounded subset of $L_{E'}^1[E]$. Then H is $\sigma(L_{E'}^1[E], L_{\mathbb{R}}^{\infty}(\mu) \otimes E)$ sequentially relatively compact if and only if for each $x \in E$ the set $H_x = \{\langle f, x \rangle : f \in H\}$ is UI in $L_{\mathbb{R}}^1(\mu)$.

Proof. If H is $\sigma(L_{E'}^1[E], L_{\mathbb{R}}^{\infty}(\mu) \otimes E)$ -sequentially relatively compact then for each $x \in E$, H_x is $\sigma(L_{E'}^1[E], L_{\mathbb{R}}^{\infty}(\mu))$ -sequentially relatively compact and equivalently is UI in $L_{\mathbb{R}}^1(\mu)$. Conversely, let (f_n) a sequence of H. By Theorem 2 in [16] there exists a subsequence (f'_n) of (f_n) and a function $f \in L_{E'}^1[E]$ such that, for every subsequence (h_n) of (f'_n)

$$(\langle \frac{1}{n} \sum_{i=1}^{n} h_i(\omega))$$
 w*-converges a.e. to $f(\omega)$.

For every $x \in E$, the sequence $(\langle \frac{1}{n} \sum_{i=1}^{n} h_i, x \rangle)_n$ is UI in $L^1_{\mathbb{R}}(\mu)$ since H_x it is, then by the Vitali's theorem in $L^1_{\mathbb{R}}(\mu)$

$$\forall A \in \mathcal{F}, \quad \int_{A} \langle \frac{1}{n} \sum_{i=1}^{n} h_i, x \rangle d\mu \to \int_{A} \langle f, x \rangle d\mu.$$
 (1)

As (1) is valid for every subsequence (h_n) of (f'_n) , by an elementary property of Cesàro convergence in \mathbb{R} we get

$$\forall A \in \mathcal{F}, \forall x \in E \quad \int_A \langle f'_n, x \rangle d\mu \to \int_A \langle f, x \rangle d\mu.$$

It follows by the boundedness of (f_n) in $L^1_{E'}[E]$ that

$$\forall h \in L^{\infty}_{\mathbb{R}}(\mu), \forall x \in E, \quad \int_{\Omega} h\langle f'_n, x \rangle d\mu \to \int_{\Omega} h\langle f, x \rangle d\mu.$$

Thus (f_n) is $\sigma(L^1_{E'}[E], L^\infty_{\mathbb{R}}(\mu) \otimes E)$ -sequentially relatively compact.

The next result show that if a sequence of Pettis integrable functions bounded in $L^1_{E'}[E]$ converges pointwise in $L^\infty_{\mathbb{R}}(\mu) \bigotimes E''$ to a scalarly integrable function f, then f is Pettis integrable.

Theorem 4. Let $f: \Omega \to E'$ and (f_n) a bounded sequence of $L^1_{E'}[E]$.

(1) If f is w^* -scalarly integrable and

$$\forall A \in \mathcal{F}, \forall x \in E, \quad \int_{A} \langle f_n, x \rangle \, d\mu \to \int_{A} \langle f, x \rangle \, d\mu,$$
 (2)

then $f \in L^1_{E'}[E]$.

(2) If f is scalarly integrable, f_n is Pettis integrable for all n and

$$\forall A \in \mathcal{F}, \forall x'' \in E'', \quad \int_{\mathcal{A}} \langle f_n, x'' \rangle \, d\mu \to \int_{\mathcal{A}} \langle f, x'' \rangle \, d\mu,$$
 (3)

then f is Pettis integrable.

Proof. (1) By the Vitali-Hahn-Saks theorem ([7] Corollary I.4.10) for each $x \in E$ the sequence $(\langle f_n, x \rangle)_n$ is UI in $L^1_{\mathbb{R}}(\mu)$. Applying Theorem 3 to (f_n) we have that (f_n) is $\sigma(L^1_{E'}[E], L^\infty_{\mathbb{R}}(\mu) \bigotimes E)$ -sequentially relatively compact, so there exists a subsequence (f'_n) converging $\sigma(L^1_{E'}[E], L^\infty_{\mathbb{R}}(\mu) \bigotimes E)$ to a $g \in L^1_{E'}[E]$. Then we have

$$\forall A \in \mathcal{F}, \forall x \in E, \quad \int_{A} \langle f'_n, x \rangle \, d\mu \to \int_{A} \langle g, x \rangle \, d\mu.$$
 (4)

By (2) and (4) we get

$$\forall A \in \mathcal{F}, \forall x \in E, \quad \int_A \langle g, x \rangle \, d\mu = \int_A \langle f, x \rangle \, d\mu,$$

hence

$$\forall x \in E, \quad \langle g, x \rangle = \langle f, x \rangle. \quad a.e.$$

It follows by the separability of E that ||g|| = ||f|| a.e. and therefore $f \in L^1_{E'}[E]$.

(2) Now suppose that f is scalarly integrable, f_n is Pettis integrable for each n and (3) is satisfied and let us prove that f is Pettis integrable. By Theorem 1 it is enough to check that $\{f\}$ is SUI, which is the case since ||f(.)|| is integrable.

The next result is an immediate application of the above theorem.

Corollary 2. The subset of $L_{E'}^1[E]$ of Pettis integrable functions is norm closed.

Proof. Let (f_n) a norm convergent sequence of Pettis integrable functions of $L^1_{E'}[E]$ and f its limit in $L^1_{E'}[E]$, there exists a subsequence (f'_n) of (f_n) such that

$$\lim_{m} \|f'_n(\omega) - f(\omega)\| = 0 \qquad a.e$$

So f is w-measurable and

$$\forall A \in \mathcal{F}, \forall x'' \in E'', \quad \int_A \langle f_n, x'' \rangle d\mu \to \int_A \langle f, x'' \rangle d\mu.$$

By Theorem 4 (2) f is Pettis integrable.

By combining Theorem 2 and Theorem 4 we have the following.

Theorem 5. Let (f_n) a bounded sequence of $L^1_{E'}[E]$. Suppose that the following hold:

- (1) f_n w*-converges a.e. to a function f,
- (2) f_n is Pettis integrable for each n,
- (3) for each $k \in \mathbb{N}^*$ there is a scalarly integrable function v_k such that

$$\forall A \in \mathcal{F}, \forall x'' \in E'', \quad \int_{A} \langle 1_{\{\|f_n\| \le k\}} f_n, x'' \rangle \, d\mu \to \int_{A} \langle v_k, x'' \rangle \, d\mu. \tag{5}$$

Then f is Pettis integrable.

Proof. By (1) and Theorem 2 we get $f \in L^1_{E'}[E]$, so by Corollary 1 we have to prove that $1_{\{\|f\| \leq k\}} f$ is Pettis integrable for every $k \in \mathbb{N}^*$. Fix $k \in \mathbb{N}^*$ and applying Theorem 4 (2) to v_k and $(1_{\{\|f_n\| \leq k\}} f_n)_n$ we get that v_k is Pettis integrable. As $(1_{\{\|f_n\| \leq k\}} f_n)_n$ is WSUI and by (1) is w*-converges a.e. to $1_{\{\|f\| \leq k\}} f$, it follows by the Vitali's theorem in $L^1_{\mathbb{R}}(\mu)$ that

$$\forall A \in \mathcal{F}, \forall x \in E, \quad \int_{A} \langle 1_{\{\|f_n\| \le k\}} f_n, x \rangle \, d\mu \to \int_{A} \langle 1_{\{\|f\| \le k\}} f, x \rangle \, d\mu. \tag{6}$$

By (5) and (6) we get

$$\forall x \in E, \quad \langle 1_{\{\|f\| \le k\}}, x \rangle = \langle v_k, x \rangle \quad a.e.$$

Being E separable, it follows that $v_k = 1_{\{\|f\| \le k\}} f$ a.e. and therefore $1_{\{\|f\| \le k\}} f$ is Pettis integrable.

We finish this work by the following version of Theorem 4 in [16] with Pettis integrable functions. Recall that $\mathcal{R}wc(E')$ denoted the set of nonempty convex ball weakly compact subsets of E'.

Theorem 6. Let (f_n) be a bounded sequence in $L^1_{E'}[E]$. Suppose that f_n is Pettis integrable for all $n \in \mathbb{N}$ and there exist a $\mathcal{R}wc(E')$ -valued multifunction Γ such that $f_n(\omega) \in \Gamma(\omega)$ for a.e. $\omega \in \Omega$ and for all $n \in \mathbb{N}$. Then there exists a Pettis integrable function $f \in L^1_{E'}[E]$ and a subsequence (g_n) of (f_n) such for every subsequence (h_n) of (g_n) the following holds

REFERENCES 1519

- (j) $(\frac{1}{n}\sum_{i=1}^{n}h_i)$ w-converges a.e. to f.
- (jj) $(1_{\{\|h_n\|< n\}}h_n)$ converges $\sigma(L_{E'}^1[E], (L_{E'}^1[E])')$ (weakly) to f in $L_{E'}^1[E]$ and $(h_n 1_{\{\|h_n\|< n\}}h_n)$ converges a.e. to 0 in E'.

Proof. By Theorem 4 in [16] there exists a function $f \in L^1_{E'}[E]$ and a subsequence (g_n) of (f_n) such that (j) and (jj) hold. Now since $(\frac{1}{n}\sum_{i=1}^n h_i)$ is bounded in $L^1_{E'}[E]$ and weak converges a.e. to f, it follows by Theorem 2 that f is Pettis integrable.

Acknowledgements

The authors wish to thank the referees for their constructive critique of the first draft.

References

- [1] K.T Andrews. Universal Pettis integrability. Canadian Journal of Mathematics, 37(1):141–159, 1985.
- [2] E.M Bator. Pettis integrability and the equality of the norms of the weak* integral and the Dunford integral. *Proceedings of the American Mathematical Society*, 95(2):265–270, 1985.
- [3] H Benabdellah and C Castaing. Weak compactness and convergences in $L_{E'}^1[E]$. In Advances in Mathematical Economics, pages 1–44. Springer, 2001.
- [4] C Castaing. Weak compactness and convergences in Bochner and Pettis integration. Vietnam Journal of Mathematics, 24(3):241–286, 1996.
- [5] A Dehaj and M Guessous. A proof of Komlós Theorem for Super-Reflexive Valued Random Variables. *Axioms*, 9(3):106, 2020.
- [6] A Dehaj and M Guessous. Permutation-Invariance in Komlós' Theorem for Hilbert-Space Valued Random Variables. *Journal of Convex Analysis*, 28(1):197–202, 2021.
- [7] J Diestel and J.J Uhl. Vector measures. American Mathematical Society, Providence, R.I, 1977.
- [8] N Dunford and J.T Schwartz. *Linear operators, part 1: general theory*. John Wiley & Sons, 1988.
- [9] K ElAmri and C Hess. On the Pettis integral of closed valued multifunctions. Set-Valued Analysis, 8(4):329–360, 2000.
- [10] R.F Geitz. Pettis integration. Proceedings of the American Mathematical Society, 82(1):81–86, 1981.

REFERENCES 1520

[11] R.F Geitz. Geometry and the Pettis integral. Transactions of the American Mathematical Society, 269(2):535–548, 1982.

- [12] L.H Riddle H and E Saab. On functions that are universally Pettis integrable. *Illinois Journal of Mathematics*, 29(3):509–531, 1985.
- [13] R Huff. Remarks on Pettis integrability. Proceedings of the American Mathematical Society, 96(3):402–404, 1986.
- [14] K Musial. Topics in the theory of Pettis integration. Rendiconti dell'Istituto di Matematica dell'Universitá di Trieste, 23(3):177–262, 1991.
- [15] K Musial. Pettis integrability of multifunctions with values in arbitrary Banach spaces. *Journal of Convex Analysis*, 18(3):769–810, 2011.
- [16] N Sabiri and M Guessous. Convergence of Weak*-Scalarly Integrable Functions. *Axioms*, 9(3):112, 2020.
- [17] G.F Stefánsson. Pettis integrability. Transactions of the American Mathematical Society, 330(1):401–418, 1992.
- [18] G.F Stefánsson. Universal Pettis integrability property. *Proceedings of the American Mathematical Society*, 123(5):1431–1435, 1995.
- [19] G.F Stefánsson. The μ -PIP and integrability of a single function. Proceedings of the American Mathematical Society, 124(2):539–542, 1996.
- [20] G.E.F Thomas. Integration of functions with values in locally convex Suslin spaces. Transactions of the American Mathematical Society, 212:61–81, 1975.
- [21] A.I Tulcea and C.I Tulcea. *Topics in the theory of lifting*. Springer Science & Business Media, 1969.
- [22] H Ziat. On a characterization of Pettis integrable multifunctions. Bulletin of the Polish Academy of Sciences Mathematics, 48(3):227–230, 2000.