The Convergent Properties of a New Parameter for Unconstrained Optimization
DOI:
https://doi.org/10.29020/nybg.ejpam.v15i4.4538Keywords:
Conjugate gradient, self-scale DFP, strong Wolfe-Powell line search, sufficient descent propertyAbstract
Because of its simplicity, low memory requirement, low computational cost, and global convergence properties, the Conjugate Gradient (CG) method is the most popular iterative mathematical technique for optimizing both linear and nonlinear systems. Some classical CG methods, however, have drawbacks such as poor global convergence and numerical performance in terms of iterations and function evaluations. To address these shortcomings, researchers proposed new CG parameter variants with efficient numerical results and good convergence properties. We present a new conjugate gradient formula based on the memoryless self-scale DFP quasi-Newton (QN) method in this paper. The proposed new formula fulfills the sufficient descent property and the global convergent condition with any proposed line research. When the exact line search is used, the proposed formula is reduced to the classical HS formula. Finally, we conclude that our proposed method is effective.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 European Journal of Pure and Applied Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.