
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 15, No. 4, 2022, 1566-1592
ISSN 1307-5543 – ejpam.com
Published by New York Business Global

The axisymmetric migration of an aerosol particle
embedded in a Brinkmann medium of a couple stress

fluid with slip regime
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Abstract. This study examined the relationship between stresses and couple stresses within the
context of the couple stress fluid theory. The application of the effective medium approach, based
on the Brinkman equation, is also discussed under the effect of slip and spin slip on the surface
of the solid sphere immersed in porous couple stress fluid. The motion is generated by moving
a solid sphere at a constant speed. Using Stokesian assumptions, the equation of motion ignores
nonlinear terms. The surface conditions for slip and spin slip of couple stress fluids have been
applied. Tables and graphs are used to represent the normalized drag force exerted by the fluid
flow on the solid sphere. According to the numerical results, the drag force increases monotonically
with permeability and couple stress. As a result, the results obtained are consistent with those
found in the literature for viscous fluids, and the special cases are determined.
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1. Introduction

Recent investigations pertaining to the theory of couple stress fluid manner are ex-
tremely valuable, and such analyses provide sufficient insight into the behavior of rheolog-
ical complex fluids, such as polymeric suspensions containing long-chain molecules, liquid
crystals, lubricants, and human blood. According to couple stress fluid theory, particle
sizes are considered when describing a non-Newtonian fluid. A theory of microcontinuum
obtained by Stokes [1] is considered to take into account the particle size effects in order
to capture the significance of couple stresses. As a generalization of the traditional theory
of fluids, Stokes microcontinuum allows for polar impacts, such as the existence of couple
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stresses, body couples, and antisymmetric stress tensors. For example, in pipe Poiseuille
flow, even after all the variables have been nondimensionalized in the usual way, the ve-
locity profile is a function of the pipe radius Stokes[2].

Thus, couple stresses may be important under lubrication conditions, where thin films
are usually formed. Additionally, the theory of couple stress fluid flow introduces nonlin-
ear terms in the relationship between shear stresses and velocity gradients. Accordingly,
the lubricant should be considered non-Newtonian and described by two constants, shear
viscosity, and couple stress. Therefore, Elsharkawy and Guedouar [3] developed a reverse
solution for finite journal bearings lubricated with couple stress fluids to evaluate eccen-
tricity proportion and couple stress parameters for an experimentally estimated pressure
diffusion. In recent years, the interaction between two rigid spheres in an incompressible
fluid flow has become increasingly important [4–8] and [9]. Furthermore, oscillatory flows
allow one to observe and calculate multiple elastic effects of dilute polymers in a conve-
nient manner. As a result of free stream oscillations, important physical problems arise,
such as [10, 11].

Further, slip flow is more practical than no-slip flow (slide surface, flow through wet-
ted surface, brick wall). It plays a significant role to illustrate the macroscopic influences
in the study of fluid-solid surface interactions when fluid slips at a rigid wall. It is as-
sumed that there is no slip in most investigations of peristaltic flow, however, wall slip
is considered in a few types of research. Moreover, Saad [12] solved multiple problems
such as the unstable plane Couette flow of an incompressible couple stress fluid with the
slip conditions at both of the plates are assumed to be of different parameters and couple
stresses at the boundaries are not present, the application of a time-dependent pressure
gradient under the assumptions of the slip conditions and the zero couple stresses at the
two boundaries, and the unsteady Poiseuille flow of an incompressible couple stress fluid
inside an infinite cylinder. Moreover, Saad and Ashmawy [13] investigated the advective
flow of an incompressible couple stress fluid between two parallel plates with slip boundary
conditions put on the two plates and vanishing couple stress conditions at the interfaces.

The fluid dynamical process that takes place in many body organs, including vascu-
lar beds, lungs, kidneys, and tumorous vessels, must also be explained adequately, which
makes study of porosity absolutely essential. The porosity of the media also plays a cru-
cial role in many biomechanical investigations in determining the fluid transport. Parallel
flows of fluids with various viscosities and densities through porous media are a common
feature of technical procedures. Similar parallel flows can be seen in packed bed reactors
used in the chemical industry, petroleum production engineering, sedimentation, diluted
polymers, suspensions, journal bearing lubrication, and many other processes. To model
flow across porous media, Brinkman [14] established a momentum equation with a New-
tonian viscous drag term and a Darcy drag term, which together balance the pressure
gradient. When the permeability of the medium approaches 0, the Brinkman equation
becomes the Darcy equation, and when the permeability approaches infinity, it becomes
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the Stokes equation. The equation has been widely used to assess porous media with high
porosity, such as fiberglass wool.

Sharma and Thakur [15] assumed a layer of electrically conducting couple stress fluid
warmed from beneath in a permeable medium in the existence of the magnetic field. Al-
saedi et al. [16] analyzed the peristaltic motion of a couple stress fluids occupying the
porous medium through large wavelength and low Reynolds number. Opanuga et al. [17]
studied the second law analysis of hydromagnetic couple stress fluid via a channel sup-
plied with non Darcian permeable medium beneath the heat of the fluid exchanges with
the ambient following Newtonian law. The thermal fluctuation in a layer of couple stress
nanofluid saturated permeable medium was studied by Chand et al [18]. Yadav et al
[19] introduced the collaborative impact of temperature-reliant viscosity and interior heat
generation on the impression of convective movement in couple stress fluids saturated in a
thin porous layer by utilizing the linear stability principles. There are multi applications
on porous medium and magnetic field such as [20–28].

Thus, the objective of the current study is to examine the regular translational move-
ment of a solid sphere immersed in an incompressible couple stress fluid with a slip regime
and slip-spin while also getting the fundamental relationships analytically. The solution of
the equation of momentum has been created analytically in terms of a spherical coordinate
system. The assessed boundary conditions are then satisfied on the solid sphere surface.
The drag force of the fluid flow on the rigid sphere is then calculated numerically and
represented graphically for various values of the physical relevant parameters and also two
special cases, Case I: perfect slip and spin-slip, and Case II: no-slip and no-spin slip.

2. Mathematical formulation of the problem

Fig. 1 shows the axisymmetric migration of an aerosol particle embedded in an un-
bounded incompressible Brinkmann medium of couple stress fluids under the impact of
slip regime. An aerosol particle is a spherical particle of radius a moves along z axis with
an uniform flow U . In the permeable region, the flow is governed by Brinkman’s equation.
Also, under the assumptions of low Reynolds number, the inertial terms in the fluid mo-
mentum are neglected.The Stokes microcontinuum theory [1] is considered the simplest
theory of fluids, which allows the polar effects such as the presence of couple stresses, body
couples and nonsymmetric tensors. The modified governing equations of momentum and
the continuity of an incompressible fluid with couple stress in the presence of Brinkman’s
medium are given by [6] and [24]:

∇ · q⃗ = 0, (1)

∇p+ µ∇∧∇ ∧ q⃗ + η∇∧∇ ∧∇ ∧∇ ∧ q⃗ + µ

K
q⃗ = 0. (2)
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Figure 1: The physical representation of the problem.

where q⃗ is the volume averaged velocity parallel to the wall,p is the pore average pressure,
µ represents the viscosity of the fluid, η is the first couple stress viscosity coefficient, and
η
′
is the second couple stress viscosity coefficient. If the couple stress coefficient η is taken

zero, then the equation of motion (2) reduces to the classical Navier–Stokes’s equation.
In addition, K is the Darcy permeability of the permeable medium and also is a scalar
for isotropic porous medium. Otherwise, K a second order tensor [25] and the Brinkman
equation of couple stress fluid reduces to the Darcy equation when K → 0 and to the
Stokes equation of couple stress fluid when K → ∞.
The material constants are [17]:

µ ≥ 0, η ≥ 0 η − η
′ ≥ 0. (3)

The components of velocity field are of the form:

q⃗ = −∇ ∧
(
ψe⃗ϕ
r sin θ

)
. (4)

The constitutive equations for the couple stress fluids in dyadic form are:

(i) The stress tensor, T and the strain tensor,∆:

T = −pI+ 2µE +
1

2
I ∧∇ . M, (5)

E =
1

2

[
∇q⃗ + (∇q⃗)T

]
. (6)

(ii) The couple stress tensor, M

M = mI + 4η∇ω⃗ + 4η
′
(∇ω⃗)T , (7)
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where I is the unit dyadic, (.)T denotes for transpose, and ω is the vorticity vector which
it is defined in terms of the stream function ψ by:

ω⃗ = 1
2∇∧ q⃗ = 1

2

1

r sin θ
E2ψ e⃗ϕ. (8)

3. Axisymmetric expressions of the stresses and couple stresses for the
couple stress fluids theory

The strain tensor in terms of the velocity components are obtained by the following
from, Appendix (A.1):

ω⃗ =1
2Err =

∂qr
∂r

, Erθ = Eθr =
1

2

[1
r

∂qr
∂θ

− qθ
r

+
∂qθ
∂r

]
,

Eθθ =
[1
r

∂qr
∂θ

+
qθ
r

]
, Eθϕ = Eϕθ = 0,

Erϕ =Eϕr = 0, Eϕϕ =
[qr
r

+
cot θqθ
r

+
qθ
r

]
.


(9)

The couple stresses in terms of the vorticity are calculated by from Appendix (A.2):

Mrr =m, Mrθ, Mrϕ = 4η
∂ωϕ

∂r
− 4η

′ ωϕ

r
,

Mθr =0, Mθθ = m, Mθϕ = 4η
1

r

∂ωϕ

∂θ
− 4η

′ 1

r
cot θ ωϕ,

Mϕr =− 4η
1

r
ωϕ + 4η

′ ∂ωϕ

∂r
, Mϕθ = −4η

1

r
cot θωϕ + 4η

′ 1

r

∂ωϕ

∂θ
, Mϕϕ = m,


(10)

where m = 1
3 trM = 1

3 (Mrr + Mθθ + Mϕϕ) ,is the trace of the couple stress and for any
axisymmetric equation you may take, m = 0. From equations (9), we get the following
term:

∇.M = ẽϕ

[ 1

r2
∂

∂r
(r2Mrϕ) +

1

r sin θ

∂

∂θ
(sin θ Mθϕ) +

Mϕr

r
+

cot θ

r
Mϕθ

]
And so,

I ∧∇.M = (−ẽr ẽθ + ẽθẽr )
[∂Mrϕ

∂r
+

2Mrϕ +Mϕr

r
+

cot θ

r
(Mθϕ +Mϕθ) +

1

r

∂Mθϕ

∂θ

]
(11)

Therefore, the stresses are determined from equation (4):

Trr =− p+ 2µErr, Trϕ, Tθθ = −p+ 2µEθθ,

Tθϕ =0, Tθr = m, Tϕθ = 0, Tϕϕ = −p+ 2µEϕϕ,

Trθ =2µErθ −
1

2

[∂Mrϕ

∂r
+

2Mrϕ +Mϕr

r
+

cot θ

r
(Mθϕ +Mϕθ) +

1

r

∂Mθϕ

∂θ

]
,

Tθr =2µEθr +
1

2

[∂Mrϕ

∂r
+

2Mrϕ +Mϕr

r
+

cot θ

r
(Mθϕ +Mϕθ) +

1

r

∂Mθϕ

∂θ

]
.


(12)
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For dimensionless governing equations, we used the following nondimensional variables:

ˆ⃗q =
q⃗

U
, p̂ =

ap

µU
, ∇̂ = a∇, T̂rr =

aTrr
µU

, ω̂ϕ =
aωϕ

U
. (13)

Substituting equation (12) in equation (2) and then dropping the tildes, we get:

∇p+∇∧∇ ∧ q⃗ + 1

ζ2
∇∧∇ ∧∇ ∧∇ ∧ q⃗ +K2q⃗ = 0. (14)

where k= a2

K , ζ
2 = µa2

η are the permeability parameter and the length dependent parameter
of the first couple stress fluid coefficient, respectively. If ζ → ∞ equation (13) represents
the modified Stokes equation for nonpolar fluid.

4. Differential equation satisfied by the stream function,ψ

Further, the fluid movement is axisymmetric, so all the field functions are independent
of ϕ and the spherical polar coordinate system is (r, θ, ϕ) where the origin located at the
center of the sphere. Since the velocity vector q⃗ and the vorticity vector ω⃗ are assumed
as:

q⃗ = qr(r, θ)e⃗r + qθ(r, θ)e⃗θ, ω⃗ = ωϕ(r, θ)e⃗ϕ. (15)

From equation (1), the velocity components can be represented in terms of the stream
function ψ from equation (3) as the following:

qr = − 1

r2θ

∂ψ

∂θ
, qθ =

1

rθ

∂ψ

∂r
. (16)

From equations (8)-(9) and (11) we obtained the following non-dimensional stresses:

Trr = −p+ 2
∂qr
∂r

, (17)

Trθ =
[1
r
− qθ

r
+
∂qθ
∂r

]
− 1

2ζ2

[∂2ωϕ

∂r2
+

2

r

∂ωϕ

∂r
−

2ωϕ

r2

]
, (18)

Mrϕ =
4

ζ2
∂ωϕ

∂r
− 4

ζ ′2

ωphi

r
, (19)

where, ζ
′2 = µa2

η′
is the length dependent parameter on the second couple stress fluid

coefficient. Thus, the governing equations have the form:

Mrϕ =
4

ζ2
∂ωϕ

∂r
− 4

ζ ′2

ωphi

r
, (20)

where, ζ
′2 = a2µ

η′
is the length dependent parameter on the second couple stress fluid

coefficient. Thus, the governing equations have the form:

ζ−2

r2 sin θ

∂

∂θ
L−1

(
L−1 − ζ2

)
ψ +

κ2

r2 sin θ

∂ψ

∂θ
− ∂p

∂r
= 0, (21)
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−ζ−2

r sin θ

∂

∂r
L−1

(
L−1 − ζ2

)
ψ − κ2

r sin θ

∂ψ

∂r
− 1

r

∂p

∂θ
= 0. (22)

One can easily eliminate the pressure from equations (21) and (22) to get the following
partial differential equation:

L−1

(
L−1 − α2

1

)(
L−1 − α2

2

)
ψ = 0, (23)

where the axisymmetric Stokesian operator: L−1 = ∂2

∂r2
+ 1−ξ2

r2
∂2

∂ξ2
, ξ = cos θ, α2

1α
2
2 =

ζ2κ2, α2
1 + α2

2 = ζ2,

α2
1 =

ζ2 + ζ
√
ζ2 − 4κ2

2
,

α2
2 =

ζ2 − ζ
√
ζ2 − 4κ2

2
.

 (24)

5. The solution of the Problem

The regular solution of the sixth order linear partial differential equation (23) is ob-
tained by using the method of separation of variables is given:

ψ = 1
2

(
Ar−1 +Br

1
2K3

2
(α1r) + Cr

1
2K3

2
(α2r)

)
sin2 θ, (25)

where the function K3
2
(.) is the modified Bessel functions of the second kind of order 3

2

where A,B,C are constants can be determined from the boundary conditions. Substitut-
ing equation (25) into equation (16), we get the velocity components:

qr =
(
Ar−3 +Br

−3
2 K3

2
(α1r) + Cr

−3
2 K3

2
(α2r)

)
cos θ, (26)

qθ =
1
2

(
−Ar−3−Br

−3
2
[
K3

2
(α1r) + α1rK1

2
(α1r)

]
−Cr

−3
2
[
K3

2
(α2r) + α2rK1

2
(α2r)

])
sin θ, (27)

Inserting the two expressions (26) and (27) into the relation (8) , we get:

ωϕ = 1
4

(
Bα2

1r
−1
2 K3

2
(α1r) + Cα2

2r
−1
2 K3

2
(α2r)

)
sin θ. (28)

The expression for pressure is:

p = −−1

2r2
κ2A cos θ. (29)
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6. Boundary conditions

On the surface of the aerosol particle, r = a, we require three boundary conditions to
find the unknowns A,B, and C. Recently, some researchers have studied the slip effect on
the solid spheres (9),(26)-(28).

(i) The kinematic impenetrability boundary condition is:

qr = U cos θ, (30)

(ii) The dynamic slip boundary condition where the tangential velocity of the couple
stress fluid relative to the solid at a point on its surface is proportional to the
tangential stress prevailing at that point. The latter is known as the slip boundary
condition introduced by Navier in 1823:

qθ = −U sin θ +
1

β1
Trθ, (31)

(iii) The spin slip couple stress condition is given as:

ωϕ =
1

β2
Mrϕ, (32)

where β1 is the velocity slip coefficient and β2 is the spin slip coefficient. Therefore,

• The slips coefficients depend on the nature of the solid and fluid surface.

• In the limiting case of β1 → 0, there is a perfect slip and the solid sphere acts like a
spherical gas bubble if β1 → ∞, we get the standard no-slip condition.

• Also, for β2 → 0 we have the couple stress zero at the boundary which means that
the mechanical interactions at the surface are equipollent to a force distribution only.
On the other hand, when β2 → ∞ this is equivalent to prevent relative rotation of
the fluid element at the surface of the aerosol.

The expressions for stress and couple stress components from Appendix (A.4) are :

Trr =
(
1
2r

−4(κ2r2+12)A+ 2Br
−5
2
[
3K3

2
(α1r) + α1rK1

2
(α1r)

]
+2Cr

−5
2
[
3K3

2
(α2r) + α2rK1

2
(α2r)

])
cos θ, (33)

Trθ =
(
3r−4A+1

2Br
−5
2
[
(α2

1r
2 + 6− α4

1ζ
−2r2)K3

2
(α1r) + 2α1rK1

2
(α1r)

]
+1

2Cr
−5
2
[
(α2

2r
2 + 6− α4

2ζ
−2r2)K3

2
(α2r) + 2α2rK1

2
(α2r)

])
sin θ, (34)
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Therefore, relation (20) gives:

Mrϕ =−
(
Bα2

1r
−3
2
[
(2ζ−2 + ζ−

′2)K3
2
(α1r) + α1rζ

−2K1
2
(α1r)

]
+Cα2

2r
−5
2
[
(2ζ−2 + ζ−

′2)K3
2
(α2r) + α2rζ

−2K1
2
(α2r)

])
sin θ. (35)

7. Drag force

The formula of drag force operating on the axisymmetric rigid particle along the axis
of symmetry has been shown by h3:

Fz = 2πa2
∫ π

0

(
Trr cos θ − Trθ sin θ

)
r=a

sin θdθ (36)

Inserting the expressions (33) and (34) into (36), we arrive at the following:

Fz

πa2
=

2

3

(
κ2a−2A+2Ba

−5
2
[
α2
1a

2ζ−2(α2
1 − ζ2)K3

2
(α1r)

]
+2Ca

−5
2
[
α2
2a

2ζ−2(α2
2 − ζ2)K3

2
(α2r)

)
(37)

By applying the boundary conditions (30)-(32) , we get the unknown constant A , to
obtain the following system of equations:

Aa
−3
2 +BK3

2
(α1a) + CK3

2
(α2a) = −Ua

3
2 , (38)

A(1 + 6β−1
1 a−1)

+Ba
3
2

[(
1 + β−1

1 a−1(α2
1a

2 + 6− α4
1ζ

−2a2)
)
K3

2
(α1a) + α1a

(
1 + 2β−1

1 a−1
)
K1

2
(α1a)

]
+Ca

3
2

[(
1 + β−1

1 a−1(α2
2a

2 + 6− α4
2ζ

−2a2)
)
K3

2
(α2a) + α2a

(
1 + 2β−1

1 a−1
)
K1

2
(α2a)

]
=2Ua3, (39)

Bα2
1

[(
1 + 4β−1

2 a−1(2ζ−2 + ζ
′2)

)
K3

2
(α1a) + α1ζ

−2β−1
2 K1

2
(α1a)

]
+Cα2

2

[(
1 + 4β−1

2 a−1(2ζ−2 + ζ
′2)

)
K3

2
(α2a) + α2ζ

−2β−1
2 K1

2
(α2a)

]
= 0, (40)

where,

A = −Ua3 −Ba
3
2K3

2
(α1a)− Ca

3
2K3

2
(α2a),

B = 3Ua3α2
2∆

−1(1+2β−1
1 a−−1)

[(
1+4β−1

2 a−1(2ζ−2+ζ
′2)

)
K3

2
(α2a)+α2ζ

−2β−1
2 K1

2
(α2a)

]
,
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C = −3Ua3α2
1∆

−1(1+2β−1
1 a−1)[

(
1+4β−1

2 a−1(2ζ−2+ζ
′2)

)
K3

2
(α1a)+α1ζ

−2β−1
2 K1

2
(α1a)

]
,

∆ = β−1
1 ζ−2a

1
2 (α2

1α
4
2 − α2

2α
4
1)
(
1 + 4β−1

2 a−1(2ζ−2 + ζ
′2)

)
K3

2
(α1a)K3

2
(α2a)

+a2(1+2β−1
1 a−1)

(
1+4β−1

2 a−1(2ζ−2+ζ
′2)

)(
α1α

2
2K3

2
(α2a)K1

2
(α1a)−α2α

2
1K3

2
(α1a)K1

2
(α2a)

)
+a

1
2β−1

1 ζ−2β−1
2

(
α3
2(α

2
1a

2−α4
1ζ

−2a2)K1
2
(α2a)K3

2
(α1a)−α3

1(α
2
2a

2−α4
2ζ

−2a2)K1
2
(α1a)K3

2
(α2a)

)
a2ζ−2β−1

2 (α1α
3
2 − α3

1α2)(1 + 2β−1
1 a−1)K1

2
(α1a)K1

2
(α2a).

Solving the system in the equations (38)-(40) algebraically, we get the value of the
desired coefficient A needed in the drag expression (37).

Fz
2
3πa

2
=− κ2Ua+ 3Uα2

2∆
−1a

3
2 (1 + 2β−1

1 a−1)(2α2
1(α

2
1ζ

−2 − 1)− κ2)

×
((

1 + 4β−1
2 a−1(2ζ−2 + ζ

′2)
)
K3

2
(α1a)K3

2
(α2a) + α2ζ

−2β−1
2 K3

2
(α1a)K1

2
(α2a)

)
−3Uα2

1∆
−1a

3
2 (1 + 2β−1

1 a−1)(2α2
2(α

2
2ζ

−2 − 1)− κ2)

×
((

1 + 4β−1
2 a−1(2ζ−2 + ζ

′2)
)
K3

2
(α1a)K3

2
(α2a) + α1ζ

−2β−1
2 K3

2
(α2a)K1

2
(α1a)

)
(41)

The non-dimensional drag force of a rigid sphere is taken with respect to the drag force
of a sphere translates through unbounded clear fluid which is given by F0 = −µπUa.

8. hpecial cases

8.1. No-slip and no-spin, β1 = β2 → ∞

The drag force acting on the rigid sphere moves through unbounded porous medium
under the conditions,qr = U cos θ, qθ = −U sin θ, ωϕ = 0, we obtained the following:

Aa−3 +Ba
−3
2 K3

2
(α1a) + Ca

−3
2 K3

2
(α2a) = −U, (42)

Aa−3 +Ba
−3
2

[
K3

2
(α1a) + α1aK1

2
(α1a)

]
+ Ca

−3
2

[
K3

2
(α2a) + α2aK1

2
(α2a)

]
= 2U, (43)

Bα2
1a

−3
2 K3

2
(α1a) + Cα2

2a
−3
2 K3

2
(α2a) = 0. (44)

The values of the constants A,B,C are given by:

A = −
(
a3 + 3aα−1

1 α−1
2 (α1a+ α2a+ 2) + 3aκ−2 + 3ζ−2κ−2(α1 + α2)

)
,

B = −3 expα1aU
√

2
πα1

(1+α2a)
(α1−α2)

,

C = −3 expα2aU
√

2
πα2

(1+α1a)
(α1−α2)

.



Shreen El-Sapa / Eur. J. Pure Appl. Math, 15 (4) (2022), 1566-1592 1576

The drag force in this case is obtained as:

Fz

F0
=− 2

3ζ
−′2(α1 + α2)(1 + α1a)(1 + α2a)

−1
9ζ

−2
(
α2
1α

2
2a

3 + 3aα1α2(α1a+ α2a+ 2) + 3aζ2 + 3α1 + 3α2

)
(45)

8.2. Perfect slip and perfect spin,β1 = β2 = 0

The drag force acting on the rigid sphere moves through unbounded porous medium
under the conditions,qr = U cos θ, Trθ = 0, MRϕ = 0, we obtained the following:

Aa−3 +Ba
−3
2 K3

2
(α1a) + Ca

−3
2 K3

2
(α2a) = −U, (46)

3Aa−3+1
2Ba

−3
2

[
(α2

1a
2 + 6− α4

1ζ
−2a2)K3

2
(α1a) + 2α1aK1

2
(α1a)

]
+1

2Ca
−3
2

[
(α2

2a
2 + 6− α4

2ζ
−2a2)K3

2
(α2a) + α2aK1

2
(α2a)

]
= 0, (47)

Bα2
1a

−3
2

[
(2ζ−2 + ζ−

′2)K3
2
(α1a) + α1aζ

−2K1
2
(α1a)

]
+Cα2

2a
−3
2

[
(2ζ−2 + ζ−

′2)K3
2
(α2a) + α2aζ

−2K1
2
(α2a)

]
= 0. (48)

The values of the constants A,B,C in this case are given by:

A = −Ua3 + 10Ua∆−1ζ2α2
2(α1a+ 1)(α2a+ 1)(ζ2 + (α2a+ 2)ζ

′2)
− 10Ua∆−1ζ2α2

1(α1a+ 1)(ζ2(α1a+ 1) + (α2a
2 + 2α1a+ 2)ζ

′2),

B = −10Ua∆−1 expα1a
√

2
πα1

ζ2α2
1α

2
2(α2a+ 1)(ζ2 + (α2a+ 2)ζ

′2),

C = 10Ua∆−1 expα2a
√

2
πα2

ζ2α2
1α

2
2(ζ

2(α1a+ 1) + (α2
1a

2 + 2α1a+ 2)ζ
′2), where,

∆ = α2
1α

2
2

(
(α1a− 2α2a− 1)ζ4 +

[
(α2a+ 2)(α2a

2 − α1α2a
2 + α1a− 3α2a− 1)ζ

′2

+ (α2
1 − α2

2)(α1a+ 1)(α2a+ 1)
]
ζ2 + (α2a+ 1)

[
α3
1α2a

2 − α2
1α

2
2a

2 + 2α3
1a+ α2

1α2a

− 2α1α
2
2a+ 2α2

1 − 2α2

])
.

The drag force is obtained as:

Fz

πUa2
=2

3∆
−1

(
κ2a−1

[
− a2∆+ 10ζ2α2

2(α1a+ 1)(α2a+ 1)(ζ2 + (α2a+ 2)ζ
′2)

−10ζ2α2
1a(α1a+ 1)(ζ2(α1a+ 1) + (ζ2a2 + 2α2a+ 2)ζ

′2)
]

−20α2
1α

2
2a

2(α2
1 − ζ2)(α1a+ 1)(α2a+ 1)(ζ2 + (α2a+ 2)ζ

′2)

+20α2
1α

2
2a

2(α2
2 − ζ2)(α2a+ 1)(ζ2(α1a+ 1) + (α2a

2 + 2α1a+ 2)ζ
′2)

)
. (49)
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9. Results and discussions

In the present section, we aim to represent numerically the normalized drag force Fz/F0

acting on a solid sphere and distributions of velocity components for different values of
the physical parameters appearing in the governing equations in Figs 2-11 and Tables
1-3. All the results of drag force had been calculated for real part and MATLAB pro-
gram neglect the imaginary part during the calculations. Fig. 2 shows the normalized
drag force for different values of the couple stress parameter ζ = 0.01, 1.0, 10.0,∞ with
ζ
′
and β1

aµ = aβ2

µ = 0.001, 1.0, 10.0,∞ which increases with the increase of the perme-
ability parameter starts from low at κ → 0 for Stokes flow but at κ → ∞ gives Darcy
flow. On the other hand, the normalized drag force decreases with the increase of the
couple stress parameter. Fig. 3 presents the normalized drag force for different values
β1

aµ = aβ2

µ = 0.0, 1.0, 10.0,∞ at the various values of the couple stress parameter ζ at ζ
′

which increases with the increase of the slip parameters. Table 1 represents the effects of
slip and spin slip parameters with different values of the couple stress parameter. Fig. 4-5
exposes the velocity distribution for partial slip and partial spin slip for various values of
the permeability and ζ = 4.0, ζ

′
= 0.01, β1

aµ = aβ2

µ = 2.0 the normal and tangential veloci-
ties reduce with both the increase of the sphere radius and the increase of the permeability
parameter. Figs. 6-8 and Table 2 show the special cases of no-slip and no-spin slip where
the normalized drag force begins slowly at Stokes flow and increases gradually to reach
high values for Darcy flow. In addition, the normal velocity decreases with the increase
of radius r and reduces with the increase of the permeability while the tangential velocity
reverse its improves the improve of the permeability parameter and near to r = 7.0 it
behaves like the normal velocity. Figs. 9 and Table 3 illustrate the special cases of perfect
slip and perfect spin slip for the normalized drag force gives the same effect for the above
cases. Figs 10-11 explain the distributions of the streamlines for ζ = 10.0, ζ

′
= 0.1 for the

three cases for the slip conditions with κ = 0.0, 1.0, 3.0, 4.0, 6.0, 10.0 and the couple stress
parameter with the values of ζ

′
= 0.1, β1

aµ = aβ2

µ = 10.0 . It is noticed that the streamlines
move uniformly at κ = 0.0 which agrees with the results of viscous fluid in the literature
but for the increasing of the permeability, it appears as a loop around the sphere until
reaching the Darcy flow the molecules are crowded. Moreover, it also clarifies in the case
of the increase of the couple stress parameter with the rising in the values of κ.
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Table 1: Normalized drag force for slip and spin slip with ζ
′
= 0.01.

Fz/F0
β1

aµ = aβ2

µ κ ζ = 0.1 ζ = 0.1 ζ = 6.0 ζ = 10.0 ζ → ∞
0.0 0.0 1.962039 1.000000 0.736977 0.709803 0.635865

0.2 4.444950 2.980156 1.826095 1.765162 1.646248
4.0 5.799853 4.888037 3.538837 3.348328 3.208901
6.0 8.037672 7.369523 6.134427 5.787377 5.558577
8.0 11.162395 10.626770 9.523765 9.147747 8.750814
10.0 15.174927 14.720016 13.735482 13.353335 12.806985

1.0 0.0 2.913268 1.199978 0.84000 0.804879 0.715290
2.0 6.439568 3.954626 2.238630 2.137213 1.946697
4.0 7.806085 6.226607 4.176816 3.904061 3.656288
6.0 10.052062 8.890593 6.973032 6.481510 6.104393
8.0 13.183798 12.255479 10.521991 9.976724 9.366142
10.0 17.202734 16.419035 14.860377 14.297513 13.473763

10.0 0.0 10.723054 1.714241 1.063293 1.007636 0.880511
2.0 24.330440 8.748913 3.697992 3.379155 2.850210
4.0 25.826824 14.363925 7.041395 6.316924 5.319628
6.0 28.157423 19.195222 11.255353 9.956683 8.440525
8.0 31.358927 24.030911 16.123972 14.486632 12.280256
10.0 35.440013 29.241834 21.640403 19.783658 16.882901

∞ 0.0 50.690467 1.961480 1.153477 1.088268 0.944690
2.0 195.779204 14.324858 4.721100 4.186681 3.367234
4.0 200.897054 29.018703 9.890541 8.590854 6.566838
6.0 205.118892 43.957608 16.588341 14.128548 10.593281
8.0 209.642450 58.890966 24.546021 20.842851 15.449547
10.0 214.770348 73.744811 33.603516 28.680957 21.138434

Table 2: Normalized drag force for no-slip and no-spin slip with ζ
′
= 0.01.

Fz/F0

κ ζ = 0.1 ζ = 0.1 ζ = 6.0 ζ = 10.0 ζ → ∞
0.0 11.0 2.0 1.17 1.11 1.00
0.2 216.47 15.69 4.90 4.33 3.45
4.0 374.044 34.031 10.475 9.078 6.803
6.0 526.757 55.061 17.9566 15, 172 11.049
8.0 679.436 78.512 27.0281 22.626 16.192
10.0 833.66443 104.23 37.6196 31.4652 22.2316
100.0 11841.04 34461.03 20884.00 19090.00 14672.00
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Table 3: Normalized drag force for perfect slip and perfect spin slip with ζ
′
= 0.01.

Fz/F0

κ ζ = 0.1 ζ = 0.1 ζ = 6.0 ζ = 10.0 ζ → ∞
0.0 31.00 18.85 13.89 13.38 11.98
0.2 80.121 56.155 34.412 33.26 31.024
4.0 107.00 92.110 66.692 63.103 60.476
6.0 149.556 138.882 115.614 109.075 104.765
8.0 208.563 200.278 179.498 172.414 164.936
10.0 284.198 277.433 258.000 251.6856 241.392
100.0 21020.3 21018.7 21016.0 21014.1 20980.9

10. Conclusion

The present work investigated the basic relations of stresses and couple stresses also the
solution of the problem for movements of a rigid sphere with a constant velocity embedded
through an incompressible porous medium saturated with the couple stress fluid under the
effects of slip and spin slip by using an analytical procedure. The normalized drag force
represents numerically and graphically. On the other side, the velocity distributions are
represented graphically. It is noticed that the normalized drag force increases with the
effects of the slip and spin slip and improves with the increase of the permeability param-
eter at constant values of the remaining parameters. In addition, there are improvements
of the streamline’s distributions for the relevant parameters of the permeability and the
couple stress parameters.
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Appendix

Expressions of stresses and couple stresses for the couple stress fluids theory.
(A.1): The strain tensor components are obtained by from equation (5)

Err =
∂qr
∂r

,
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Erθ = Eθr =
1

2

[1
r

∂qr
∂θ

− qθ
r

+
∂qθ
∂r

]
,

Eθθ =
[1
r

∂qθ
∂θ

+
qr
r

]
,

Eθϕ = Eϕθ =
1

2

[sin θ
r

∂

∂θ

( qϕ
sin θ

)
+

1

r sin θ

∂qϕ
∂ϕ

]
,

Erϕ = Eϕr =
1

2

[ 1

r sin θ

∂qr
∂ϕ

+ r
∂

∂r

(qϕ
r

)]
=

1

2

[ 1

r sin θ

∂qr
∂ϕ

+
∂qϕ
∂r

−
qϕ
r

]
,

Eϕϕ =
[ 1

r sin θ

∂qϕ
∂ϕ

+
∂qr
∂r

+
qθ cot θ

r

]
.

(A.2): The couple stresses are calculated by from equation (6)

Mrr = m+ 4(η + η′)
∂ωr

∂r
,

Mrθ = 4
[
η
∂ωθ

∂r
+ η′

1

r

(∂ωr

∂θ
− ωθ

)]
,

Mrϕ = 4
[
η
∂ωϕ

∂r
+ η′

1

r

( 1

sin θ

∂ωr

∂ϕ
− ωϕ

)]
,

Mθr = 4
[
η
1

r

(∂ωr

∂θ
− ωθ

)
+ η′

∂ωθ

∂r

]
,

Mθθ = m+ 4(η + η′)
1

r

(∂ωθ

∂θ
+ ωr

)
,

Mθϕ = 4
[
η
1

r

∂ωϕ

∂θ
+ η′

1

r

( 1

sin θ

∂ωθ

∂ϕ
− cot θωϕ

)]
,

Mϕr = 4
[
η
1

r

( 1

sin θ

∂ωθ

∂ϕ
− cot θωϕ

)
+ η′

1

r

∂ωϕ

∂θ

]
,

Mϕϕ = m+ 4(η + η′)
1

r

[ 1

sin θ

∂ωϕ

∂ϕ
+ ωr + cot θωθ

]
.

(A.3): Used relations in the analysis

I×∇.M = (−e⃗θe⃗ϕ + e⃗ϕe⃗θ)
[∂Mrr

∂r
+

2

r
Mrr +

cot θ

r
Mθr +

1

r

∂Mθr

∂θ
+

1

r sin θ

∂Mϕr

∂ϕ
− Mθθr

r
−
Mϕϕ

r

]
,

= (e⃗re⃗ϕ − e⃗ϕe⃗r)
[∂Mrθ

∂r
+

2

r
Mrθ +

cot θ

r
Mθθ +

1

r

∂Mθθ
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+

1

r sin θ

∂Mϕθ

∂ϕ
+
Mθr

r
+

cot θ

r
Mϕϕ

]
,
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r
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r
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∂Mθϕ

∂θ
+

1

r sin θ
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r
+

cot θ

r
Mϕθ

]
.

(A.4): The stresses are

Trr = −P + 2µErr, (50)

Trθ = 2µErθ −
1

2

[∂Mrϕ

∂r
+

2

r
Mrϕ +

cot θ

r
Mθϕ +

1

r

∂Mθϕ

∂θ
+

1

r sin θ

∂Mϕϕ

∂ϕ
+
Mϕr

r
+

cot θ

r
Mϕθ

]
,

(51)
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(53)

Tθθ = −p+ 2µEθθ, (54)
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(57)

Tθθ = −p+ 2µEϕϕ. (58)
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(a) β1

aµ = aβ2

µ = 0.001 (b) β1

aµ = aβ2

µ = 1.0

(c) β1

aµ = aβ2

µ = 10.0 (d) β1

aµ = aβ2

µ → ∞

Figure 2: Normalized drag force exerted on a rigid sphere of a unit radius for various values of the slip and spin

slip, permeability, and the couple stress parameter with ζ
′
= 0.01

.
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(a) β1

aµ = aβ2

µ = 0.001 (b) β1

aµ = aβ2

µ = 1.0

(c) β1

aµ = aβ2

µ = 10.0 (d) β1

aµ = aβ2

µ → ∞

Figure 3: Normalized drag force exerted on a rigid sphere of a unit radius for various values of the spin slip,

permeability, and the couple stress parameter with ζ
′
= 0.1

.
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Figure 4: Normal velocity distribution for partial slip and partial spin slip for various values of the permeability

and ζ = 3.0, ζ
′
= 0.01, β1

aµ
= aβ2

µ
= 2.0

Figure 5: Tangential velocity distribution for partial slip and partial spin slip for various values of the permeability

and ζ = 3.0, ζ
′
= 0.01, β1

aµ
= aβ2

µ
= 2.0
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Figure 6: Normalized drag force exerted on a rigid sphere of a unit radius for no-slip and no-spin slip for various
values of the permeability and the couple stress parameter.

Figure 7: Normal velocity distribution for no-slip and no-spin slip for various values of the permeability and the
couple stress parameter, ζ = 1.0.
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Figure 8: Tangential velocity distribution of a rigid sphere of a unit radius for no-slip and no-spin slip for various
values of the couple stress parameter and the permeability, κ = 2.0.

Figure 9: Normalized drag force exerted on a rigid sphere of a unit radius for perfect slip and perfect spin slip

for various values of the permeability, the couple stress parameter and ζ
′
= 0.01.
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(a) β1

aµ = aβ2

µ = 0.0.
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(b) β1

aµ = aβ2

µ = 1.0.
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(c) β1

aµ = aβ2

µ → ∞.

Figure 10: htreamlines distribution for various parameters ζ = 10.0, ζ
′
= 0.1.
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(a) ζ = 0.001 (b) ζ = 0.1

(c)ζ = 0.1 (d)ζ = 10.0

Figure 11: htreamlines distribution for various parameters β1
aµ

= aβ2
µ

= 10.0, ζ
′
= 0.1.


