A Mathematical Framework for Modeling the Spread of HIV-disease within two Different Age Classes
DOI:
https://doi.org/10.29020/nybg.ejpam.v16i1.4550Keywords:
HIV-AIDS, epidemic model, basic reproduction number, asymptotic stability, global stability, numerical simulationsAbstract
In this paper, we propose a mathematical model for the spread of HIV disease within two different age classes. We define a basic reproduction number R0 that depends on the characteristics of the two age classes. We prove that if R0 less than 1, then the disease is extinct in both age classes. In contrast, we prove that if R0 greater than 1, then the disease is endemic in both age classes.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 European Journal of Pure and Applied Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.