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Abstract. In this paper, based on the homeomorphism theory and Lyapunov functional method, we

investigate global asymptotical stability for a novel class of delayed impulsive neural networks with-

out Lipschitz neuron activations. Some sufficient conditions are derived which ensure the existence,

uniqueness, and global asymptotical stability of the equilibrium point of neural networks. Finally, a

numerical example is given to demonstrate the improvements of the paper.
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1. Introduction

In the design of neural networks, the model of neural networks is descried by the system

of nonlinear ordinary differential equations or the system of nonlinear functional differential

equations. In generality, these nonlinear systems possibly show complex dynamic behaviors,

such as, periodic oscillatory, bifurcation, chaos, etc. However, in practical applications, es-

pecially for solving linear and quadratic programming problems in real time, it requires that

networks have good convergent property. Under these good convergent property, the validity

can be guaranteed during numeral solving. Due to these, stability analysis for neural net-

works with or without time delays has received a great of attention (see [1− 10]). Recently,

impulsive neural networks have been extensively studied in both theory and applications (see

[5−10]). However, in the existing literatures, almost all results on the stability of neural net-

works are obtained under Lipschitz neuron activations [1−6,9,10]. When neuron activation

functions do not satisfy Lipschitz conditions, people want to know whether the neural net-

works is stable. In practical engineering applications, people also need to present new neural
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networks. Therefore, developing a new class of neural networks without Lipschitz neuron

activation functions and giving the conditions of the stability of new neural networks are very

interesting and valuable.

In this paper, we investigate a general class of delayed neural networks with impulses

where the neuron activations do not satisfy Lipschitz conditions. To the best of authors’ knowl-

edge, this is the first time to study the existence, uniqueness, and global asymptotical stability

of equilibrium point for the neural networks developed by us.

Consider a general delayed neural networks with impulses:







ẋ i(t) = −di x i(t) +
n
∑

j=1

ai j g j(x j(t)) +
n
∑

j=1

bi j g j(x j(t −τi j)) + Ii , t 6= tk,

△x i(tk) = x i(t
+
k
)− x i(t

−
k
) = Jik(x i(tk)), k = 1,2, · · · , i = 1, · · · , n,

(1)

where n denotes the number of the neurons; x i(t) is the state of the ith neuron at time

t; di > 0 is the neural self-inhibitions of the ith neuron; g j(·) represents the input-output

activation of the jth neuron, g j(·) is continuous and monotone nondecreasing; ai j and bi j

denote the connection of the jth neuron to the ith neuron at time t and t −τi j, respectively;

Ii is the external bias on the ith neuron; 0 ≤ τi j ≤ τ, τ is a positive constant; Jik shows

impulsive perturbation of the ith neuron at time tk; △x i(tk) = x i(t
+
k
)− x i(t

−
k
), k = 1,2, · · · ,

are the impulses at moments tk, and 0 < t1 < t2 < · · · is a strictly increasing sequence such

that lim
k→∞

tk =∞.

The system (1) is supplemented with the initial conditions of the type x(t) = φ(t) =

(φ1, · · · ,φn)
T ,−τ ≤ t ≤ 0 in which φ(t) ∈ C([−τ, 0]; Rn) is a continuous function.

C([−τ, 0]; Rn) is a Banach space of continuous mapping which maps [−τ, 0] into Rn with a

topology of uniform convergence.

For convenience, we introduce the following notations: Let matrix Q = (qi j)n×n, R =

(ri j)m×n, Q−1 denotes the inverse of Q, ‖R‖1 and ‖R‖∞ represent the first norm and infin-

ity norm of matrix R, respectively. That is, ‖R‖1 = max
1≤ j≤n

m
∑

i=1

�

�ri j

�

�, ‖R‖∞ = max
1≤i≤m

n
∑

j=1

�

�ri j

�

�.

Symmetric matrix S = (si j)n×n, S > 0 (S ≥ 0,S < 0,S ≤ 0) means that S is positive

definite (positive semi-definite, negative definite, negative semi-definite). Given the vector

ψ = (ψ1, · · · ,ψn)
T ∈ Rn,




ψ




 = max
1≤i≤n

�

�ψi

�

�. I denotes identical matrix. We will sometimes

write x(t) as x , f (x(t)) as f (x).

Definition 1. A function x(t) : [−τ,+∞]→ Rn is said to be a solution of system (1) with initial

conditions x(t) = φ(t), t ∈ [−τ, 0], if the following conditions are satisfied:

(1) x(t) is piecewise continuous with first kind discontinuity at points tk, k = 1,2, · · · . Moreover,

x(t) is right continuous at each discontinuity points;

(2) x(t) satisfies system (1) for t ≥ 0, and x(s) = φ(s) for s ∈ [−τ, 0].

Definition 2. A constant vector x∗ = (x∗1, · · · , x∗n)
T ∈ Rn is an equilibrium point of system (1.1)
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if and only if x∗ is a solution of the following equations:

−di x i +

n
∑

j=1

(ai j + bi j)g j(x j) + Ii = 0, i = 1, · · · , n, (2)

and the impulsive jumps Jik(·) are assumed to satisfy Jik(x
∗
i ) = 0, k = 1,2, · · · , i = 1, · · · , n.

Lemma 1. Continuous map H(x) : Rn → Rn is homeomorphic, if: (1) H(x) is injective;

(2) lim
‖x‖p→∞

‖H(x)‖p =∞.

2. Existence and Uniqueness of the Equilibrium Point

First, we definite the map H(x) associated with (2) as follows:

H(x) = (H1(x), · · · , Hn(x))
T (3)

where Hi(x) = −di x i +
n
∑

j=1

(ai j + bi j)g j(x j) + Ii , i = 1, · · · , n.

Theorem 1. If there exist positive constants pi > 0, i = 1, · · · , n, such that

pi(−aii −
�

�bii

�

�)−
n
∑

j=1, j 6=i

p j(
�

�a ji

�

�+
�

�b ji

�

�)≥ 0, i = 1, · · · , n,

then Eq.(2) has a unique solution.

Proof. In order to complete the proof, we divide the proof into two steps.

Step 1. Let x and y be two different vectors in Rn, then we have

n
∑

i=1

pisi gn(x i − yi)(Hi(x)−Hi(y))

≤ −
n
∑

i=1

pidi

�

�x i − yi

�

�+

n
∑

i=1

pi(aii + bii)
�

�gi(x i)− gi(yi)
�

�

+

n
∑

i=1

n
∑

j=1, j 6=i

pi(
�

�ai j

�

�+
�

�bi j

�

�) ·
�

�g j(x j)− g j(y j)
�

�

≤ −
n
∑

i=1

pidi

�

�x i − yi

�

�+

n
∑

i=1

pi(aii +
�

�bii

�

�)
�

�gi(x i)− gi(yi)
�

�

+

n
∑

i=1

n
∑

j=1, j 6=i

p j(
�

�a ji

�

�+
�

�b ji

�

�) ·
�

�gi(x i)− gi(yi)
�

�

≤ −
n
∑

i=1

pidi

�

�x i − yi

�

� < 0 (4)
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Moreover, there exists k0 ∈ {1, · · · , n} such that Hk0
(x) 6= Hk0

(y). That is, H(x) 6= H(y) for

all x 6= y.

Step 2. In (4), let y = 0, we get

n
∑

i=1

pi(Hi(x)−Hi(0))si gn(x i − 0)≤ −
n
∑

i=1

pidi

�

�x i

�

� ≤ −pmin

n
∑

i=1

�

�x i

�

� (5)

where pmin = min
1≤i≤n

�

pidi

	

. From (5), it follows that

pmin‖x‖1 ≤

�

�

�

�

�

n
∑

i=1

pi(Hi(x)−Hi(0))

�

�

�

�

�

≤ pmax

n
∑

i=1

�

�(Hi(x)−Hi(0))
�

�

≤ pmax‖H(x)−H(0)‖1
≤ pmax(‖H(x)‖1 + ‖H(0)‖1)

where pmax =max
�

p1, · · · , pn

	

. We obtain

‖H(x)‖1 ≥
pmin‖x‖1 − pmax‖H(0)‖1

pmax

from which it can be easily concluded that ‖H(x)‖1 → ∞ as ‖x‖1 → ∞. Hence, we have

proved that H(x) is a homeomorphism on Rn. That is, Eq.(2) has a unique solution.

Theorem 2. If
�

�gi(x i)
�

� → ∞ as
�

�x i

�

� → ∞, i = 1, · · · , n, and there exists a positive constant r

such that

A+AT + (
1

r
‖B‖∞ + r‖B‖1)I ≤ 0

where A= (ai j)n×n and B = (bi j)n×n, then Eq.(2) has a unique solution.

Proof. In order to complete the proof, we divide the proof into two steps.

Step 1. Let x and y be two different vectors in Rn, by gi(·) is monotone nondecreasing,

x 6= y will imply two cases: (i) x 6= y and g(x)− g(y) 6= 0; (ii) x 6= y and g(x)− g(y) = 0.

First, consider the case (i) where x 6= y and g(x)− g(y) 6= 0. In this case, there exists

h ∈ {1, · · · , n} such that (xh− yh)(gh(xh)− gh(yh)) > 0 and (x i − yi)(gi(x i)− gi(yi)) ≥ 0 for

i 6= h. Moreover, we have

2(g(x)− g(y))T · (H(x)−H(y))

≤ −2

n
∑

i=1

di(x i − yi)(gi(x i)− gi(yi))+ (g(x)− g(y))T (A+AT )(g(x)− g(y))

+

n
∑

i=1

n
∑

j=1

1

r

�

�bi j

�

� (gi(x i)− gi(yi))
2+

n
∑

i=1

n
∑

j=1

r
�

�bi j

�

� (g j(x j)− g j(y j))
2
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≤ −2

n
∑

i=1

di(x i − yi)(gi(x i)− gi(yi))

+ (g(x)− g(y))T [A+ AT + (
1

r
‖B‖∞ + r‖B‖1)I] · (g(x)− g(y))

≤ −2

n
∑

i=1

di(x i − yi)(gi(x i)− gi(yi))

≤ −2dh(xh− yh)(gh(xh)− gh(yh))< 0 (6)

Hence, Hh(x) 6= Hh(y). That is, H(x) 6= H(y) when x 6= y and g(x) 6= g(y).

Now consider the case (ii) where x 6= y and g(x)− g(y) = 0. In the case, we have

H(x)−H(y) = −D(x − y) 6= 0

where D = diag(d1, · · · , dn). Thus, H(x) 6= H(y) for all x 6= y and g(x) = g(y). Hence, we

have proved that H(x) 6= H(y) when x 6= y.

Step 2. In (2.4), let y = 0, we get

2(g(x)− g(0))T · (H(x)−H(0))≤ −2

n
∑

i=1

di(x i − 0)(gi(x i)− gi(0))

≤ −2d x T(g(x)− g(0)) (7)

where d =min
�

d1, · · · , dn

	

. From (7) and gi is monotone nondecreasing, it follows that

0≤ d

n
∑

i=1

x i(gi(x i)− gi(0))≤
n
∑

i=1

�

�(gi(x i)− gi(0)) · (Hi(x)−Hi(0))
�

� . (8)

If lim
‖x‖→∞

‖H(x)‖ 6=∞, then there exists a sequence {x p} such that lim
p→∞
‖x p‖ =∞ and for

all p,

‖H(x p)‖ ≤ M1,

where M1 is a positive constant. Therefore, there exists a subsequence (for convenience, we

also denote it as {x p}) and a nonempty set W ⊂ {1, · · · , n}, such that the follows hold:

(1) lim
p→∞

�

�x
p

i

�

� =∞ for all i ∈W ;

(2) there exists a positive constant M2 such that
�

�x
p

i

�

� ≤ M2 for all p and i ∈ {1, · · · , n} \W ;

(3)




Hi(x
p)




≤ M1 for all i and p.

Since gi(s) is continuous on [−M2, M2], there exists a positive constant M3 such that
�

�gi(s)
�

� ≤ M3 for all s ∈ [−M2, M2] and i ∈ {1, · · · , n} \W . Thus,
�

�gi(x
p

i
)
�

� ≤ M3 for all p and

i ∈ {1, · · · , n}\W . Moreover, we have

n
∑

i=1

�

�(gi(x
p

i
)− gi(0)) · (Hi(x

p)−Hi(0))
�

�

=
∑

i∈W

�

�(gi(x
p

i
)− gi(0)) · (Hi(x

p)−Hi(0))
�

�
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+
∑

i /∈W

�

�(gi(x
p

i
)− gi(0)) · (Hi(x

p)−Hi(0))
�

�

≤
∑

i∈W

�

�gi(x
p

i
)− gi(0)
�

� · (M1 +
�

�Hi(0)
�

�)

+
∑

i /∈W

(M3 +
�

�gi(0)
�

�) · (M1 +
�

�Hi(0)
�

�)

≤ M
∑

i∈W

�

�gi(x
p

i
)− gi(0)
�

�+M (9)

where M =max{max
1≤ j≤n

¦

M1 +
�

�H j(0)
�

�

©

,
∑

i /∈W

(M3 +
�

�gi(0)
�

�) · (M1 +
�

�Hi(0)
�

�)}. By gi(·) is mono-

tone nondecreasing, then we have

n
∑

i=1

x
p

i
(gi(x

p

i
)− gi(0)) =
∑

i∈W

x
p

i
(gi(x

p

i
)− gi(0))+
∑

i /∈W

x
p

i
(gi(x

p

i
)− gi(0))

≥
∑

i∈W

�

�x
p

i

�

� ·
�

�(gi(x
p

i
)− gi(0)
�

� (10)

Substituting (9) and (10) into (8), we can obtain for all p

d
∑

i∈W

�

�x
p

i

�

� ·
�

�(gi(x
p

i
)− gi(0)
�

�≤ d

n
∑

i=1

x
p

i
(gi(x

p

i
)− gi(0))

≤
n
∑

i=1

�

�(gi(x
p

i
)− gi(0)) · (Hi(x

p

i
)−Hi(0))
�

�

≤ M
∑

i∈W

�

�gi(x
p

i
)− gi(0)
�

�+M

So we have
∑

i∈W

(d
�

�x
p

i

�

�−M) ·
�

�gi(x
p

i
)− gi(0)
�

�≤ M (11)

Since lim
p→∞

�

�x
p

i

�

� =∞ for all i ∈ W and lim
|xi|→∞

�

�gi(x i)
�

� =∞, there exists a positive constant P

such that for all p > P,
�

�(gi(x
p

i
)− gi(0)
�

�≥ 1 and
�

�x
p

i

�

�>
2M

d
. Hence,

∑

i∈W

(d
�

�x
p

i

�

�−M) ·
�

�gi(x
p

i
)− gi(0)
�

�> M (12)

which is contradict to (11). So H(x) is a homeomorphism on Rn. That is, Eq.(2) has a unique

solution.

Theorem 3. Under assumptions of Theorem 1 (or Theorem 2), system (1) has a unique equilib-

rium point x∗ = (x∗1, · · · , x∗n)
T .

Proof. By Definition 2 and Theorem 1 (or Theorem 2), it is obvious that the constant vector

x∗ is the unique equilibrium point of system (1).
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3. Global Asymptotic Stability of the Equilibrium Point

In this section, we aim to find some sufficient conditions ensuring the global asymptotic

stability of the equilibrium point of system (1). The equilibrium point of system (1) is said

to be globally asymptotically stale if it is locally stable in sense of Lyapunov and globally

attractive, i.e., every solution of system (1) corresponding to an arbitrary given set of initial

conditions satisfy lim
t→∞

x i(t) = x∗
i
, i = 1, · · · , n. To prove the global asymptotic stability of

the equilibrium point, we will employ the Lyapunov direct method. Namely, the equilibrium

point x∗ is stable and every solution is bounded if there exists a continuously differentiable

Lyapunov function V : Rn→ R which is positive definite and radially unbounded, i.e., V (x∗) =

0, V (x) > 0 for x 6= 0, lim
‖x−x∗‖→∞

V (x) = ∞, such that the time-derivative of V along the

solution of system (1) is negative semi-definite. If, in addition, V̇ (x) is negative definite, then

the equilibrium point of system (1) is globally asymptotically stable.

Theorem 4. Under assumptions of Theorem 1, further if the following conditions are satisfied

Jik(x i(tk)) = −γik(x i(tk)− x∗i ), k = 1,2, · · · , i = 1, · · · , n,

where x∗ = (x∗1, · · · , x∗n)
T is the equilibrium point of system (1), 0 < γik < 2, then system (1)

has a unique equilibrium point which is globally asymptotically stable.

Proof. In order to complete the proof, we divide the proof into four steps.

Step 1. Consider the following system:






ẋ i(t) = −di x i(t) +
n
∑

j=1

ai j g j(x j(t)) +
n
∑

j=1

bi j g j(x j(t −τi j)) + Ii , t ∈ [0, t1],

x i(t) = φi(t), t ∈ [−τ, 0], i = 1, · · · , n.

(13)

By g j is a continuous function, Ui(t) = −di x i(t)+
n
∑

j=1

ai j g j(x j(t))+
n
∑

j=1

bi j g j(x j(t−τi j))+ Ii

is continuous and local bounded. It is easy to obtain the existence of a solution of system

(3.1) on [0, t∗(φ)), where t∗(φ) ∈ (0, t1) or t∗(φ) = t1, and [0, t∗(φ)) is the maximal right-

side existence interval of the solution of system (13). We denote this solution by x(t,φ),

x(t,φ) = (x1(t,φ1), · · · , xn(t,φn))
T .

Make a transformation z(t) = x(t)− x∗, system (13) is transformed into

żi(t) = −dizi(t) +

n
∑

j=1

ai j f j(z j(t)) +

n
∑

j=1

bi j f j(z j(t −τi j)), t ∈ [0, t1], i = 1, · · · , n, (14)

where fi(zi(t)) = gi(zi(t)+ x∗i )− gi(x
∗
i ). Hence, z(t, φ̃) = x(t,φ)− x∗ is a solution of system

(14) with initial conditions z(t) = φ(t)− x∗, t ∈ [−τ, 0] on [0, t∗(φ)).

Step 2. Consider the following Lyapunov functional

V (z(t)) =

n
∑

i=1

pi{
�

�zi(t)
�

�+

n
∑

j=1

∫ t

t−τi j

�

�bi j

�

� ·
�

� f j(z j(θ))
�

�dθ}. (15)
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Obviously, V (z) is positive definite and lim
‖z‖→∞

V (z) = ∞. Calculating the derivative of V (z)

along the solution z(t, φ̃) of system (14) on [0, t∗(φ)), then we can get

V̇ (z(t, φ̃))≤ −
n
∑

i=1

{pidi

�

�zi(t, φ̃)
�

�− pi(aii +
�

�bii

�

�)
�

� fi(zi(t, φ̃))
�

�

−
n
∑

j=1, j 6=i

pi(
�

�ai j

�

�+
�

�bi j

�

�) ·
�

� f j(z j(t, φ̃))
�

�}

= −
n
∑

i=1

{pidi

�

�zi(t, φ̃)
�

�− pi(aii +
�

�bii

�

�)
�

� fi(zi(t, φ̃))
�

�

−
n
∑

j=1, j 6=i

p j(
�

�a ji

�

�+
�

�b ji

�

�) ·
�

� fi(zi(t, φ̃))
�

�}

≤ −pmin

n
∑

i=1

�

�zi(t, φ̃)
�

�< 0

where pmin = min
1≤i≤n

�

pidi

	

. This implies V (z(t, φ̃))< V (z(0)), t ∈ [0, t∗(φ)). By (15), we can

get
n
∑

i=1

pi

�

�zi(t, φ̃)
�

� < V (z(0)) (16)

According to (16), it is easy to derive that zi(t, φ̃), i = 1, · · · , n, are bounded on [0, t∗(φ)).

By virtue of the continuous theorem of differential equations, we can conclude that system

(14) has a solution on [0, t1], i.e., system (13) has a solution on [0, t1]. We denote this

solution of system (13) by x0(t).

Step 3. Consider the following system:







ẋ i(t) = −di x i(t) +
n
∑

j=1

ai j g j(x j(t)) +
n
∑

j=1

bi j g j(x j(t −τi j))+ Ii , t ∈ [t1, t2],

x i(t1) = x0
i
(t1) + Ji1(x

0
i
(t1)), i = 1, · · · , n.

(17)

Arguing as in step 1 and step 2, system (17) has a solution x1(t) on [t1, t2]. As inductive

step, we can derive that the following system:







ẋ i(t) = −di x i(t) +
n
∑

j=1

ai j g j(x j(t)) +
n
∑

j=1

bi j g j(x j(t −τi j)) + Ii , t ∈ [tm, tm+1],

x i(tm) = xm−1
i
(tm) + Jim(x

m−1
i
(tm)), i = 1, · · · , n,

also has a solution xm(t) on [tm, tm+1], m= 2,3, · · · .
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Define

x(t,φ) =















x0(t), t ∈ [0, t1],

x1(t), t ∈ (t1, t2],

· · · ,
xm(t), t ∈ (tm, tm+1],

· · · ,

then x(t,φ) is the solution of system (1) with initial conditions x(s) = φ(s), s ∈ [−τ, 0]. This

completes the proof of the existence of solutions of system (1).

Step 4. Assume that x(t) is a solution of system (1), and x∗ is the unique equilibrium

point of system (1). Make a transformation z(t) = x(t)− x∗, then system (1) is transformed

into the following system:







żi(t) = −dizi(t) +
n
∑

j=1

ai j f j(z j(t)) +
n
∑

j=1

bi j f j(z j(t −τi j)), t 6= tk,

△zi(tk) = Jik(zi(tk)) = −γikzi(tk), k = 1,2, · · · , i = 1, · · · , n,

(18)

where fi(zi(t)) = gi(zi(t) + x∗
i
)− gi(x

∗
i
).

Consider Lyapunov functional V (z(t)), the V (z(t)) is the same as (15). Calculating the

derivative of V (z(t)) along the solution z(t) of system (18) for any t, t 6= tk, k = 1,2, · · · .
Arguing as in step 2, we have V̇ (z(t)) < 0, t 6= tk, k = 1,2, · · · . Also,

V (z(tk + 0)) =

n
∑

i=1

pi{
�

�zi(tk + 0)
�

�+

n
∑

j=1

∫ (tk+0)

(tk+0)−τi j

�

�bi j

�

� ·
�

� f j(z j(θ))
�

�dθ}

=

n
∑

i=1

pi{
�

�(1− γik)zi(tk)
�

�+

n
∑

j=1

∫ tk

tk−τi j

�

�bi j

�

� ·
�

� f j(z j(θ))
�

�dθ}

< V (z(tk)), k = 1,2, · · · .

Then we can easily follow that V̇ (z(t)) < 0 for t > 0. Therefore, the equilibrium point x∗ of

system (1) is globally asymptotically stable. This proof is completed.

Theorem 5. Under assumptions of Theorem 2, further if the following conditions are satisfied

Jik(x i(tk)) = −γik(x i(tk)− x∗i ), k = 1,2, · · · , i = 1, · · · , n,

where x∗ = (x∗1, · · · , x∗n)
T is the equilibrium point of system (1), 0 < γik < 1, then system (1)

has a unique equilibrium point which is stable and every solution is bounded. If, in addition,

gi(s), i = 1, · · · , n, are strictly increasing functions, then the unique equilibrium point of system

(1) is globally asymptotically stable.

Proof. In order to complete the proof, we divide the proof into four steps: step A, step B,

step C, step D.
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Step A. It is the same as step 1 of Theorem 4, so we do not repeat it here.

Step B. Consider the following Lyapunov functional

V (z(t)) = 2

n
∑

i=1

∫ zi(t)

0

fi(s)ds+ r

n
∑

i=1

n
∑

j=1

∫ t

t−τ j i

�

�b ji

�

� · f 2
i (zi(θ))dθ . (19)

Obviously, V (z) is positive definite and lim
‖z‖→∞

V (z) = ∞. Calculating the derivative of V (z)

along the solution z(t, φ̃) of system (14) on [0, t∗(φ)), then we can get

V̇ (z(t, φ̃)) = −2

n
∑

i=1

di fi(zi(t, φ̃))zi(t, φ̃) + 2

n
∑

i=1

n
∑

j=1

ai j fi(zi(t, φ̃)) · f j(z j(t, φ̃))

+ 2

n
∑

i=1

n
∑

j=1

bi j fi(zi(t, φ̃)) · f j(z j(t −τi j, φ̃)) + r

n
∑

i=1

n
∑

j=1

�

�b ji

�

� f 2
i (zi(t, φ̃))

− r

n
∑

i=1

n
∑

j=1

�

�b ji

�

� f 2
i (zi(t −τ ji, φ̃))

≤ −2

n
∑

i=1

di fi(zi(t, φ̃))zi(t, φ̃) + 2

n
∑

i=1

n
∑

j=1

ai j fi(zi(t, φ̃)) · f j(z j(t, φ̃))

+ 2

n
∑

i=1

n
∑

j=1

�

�bi j

�

�

�

� fi(zi(t, φ̃))
�

� ·
�

� f j(z j(t −τi j, φ̃))
�

�+ r

n
∑

i=1

n
∑

j=1

�

�b ji

�

� f 2
i (zi(t, φ̃))

− r

n
∑

i=1

n
∑

j=1

�

�b ji

�

� f 2
i (zi(t −τ ji, φ̃)). (20)

Since

2
�

� fi(zi(t, φ̃))
�

� ·
�

� f j(z j(t −τi j, φ̃))
�

�≤
1

r
f 2
i (zi(t, φ̃))+ r f 2

j (z j(t −τi j, φ̃))

then we get

V̇ (z(t, φ̃))≤ −2

n
∑

i=1

di fi(zi(t, φ̃))zi(t, φ̃) + 2

n
∑

i=1

n
∑

j=1

ai j fi(zi(t, φ̃)) · f j(z j(t, φ̃))

+

n
∑

i=1

n
∑

j=1

1

r

�

�bi j

�

� f 2
i (zi(t, φ̃)) +

n
∑

i=1

n
∑

j=1

r
�

�bi j

�

� f 2
j (z j(t −τi j, φ̃))

+ r

n
∑

i=1

n
∑

j=1

�

�b ji

�

� f 2
i (zi(t, φ̃))− r

n
∑

i=1

n
∑

j=1

�

�b ji

�

� f 2
i (zi(t −τ ji, φ̃))

= −2

n
∑

i=1

di fi(zi(t, φ̃))zi(t, φ̃) + 2

n
∑

i=1

n
∑

j=1

ai j fi(zi(t, φ̃)) · f j(z j(t, φ̃))
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+

n
∑

i=1

n
∑

j=1

1

r

�

�bi j

�

� f 2
i (zi(t, φ̃)) + r

n
∑

i=1

n
∑

j=1

�

�b ji

�

� f 2
i (zi(t, φ̃))

≤ −2

n
∑

i=1

di fi(zi(t, φ̃))zi(t, φ̃) + f T (z(t, φ̃)) · (A+AT ) · f (z(t, φ̃))

+
1

r
‖B‖∞ f T (z(t, φ̃)) f (z(t, φ̃)) + r‖B‖1 f T (z(t, φ̃)) f (z(t, φ̃))

= −2

n
∑

i=1

di fi(zi(t, φ̃))zi(t, φ̃) + f T (z(t, φ̃)) · [A+ AT

+ (
1

r
‖B‖∞ + r‖B‖1)I] · f (z(t, φ̃))

≤ −2

n
∑

i=1

di fi(zi(t, φ̃))zi(t, φ̃)≤ 0.

The rest of step B and step C are similar as step 2 and step 3 of Theorem 4, respectively, so we

also do not repeat them, then we can easily obtain the existence of solutions of system (1).

Step D. Consider Lyapunov functional V (z(t)), the V (z(t)) is the same as (19). Calculating

the derivative of V (z(t)) along the solution z(t) of system (3.6) for any t, t 6= tk, k = 1,2, · · · .
Arguing as in step B, we have V̇ (z(t)) ≤ 0, t 6= tk, k = 1,2, · · · . Also,

V (z(tk + 0)) = 2

n
∑

i=1

∫ zi(tk+0)

0

fi(s)ds+ r

n
∑

i=1

n
∑

j=1

∫ (tk+0)

(tk+0)−τ j i

�

�b ji

�

� · f 2
i (zi(θ))dθ

= V (z(tk))+ 2

n
∑

i=1

∫ (1−γik)zi(tk)

zi(tk)

fi(s)ds ≤ V (z(tk)), k = 1,2, · · · .

Then we can easily follow that V̇ (z(t)) ≤ 0 for t > 0. Therefore, the equilibrium point x∗

of system (1) is stable and every solution is bounded. If, in addition, gi(s), i = 1, · · · , n,

are strictly increasing functions, then V̇ (z(t)) < 0 is negative definite. Thus, the unique

equilibrium point of system (1) is globally asymptotically stable.

Remark 1. Compared to the existing literatures, our results have improved those results. The

results of [5, 6, 9, 10] are obtained under Lipschitz neuron activations. At the same time, our

results are easy to be checked.

In order to show that the conditions we have obtained in this paper provide new sufficient

criteria for system (1), we consider the following example.

Example 1. Consider the following delayed impulsive two-neuron network model (1) descried

by:

ẋ1(t) = −
2

21
x1(t)−

10

21
g1(x1(t)) +

2

21
g2(x2(t −τ2))+ I1,
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ẋ2(t) = −
5

21
x2(t) +

2

21
g1(x1(t −τ1))−

6

21
g2(x2(t)) + I2,

△x1(tk) = −0.2(x1(tk)− x∗1),

△x2(tk) = −0.3(x2(tk)− x∗2), tk = kT, k = 1,2, · · · . (21)

where T > 0 is a positive constant, g1(θ) = arctan(θ), g2(θ) = θ
3, x∗ = (x∗1, x∗2)

T is the

equilibrium point of system (21).

Obviously, those results in [5, 6, 8, 9, 10] would fail when applying to this example.

However, we select p1 = p2 = 1 (or by A+ AT + (‖B‖∞ + ‖B‖1)I = −diag(16

21
, 8

21
) < 0), from

Theorem 4 (or Theorem 5), system (21) has a unique equilibrium point x∗ which is globally

asymptotically stable. Therefore, our results establish new criteria for the global asymptotic

stability of delayed neural networks with impulses and improve those results in the existing

literatures.

4. Conclusion

This paper has developed a class of delayed neural networks with impulses, where the

neuron activations do not satisfy Lipschitz conditions. Some general sufficient conditions

are derived for the global asymptotic stability of delayed neural networks with impulses. A

comparison between our results and the previous results is also given, which shows that our

results establish a new criteria for global asymptotic stability of delayed neural networks with

impulses. At the same time, the criteria in this paper is also valuable in the design of neural

networks which is used to solve efficiently classes of optimization problems arising in practical

engineering applications.
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