A Mathematical Framework for Modeling the Spread of HIV-disease within two Different Age Classes

Authors

  • Mahamadou Alassane Universite des Sciences, des Techniques et de Technologies de Bamako (Mali)
  • Abdoulaye Samake Universite des Sciences, des Techniques et des Technologies de Bamako (Mali)
  • Amadou Mahamane Universite des Sciences, des Techniques et des Technologies de Bamako (Mali)
  • Ouateni Diallo Universite des Sciences, des Techniques et des Technologies de Bamako (Mali)

DOI:

https://doi.org/10.29020/nybg.ejpam.v16i1.4550

Keywords:

HIV-AIDS, epidemic model, basic reproduction number, asymptotic stability, global stability, numerical simulations

Abstract

In this paper, we propose a mathematical model for the spread of HIV disease within two different age classes. We define a basic reproduction number R0 that depends on the characteristics of the two age classes. We prove that if R0 less than 1, then the disease is extinct in both age classes. In contrast, we prove that if R0 greater than 1, then the disease is endemic in both age classes.

Downloads

Published

2023-01-29

Issue

Section

Nonlinear Analysis

How to Cite

A Mathematical Framework for Modeling the Spread of HIV-disease within two Different Age Classes . (2023). European Journal of Pure and Applied Mathematics, 16(1), 207-232. https://doi.org/10.29020/nybg.ejpam.v16i1.4550