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Abstract. In this paper, we propose a mathematical model for the spread of HIV disease within
two different age classes. We define a basic reproduction number Ry that depends on the charac-
teristics of the two age classes. We prove that if Ry < 1, then the disease is extinct in both age
classes. In contrast, we prove that if Rg > 1, then the disease is endemic in both age classes.
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1. Introduction

Acquired Immunodeficiency Syndrome (AIDS) is one the most deadly disease caused
by a Human Immunodeficiency Virus (HIV). The virus destroys all the immune system,
in particular the CD4 T-lymphocytes, and leaves individuals susceptible to any other
infections. It multiplies within those lymphocytes and eventually destroys them. Once
the lymphocytes are depleted, then the immune system stops functioning properly. As a
result, the individual can catch any kind of disease that might kill him easily because of the
failure of its immune system. However, there are drugs that can slow down the progression
of the virus. HIV-AIDS is usually transmitted in three different ways, namely the sexual
contact, blood transfusion, mother-to-child exchanges during pregnancy, childbirth and
breastfeeding. Many mathematical models are used to study the impact of preventive
control strategies on the spread of HIV-AIDS in given populations [1, 3, 5, 6, 9-14]. Some
of these models have shown that a change in risky behavior is necessary to prevent the
spread of HIV-AIDS, even in the presence of a treatment [2, §].

In this paper, we study the spread of HIV-AIDS in the age structured populations. In
fact, we consider two different age classes: A first class that corresponds to individuals aged
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25 years or less and a second class that corresponds to individuals aged over 25 years. We
suppose that each age class is composed of susceptible and infected individuals. According
to the Center of Disease Control (CDC), there are three main classes of HIV-AIDS infected
individuals based on CD4 T-lymphocyte counts, see Table 1.

Table 1: Main classes of HIV-AIDS infected individuals

Stages of infection CD4 T-lymphocytes/mm?

Stage 1 > 500
Stage 2 200 < CD4 T < 500
Stage 3 < 200

The first stage of infection occurs between two and six weeks after HIV infection. The
infected individual begins to produce antibodies that are detectable by HIV tests. The
individual is then called HIV-positive. The second stage of infection is characterized by
a reduction in the number of viral particles in the blood, marking the beginning of the
clinical latency phase of the infection. Finally, the third stage of infection is characterized
by the presence of major infections.

We aim to capture the spread of HIV-AIDS in a population divided into two different
age classes by a system of ordinary differential equations.

The paper is organized as follows. In Section 2, we formulate a mathematical model
for HIV-AIDS. The basic properties of the model are given in Section 3. In Section 4, the
disease-free equilibrium point (DFE) and the basic reproduction number Ry are calculated.
In section 5, we prove the local extinction of the infected populations in both age classes
when Ry < 1. In Section 6, the global extinction of the disease in both age classes is studied
and followed by some concluding results. Sections 7 and 8 deal with the persistence of the
disease in both classes when Ry > 1. In Section 9, some numerical results are presented.
The main conclusions are recapped in Section 10.

2. Mathematical Model for HIV-AIDS

In this section, we formulate a mathematical model for HIV-AIDS. We divide the total
population N into two age classes. The first age class is denoted by C; and the second
by Cs. In each age class, there is one compartment of susceptible individuals and three
compartments of infected individuals. In the class Cq, S; represents the compartment of
susceptible individuals and I, I? and I} are the compartments of infected individuals at
stage 1, 2 and 3 of infection, respectively. Similarly, in the class Cg, S is the compart-
ment of susceptible individuals and I3, I3 and I3 represent the compartments of infected
individuals at stage 1, 2 and 3 of infection, respectively.

The total population N can be expressed as the following sum:

2 3 3
N=>"Si+> B+> I
j=1 j=1 j=1
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The Spread of HIV-AIDS within two different age classes in the population is illustrated
in Figure 1.

m m m m
bN B1 al ag
,,,,,, N I S o2
| | | |
| | | |
| | | |
l l l l
Y ' €1 | C2 | C3
I I I I
I I I I
l l l l
| | | |
Y
B2 ag a4
———————————— > —_— e m — — = = = = = =
m m m m

Figure 1: Flow diagram of HIV-AIDS transmission dynamics

Using the above representation, we formulate the corresponding dynamical model as
follows:
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ds S, 3 3
1 _ j j
=N B ?_1: U+ B ?_1: B | = (m+9)S;

a1l s ’ ’
. . .
T;:N BiY B +BY B | —(m+a+c)l
=1 =1

d 17 1 2
d7t =ail] — (m + as + CQ)Il
d I}
ditl = aQI% — (Hl + 03)1?
(1)
3 3
dS S ~ ~
=S (A B A B | - mS
=1 =1
dly _ S - i - i 1 1
T TN 51211 +ﬁ2212 —(m + ag)l; + il
j=1 j=1
d I3
ditz = agly — (m + ag)I3 + colf
d I3
d—tQ = ayI5 — mI3 + c3I3
The system (1) is completed with the following initial conditions:
S; >0, II>0, ¥>0, I¥>0, S3>0, IL>0 12>0 I3>0. (2)

Summing the equations of system (1), we obtain:

dN

The parameters of the model are reported in Table 2. They are all positive.

The parameter b represents the rate at which young begin sexual activity. The pa-
rameter m is the death rate. The parameters 51 and By are infection rates in C; and Co,
respectively. The rate at which susceptible individuals in C; get older and reach the age
of becoming susceptible individuals in Cs is given by 7. The parameters a; and as are
the rates at which infected individuals in the class C; move from stage 1 to stage 2 and
from stage 2 to stage 3, respectively, within this class. Similarly, the parameters a3 and
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Table 2: Description of the model parameters

Parameters Description

b, m Recruitment rate, natural mortality rate

v, ¢1, €2, cg  Transfer rates from C; to Cq

ai, as Transfer rates within C;
ag, a4 Transfer rates within Co
51, Ba Transmission rates

a4 describe the rates at which infected individuals in the class Co move from stage 1 to
stage 2 and from stage 2 to stage 3, respectively, within this class. The parameters cy,
k = 1,2,3, denote the rates at which infected individuals in the stage k of C; get older
and reach the age of becoming infected individuals in the stage k of Ca.

For the mathematical analysis of the model, we introduce the following scalings:

Sy L a B o i S o, B, BB
= —_— 17 = — 17 = — 11 = — = —_— 1o = — 1o = — 1l = —.
S1 N’ 1 N’ 1 N’ 1 N’ 52 N’ 2 N’ 2 N’ 2 N

From the equation 3, it holds:
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According to the new variables, the system (1) can be rewritten as follows:

d s 3 3
1 . i
E:b-sl 512 ljl-l-ﬁzg i | — K1s1
=1 j=1
3 3
dil ) )
1 . . .1
T =s1 | A1 E B+ B2 g i, | — kaij
=1 =1
)
dif 4 -2
E = a1}y — K311
di}
1 ) -3
E = agly] — K41y
3 3
d S9 ; 3
_ :j :j
o ST s 515 11+ﬁ2§ iy | —bsy
=1 =1
3 3
dil - -
2 . . .1 .1
il B1 E i + B2 E iy | — ksiy 4 c1iy
=1 j=1
d i3
-1 -2 -2
F = agly — Kgly + €21
di3
2 . . .
E = 3413 —b lg + Cgl:f

where
k1 =b4~, kKo =b+aj+cy, k3=Db+4as+cy, k4=Db+cs, K5=Db+as,
After normalization of the initial data, we obtain:
> s(0)+ Y H(0)+ ) 1h(0) =1
j=1 j=1 j=1

and

Kg = b+ag.

(6)

s1(0) >0, i1(0) >0, i3(0) > 0, i$(0) > 0, s2(0) > 0, i2(0) > 0, i3(0) > 0, i3(0) > 0.

The variables of the model (5) are reported in Table 3.

(7)



M. Alassane et al. / Eur. J. Pure Appl. Math, 16 (1) (2023), 207-232 213

Table 3: Variables for the re-scaled HIV-AIDS model

Variables Description

S1 Proportion of susceptible individuals in class Cy

So Proportion of susceptible individuals in class Cy

il Proportion of individuals at stage 1 of infection in Cq
i2 Proportion of individuals at stage 2 of infection in C;
i Proportion of individuals at stage 3 of infection in C;
il Proportion of individuals at stage 1 of infection in Cq
i3 Proportion of individuals at stage 2 of infection in Cq
i3 Proportion of individuals at stage 3 of infection in Cq

3. Basic Properties

Theorem 1.

The feasible region I' defined by

3 3
.1 -2 . .1 ) . . .j
F=<e=(s, iy, i, i3, sy, i, i3, 13) eRY: 0< E sj + E B + g i, <1

with the initial conditions
51(0) >0, 1j(0) > 0, if(0) > 0, i{(0) > 0, 5,(0) >0, i5(0) > 0, i3(0) > 0, i3(0) >0
is a positively invariant set for the system (5).

Proof. 1. Positivity of Solutions

We show by absurd that for all t > 0, e(t) > 0. Suppose that for a time t' > 0, we
have e(t’) < 0. The function e being continuous, from the intermediate value theorem,
there exists a time t; €]0,t’[ such that e(t;) = 0.
Consider the equations of system (5) and let:

t 3 ) 3 ) t
u(t) = exp / BiY B+ B2 th+mr |dr|, &(t)=exp (/ (1432—5181)(17) ;
0 =1 =1 0
52 (t) = exp ("{3t> ; 54(t) = exp (H4t) ’ §5(t) = eXp (Hﬁt) ) {7(t) = exp (bt> ;

t % 3 3
&o(t) = exp (/0 (ks — 5282)617) , &s(t) =exp /0 BiY B+ th+b|dr
j=1 j=1
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By differentiating each of the expressions s1£1, i1€3, i%6s, 134, safs, 13¢5, i3€6 and i3&7
with respect to time t, we obtain:

ds1&1

dt = bfl (8&)
d.l 3 3

253 =si1& | ALY B +B82 ) i (8b)

j=2 =1

di? _

18 _ il (30)
di3 _

18 iy (34)
d

2258 = 751€8 (8e)
dilés 3., 3.

;t =& | Biso z; i} + Basa Z; i, + c1iy (8f)
di2

B — (agih + caif) & (3¢)
did

;257 = (a4i% + C3i:1))) &r (Sh)

By integrating the equations (8a)-(8h) between 0 and ti, it holds:

Sl(tl) = 51(1’51) -81(0)+/01b€1dt:| >0 (9&)
il(ty) = ! _il(o)+/t1 5183 Bliij +ﬁ223:ij dt| >0 (9b)
' &s(t1) _1 0 = ! p= 2

1%(’51) = fz(ltl) i%(()) —|—/ 1 alfglldt:| >0 (9¢)
) = o [10)+ [ asgatiar] > 0 (90)
so(t1) = gg(ltl) _SQ(O) yblggdt] (9¢)
i%(tl) = 66(1131) 1%(0) +/0 &6 (ﬁlbg le + Bos9 212 + Clll) dt:| >0 (9f)
B0 = 5 2(0) + | (auih + o) @dt] >0 (9%)
i(t1) = &él) i3(0) + /0 " (aai + caid) &dt] >0 (9h)
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From (9a)-(9h), it follows that e(t;) > 0. This is a contradiction according to the start-
ing hypothesis. Then, Vt > 0, e(t) > 0. Therefore, all solutions initiated in RY are positive.

2. Invariant Region
Summing the equations of system (5), we obtain:

3 3
d y j
R + JE_I I 482+ j_g 1 i, | =0. (10)

Integrating (10) using initial conditions, it holds:

3
Ve >0, si(t)+ > i) +sat+ Y ih(t) < 1.

j=1 j=1
This achieves the proof.

Consequently, in I, the model (5) is epidemiologically and mathematically well-posed.
Therefore, it is sufficient to study the dynamics of the model in I'.
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4. Disease-Free Equilibrium (DFE) E; and Reproduction Number R

The Disease-Free Equilibrium (DFE) Ej of the model (5) is determined by solving the

following system:
d S1

a0
dil
an_y
dt

d i?
ahu_y
dt

di3
an_y
dt
dss _ ()
dt
di
48 _)
dt

d i3
4% _y
dt

di
48 _)
dt

In the case of absence of disease, i.e. the population size is zero in all compartments
except the susceptible compartment, the solution of (11) is given by:

Eo <b,0,0,0,7,0,0,0> .
K1 R1
We determine the basic reproduction number Ry using the next generation matrix
method at Disease-Free Equilibrium [12]. According to this method, Ry is defined as
the effective number of secondary infections caused by typical infected individual during
his/her entire period of infectioussness [1, 4]. Let X be the vector of infected classes:

At .2 .3 .1 .2 T
X = (11’ 11, 11, 19, 19, 12) .

3 3 3 3

F=(s(aXd+m> 1), 0 0 s(aY d+md 1), 0 0

j=1 =1 j=1 j=1
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denotes the vector of terms corresponding to new infections.

217

.1 .2 .1 .3 ) .1 .1 ) ) .1 .3 .3 o\ T
V — (K/211, /{311 - a1117 /41411 - 8,211, H512 - C1117 H612 - C211 - 3312, b 12 - C311 - a412)

refers to the vector of terms corresponding to individuals entering a given compartment

and individuals leaving.

The partial derivatives of F and V with respect to ii, i3, i}, ii, i3 and i3 are given by
the following matrices F and V:

b b b b b b
51;1 ﬁl;l 51;1 52;1 52; 52;1 ko 0 0 0 0
o 0 0o 0 0 0 —a kg 000
s_lo o 0o 0o 0o o | 0 a2 om0 0
511 511 /Bll 5Ql 521 L —ca 0 0 ks 0
K1 K1 K1 K1 K1 K1 0 —co 0 —a3z kg
0 0 0 0 0 0 0 0 —c3 0 —ay
0 0 0 0 0 0
The next-generation matrix is defined by:
Mib Msb Msb Msb Msb Mgb
0 0 0 0 0 0
1 0 0 0 0 0 0
K=FV'=—
M7 | Myy Moy Msy Myy Msy Mgy
0 0 0 0 0 0
0 0 0 0 0 0
where
M = pfibkgkarske + a1B1brakske + Bra1asbrske + Pacibrzkake + facoaibraks
+B2a3c1brgky + Paczagarkske + Brasaicakgks + Brasagcikskig (12)
My = pibrakakske + Sragbkakske + facabrokaks + Baczaskakske
+[2a4CokokaKs (13)
M3z = pibrokskske + Bac3kakzkske (14)
My = pPobrokskake + Bragbrakzkg + Prazaskokskia (15)
Ms = [obkokskaks + Boaskokakaks (16)
Mg = pPakakzkakske (17)
M; = bkKiKkoK3K4K5KE (18)

The basic reproduction number Ry, computed from the spectral raduis of the next-

generation matrix K, is given by:

Ro

. bM1+’7M4

o (19)

where M;, My and My are explicitly defined by (12), (15) and (18).

T O O o OO
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5. Local Stability of Disease-Free Equilibrium (DFE)

Theorem 2.

If Ry < 1, then the disease-free equilibrium point

b
EO( 50707077307070)
K1 K1

is locally asymptotically stable.
Proof. Consider the system (5). The jacobian of this system at Eq is denoted by J(Eq)
and its eigenvalues are the solutions of the following equations:
1"8X8 + r7X7 + r6X6 + r5X5 + X+ r3X3 +1oX2 + 1 X + rg = 0.
Let us define:

fi = —ajksascoksBab — ajaskskeb® B — YPakebrakska — agyaskakzkoBearkskeb kB
—agagkgkgcl B2b
fo = —Bb’kgrakscr — ajascykiskefeb — agBeb kakscy — Kkskb kaksBi — agyBabrakska
—aik5b’caka B
f3 = b/€1/€2/{3/€4/€5/€6
fy = —aiksascafab — Bob’rekzct — agfab’kact — kskeb ka1 — agyBebrska — aiksbca s
fs = —7Bakebrgka — agyaskarafs — aikskeb? 1 — azasksciBob + K1ksKebK3Ko
fo = —agyfobryrs — yBakebraks — agyaskaksfo + K1kskebraks
f; = —pBabkgract — azPab’kact — Kskb ka1 — agyBabraks
fs = —yBarebraks — azyasraraBa — azagksct Bob + Kikskebraka
fo = —ajascoraBeb — ajascskgBab — keb kargB — arb’cakaBa — ajaskeb® B — arkgb?kafi
+/€1/€6b/€4/€3/€2
fio = —Pob’kakser — ajascskisBob — Kksb?kakg B — alagksb?B1 — YPabrakgka — a1ksb2kaf
+/€1/€5b/€4/€3/€2
fi1 = —ajagkskef1b — azBabrykzcs — kskebkakz B — agyfakakzka — arksCaksBab
fio = —[Pabrgkaksct — arkskeha1b — YBakekak3ka + K1ksKeR4K3K2
fi3 = —Bob’kger — agBab’cs — kskeb?B1 — agyPabka — YPBakgbka — agyaska B — agasc Bob
+K1K5K6DK2
fi4 = —agyBaobks — YBakebrz — agyasksfBa + Kikskebk3
fis = —[Pobkrykscy — ksbrykzB1 — ajagksB1b — YPBakakske — a1kskaf1b + K1KsK4K3K2
fie = —pPabrgract — azBabract — kskebraf1 — azyBakaka — YPakekak2 + K1K5KeR4K2
fi7 = —[Paobrgkzcr — azfBabracy — kskebrsB1 — azyfakska — a1ksceBab — YB2kgk3 k2

—31H5H6B1b + K1K5KgK3K2
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fis = —ajascofob — keb’rgB1 — arb’cay — arkeb?B1 + K1kebrsk:

tig = —agyfebry — yPakebrs — azgyaskafBa + K1kskebk4

foo = —keb*kaf1 + K1kgbrako

for = —agyfaokaks — YPoKekaks + K1KsKeR4K3

foo = —yB2braks + K1ksbr4k3

fo3 = —pBab’r3ci — ksb?k3B1 — YPabkska — a1ksb?f1 + Kikebraks + K ksbraky

o4 = —kebrargB1 — a1cakafob — atagkefib — a1kerafib + KiKeKak3 k2

fos = —b’kar3fr — aragh®By — a1b’ ka1 — arascsfBob + Kibraksks

fos = —ksb?kaB1 — YBabkaka — Bab®ryct + Kiksbkyks

for = —yBobka + K1ksbra — Keb®B1 + K1kgbka — Kakgfib — arasBib — a1kaB1b + Kikakske

fos = —b’k3f1 —a1b?B1 + K1bkgka — kebra B — arcafab — arkefib + K1keHaR2

fog = —kgbkaB1 + K1kghaka — Babcr — ksb?B1 — YBabka + K1ksbke

f30 = —[fBabrgcy — agfBabey — kskebB1 — agyPaks — YPokeka + K1ksKek2

f33 = —agyBaks — YBakeks + K1kskeks — azyPeb — yBakeb — agyas B + K1kskeb

fso = —Paksks + Kikskaks — Pabkacy — Ksbraf1 — yBakaka + Kikskako

f33 = —[fabkscy — ksbksf1 — YPakska — a1ks5P1b + Kiksksky — azyPaka — YP2keka + K1K5KeR4

f34 = —vBobk3 + k1ksbkg — b2/<;451 + K1brgka

fss = —b2B1 + kibky — kufib + Kikaka — YB2b + Kiksb — azy By — Yfake + K1kske — P2k
+K1R5K4

f36 = —rebB1 + K1keka — K3B1b — Bibay + Kikgke — Baber — ksbB1 — YBaka + Kikske — YB2ks3
+R1K5K3

f37 = Kike — P1b+ Kiks — VP2 + K1b + K1k4 + Kak1 + K1K3

and

Fi = fi+fo+ 13 Fo=fig+ s+ 115 + 16 + f17 + f1s + f19 + fo0 + fo1 + foo + fo3 + foq + fo5 + {26

Fs = f4+1f5+1fs+ 17+ s+ fo + 1o+ f11 + 125 Fa = for + fog + fag + 30 + f31 + f30 + £33 + f34
Fs = f35+136; Fg=137.

Then
1 2 1 2

rg = 1, 1‘7:K—1(F6—|—K1b+/€1), rﬁza[F5+F6(/€1+b)+K/1],
1 1

rs = :‘<T1 [F4 + F5 (l-ﬂ + b) + Fﬁﬁllb] , Tyq = E[FQ +Fy (/ﬂ + b) + F5/{1b],
1 1

o= o [F3 4+ Fa (k1 +b) + Farib], 1= o [F1 + F3 (k1 +b) + Farab],
1

ri = [Fl (Kl + b) + Fglﬁilb] , 19 =F1b.

K1
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We now need to verify that all the coefficients rg, r1, ro, 3, 4, r5 and rg are positive.
For this, it is sufficient to prove that Fi, Fo, F3 , F4, F5 and Fg are positive. We can
clearly see that all the Fj, j = 1 to 6, are positive when Rg < 1. Therefore, all the rj, j =1
to 6, are positive when Ry < 1. Therefore, from Routh Hurwitz Criterion, Eg is locally
asymptotically stable if Ry < 1.

6. Global Stability

In Theorem 2, we have proved that the disease-free equilibrium point Eg is locally
asymptotically stable if Ry < 1. We will now prove that, independently of the initial
population size, if Ry < 1, then the disease will die out. Let us define:

_b d s
X1 = — — 981 an X9 = — — S9.
K1 K2

The system (5) becomes:
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d x >
1 . j
—=——x i+ iy | —Kix
T (lﬂ 1) B1 21 1+ B2 '51 ) 1X1
J= J=

. 3 3
d il . j .
—1= ( —X1> p1 g B+ B2 E it —/‘621%
dt K1 =1 =1

dif _ o
E = ally K31y
d i 9
E = a2ly K41y

=1 =1
di
2 .1 ) )
—= = agly — Kgly + Cal
dt 2 2 1
di3 . . :
ditz = ayi3 — b i3 + c3i}

221

Eo ( ,0,0,0,—,0,0, 0) is globally asymptotically stable for system (5) if and only

if Eg (0,0, 0 0,0,0, 0 0) is globally asymptotically stable for system (20) .

Theorem 3.

If Ry < 1, then the disease-free equilibrium point Eq (0,0,0,0,0,0,0,0) is globally asymp-

totically stable for the system (20).

Proof. Consider the following function V : I' — R defined by:

V = k5t [ (M7 — AMy) i} +b | Mai? + Myid + M5i2 + (M3 + M) ij le 212
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If Rp < 1, then M7 — vMy, Mo, M3, My, M5 and Mg are positive. Consequently, the
function V is positive and vanishes at the disease-free equilibrium. The derivative of this
Lyapunov function V along the trajectories of the ordinary differential system is

3 3

vV o= HQ_I (M7 — kyMy) (b’ﬁ_l — xl) 51 lel + B ZIJQ — Hzi} + me_IMg (ali} - /ﬂlgi%)
j=1 j=1

3 3
+ b:‘iz_lMg (agi% — /ﬁ?4i:%) + bHQ_IM4 (’ml_l — Xg) ,31 Z iJ1 + ,32 Z i‘]Q — l€5i% + Cli%
=1 =1

+  bry 'Ms (asiih — rei3 + c2il) + bry 'Me (asis — bij + csif) .

We can also write

3 3
: b . .
Vo= k3! (M7 —9My) — p /31211-1-52212 —ry (M —My) [ B B+ 582 B x
P P p
— (M7 —yMy) il + b/-@2 Myagii — b/{2 Marizit 4 bry M3a211 by "Ma#kais — bry "Myksis
3
+bry Mk | By ZiJl + o Zig —bry "My | B Zi{ + B2 Y i | x2 + bry ' Mycyi]
j=1 j=1 =1 =1

—|—bf<52 M5a312 b;<;2 M5/<c612 —i—b,'<;2 M50211 —l—b/<c2 M6a412 bky 11\/16b12 + bry M67312.
Following algebraic manipulations, it holds:

3

3 3 3
Vo= =y (My—My) [ B> 8+ 82 i) | x1—bry My [ 81> 7+ 82> i) | x
j=1

=1 j=1 j=1
+ (—M7 + My + bHQ_IMQal + b/{2_11\/[4c1 + ,31b/€1_1/£2_1M7) i%

or

3 3
Vi=—ry" (M7 —yMy) | 81> )+ B2 D i | x1—bry My (kp + kr) xo— (M7 — yMy — bMy) i
j=1 =1

If Ry < 1, then M7 — kM, and M7 — kM, — bM; are positive, consequently, V is
negative definite along the trajectories of the system (5). Therefore, the DFE Eg is globally
asymptotically stable for the system (5) if Rg < 1.

This ends the proof of Theorem 3.

7. Existence of Endemic Equilibrium

In this section, we analyze the existence of non-trivial endemic equilibrium

S *
E* (sl,l1 ,i2" i3 ,32,1% ,i2% 13 ) of the system (5).
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Theorem 4.

If Rg > 1, then there exists an endemic equilibrium point E* for the system (5).

Proof. Solving the equations of system (5) at equilibrium state, we obtain:

.1
K21
Sl pry 3 1 3 (21&)
By n+5) b
i=1 =1
-1 -1
KR5ly — C11
sg = ——5 L (21b)
B Z i + B2 Z i
i=1 =1
2 al.g
17 = —i 21c
= (21¢)
alag .q
1 pry 21d
-y (214)
.2 a3 .1 a1C2 q
15 = —1i —1 21e
2= + Kok | (21e)
.3 aza4.q ajaicy  a1a2C3 \ .1
= 2= 21f
2 bkg A (b1€6l€3 + b/<;4/<;3> e (215)
. ) f3g + f3oil
1% = % 1 1 (21g)
Bakska (—fa0 + farif)
3 3 b — k18
j g _ b—Kisy 91h
By n+p) = (21h)
=1 =1
where
fss = —Bireb kakz — Prrgbaika — BirebZajag — frajcab’ry — bfrajascaky — bfaajagcsrg
+K1KokgKr3bKY
f39 = kKofi1kebraks + KaBi1krebaika + Kaf1kebaiag + Kaf2a1Cabky 4+ Kaf2a1a4Caky + Kof2a1a2C3K6
fio = b2/€6 + a3b2 + bagay
f41 = kobkg + Koasb + koagay.

From (21b)-(21g), let

.1\ 2 .
f14 (1%) + f431% + 49 =0 (22)
where
f42 == b2 (1 - Ro) blilli21€31£4l'€5l€6
fi3 = kob (2b2/€6f€55131/€4 + 2b2/~£6/<;561a1a2 + 2b2/€6/€551,‘€4/{3 + 2b21€6ﬁ2f€3/€4cl + 2b2/€55231C21€4

+2b? Bakgraciaz + 2bBakskaciagas + 2brgksBaarascs — brgct fargkak1 — bl PBarakakiaz
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—bkgrsk1B1kaks + 2bkaBakzkayas — brekskiBraiks — brerskifraiag — brokgksk1K3k4
+2bksBrarascaky — brskifPeaicary + 2brokeBakzkay — KekskiB2a1a2C3 + 2K2Bok3kK47 783284

2
+rRoKkgRsR1 K3k — c1P2K3k4K1a384 — H5ﬁlﬁ2ala402f”v4)
2
fiy = Fcz( — Kofakgkayazas — brakeBakzkay — braBakskayag + breci Bakzkakt + beyfakzrariag

2 2

+c1P2k3kak10384 — b Kek5B1Kak3 — b ReksBrarag + brgrskiBrarks + KekskiPraiascs
2 2

—b keksS1a1k4 + brerski Braras + KskPrarascaks — b Pakzkacias + brgksk P1Rak3

2 2
—bB2k3kaciazas — b keBakgkaci — b K5 f2a1Ccaks — brgksP2arazcs — brsPrarascaky

+bl€5 K1 ,32&1 Co &4) .

By replacing k1, k9, k3, k4, k5 and kg by their expressions into fy4, we get:

fig = (a1 +c1 +b)? by (=2 + B1) (b + a4) (b + a3) ( b? 4 bag + bey
+bcs + a1b + ajcg + ajas + cocg + ascs >
If Ry > 1, we clearly see that f4o < 0. We also note that:

(i) If By > fa, then f4q > 0. Consequently, the discriminant of (22) is positive and the
product of the solutions is negative. So, there exists a positive solution i} for (22).

(ii) If 51 < B2, then fyy < 0 and f43 > 0. Consequently, the discriminant of (22) is
positive, the sum and the product of the solutions of (22) are positive. Therefore,
there exist two distinct solutions.

(iii) If 51 = (2, then fy4 = 0 and fy3 > 0. So, (22) becomes:

fy3il 4 f42 = 0. (23)

Therefore, there exists a unique positive solution i}.

In all the cases discussed above, there exists at least a positive solution ii of (22). Let
us denote by i%* this positive solution. We will now define and prove the positivity of ié*,
.3% .9k .3% % * s
iy, 15,15, s1* and s2* if Rg > 1.

From equation (21g), we get:

L

qr f35 + f301;
2 — 1 BES
Barska (—fa0 + fari]")

If Rg > 1, then fzg > 0. From (21a) and (21h), it follows that —fyo 4 f5;i}" < 0, hence
S1*
i >0.

a
From equation (21c), it follows that 12" = —1'%*, hence 2" > 0.
K3
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. . .3k a1a2 1% Lg%
From equation (21d), it follows that, ij = i; , hence ij” > 0.
R3K4
. . : ag., aica . ,
From equation (21e), it follows that, i3 = Bi1* 4+ 2251 hence 3" > 0.
ke Kek3
. . agay, aqaiCy  a1ascy ) .
From equation (21f), it follows that, i}~ = ﬂlé* Sl L2253 i1", hence
b/i(j blﬁ6l<a3 b/€4/€3
i3" > 0.
Iigi%*

From equation (21a), it follows that, sj =

3 3
ﬁ1§ iy +52§ Iy
=1 =1

1% R
/4351% —Cll%

From equation (21b), it follows that, sj = 3

=1

Therefore, if Ry > 1, there exists a positive solution E* (s’{,i

for the system (5).

3
By B+ By b
=1

, hence s] > 0.

, hence s > 0.

L9% .3% L1k .2%

* % .3k
17,19 582512 y19 519 )

8. Stability Analysis of Endemic Equilibrium

Theorem 5.

If Ry > 1, then the endemic equilibrium point
s 1% L2F 3% g L]F 0% L3k
E (81?11 y11 511 589,19 5,19 19 )

is locally asymptotically stable.

Proof. Let us compute the jacobian of the system at the point E* (s7, i7" 45" 85,187,137, i3

1* 2% -3 :2% .3%

).
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-H*—r1  —pis]  —Bis] —Bis] 0 —Bos]  —Bas] —[os]

H* Bisi — kK2 Bis]  Pis] 0 Posi  Pasi  [Posi

0 ay —K3 0 0 0 0 0

0 0 as —Ky4 0 0 0 0
TEY=1 0 ass By B H b s s s

0 Piss+c1 Pisy  HY  Pasi— ks Pasy  [2s)

0 0 Co 0 0 as —Kg 0

0 0 0 c3 0 0 ay —b

3 3
where H* = 513 1" + 62 D i
=1 =1
The characteristic equation of J(E) is given by:
AgX® + A7XT 4+ ApXO + AsX® + AuX? + AgX? + AoX? + AiX+ A0 =0  (24)

where Ag, Ay, Ao, As, Ay, As, Ag, A7, Ag are obtained as a result of a boring
calculation. They are all positive. Applying the Routh-Hurwitz criterion [7], it follows
that all eigenvalues of the characteristic equation (24) have negative real part if Rg > 1.
Therefore, the endemic solution E* is locally asymptotically stable if Ry > 1.

9. Numerical Simulations and Discussion

In this section, we perform numerical simulations to support the theoretical results from
the mathematical analysis of model (5). In addition to the verification of the theoretical
results, these numerical solutions are very important from a practical point of view.

We first consider the case where Ry = 0.67893 < 1 using the parameter values reported
in Table 4.

Using different initial conditions, the dynamics of the susceptible and infected popu-
lations of the model are plotted in Figures 2, 3, 4 and 5.

In Figure 2, we can observe that the proportions of susceptible individuals in classes
C; and Cg are consistent, (s; = 0.63343, sy = 0.36657). In contrast, as shown in Figures
3, 4 and 5, the proportions of infected individuals in classes C; and Cy decline to zero
(i% =0, i% =0, i:f‘ =0, i% =0, i% =0, i% = 0)7 i.e. approach the disease-free equilibrium
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Table 4: Parameter values

Parameter  Value Source Parameter Value Source
b 0.0432 Estimated a 0.01 Estimated
m 0.0096 Estimated as 0.01 Estimated
¥ 0.025 Estimated aq 0.01 Estimated
61 0.035 Estimated c1 0.02 Estimated
B 0.025 Estimated Co 0.02 Estimated
aq 0.01 Estimated C3 0.02 Estimated
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Figure 2: Time series plots of the proportions of susceptible individuals in classes C; and C3 for Rp = 0.67893 < 1
using various initial conditions and parameter values reported in Table 4.
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Figure 3: Time series plots of the proportions of infected individuals at stage 1 in classes C; and Cy for
Ro = 0.67893 < 1 using various initial conditions and parameter values reported in Table 4.

(DFE). They show that DFE is locally asymptotically stable when Ry < 1. These numer-
ical simulations support the result stated in Theorem 2 on the stability of DFE.
Further using the parameter values given in Table 5, we consider the case when Ry =
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Proportion of individuals infected at stage 2 of class C,

Proportion of individuals infected at stage 2 of class C,
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time () time (1)

(a) Proportion of individuals infected at (b) Proportion of individuals infected at
stage 2 in C; stage 2 in C»

Figure 4: Time series plots of the proportions of infected individuals at stage 2 in classes C; and Ca for
Ro = 0.67893 < 1 using various initial conditions and parameter values reported in Table 4.

008 008
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(a) Proportion of individuals infected at (b) Proportion of individuals infected at
stage 3 in Cy stage 3 in Ca

Figure 5: Time series plots of the proportions of infected individuals at stage 3 in classes C; and Cy for
Ro = 0.67893 < 1 using various initial conditions and parameter values reported in Table 4.

1.408 > 1.
Table 5: Parameter values
Parameter Value Source Parameter Value Source
b 0.0432 Estimated a9 0.01 Estimated
m 0.0096 Estimated as 0.01 Estimated
vy 0.025 Estimated aq 0.01 Estimated
051 0.075 Estimated c1 0.02 Estimated
55 0.05  Estimated Co 0.02 Estimated
aq 0.01  Estimated c3 0.02 Estimated

Using different initial conditions, the dynamics of the susceptible and infected popu-
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lations of the model are plotted in Figures 6, 7, 8 and 9.
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Figure 6: Time series plot of the proportions of susceptible individuals in classes C; and Cz for Ry = 1.408 > 1
using various initial conditions and parameter values reported in Table 5.
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(b) Proportion of individuals infected at
stage 1 in Cq

Figure 7: Time series plot of the proportions of individuals infected at stage 1 in classes C; and Cy for
Ro = 1.408 > 1 using various initial conditions and parameter values reported in Table 5.

As shown in Figures 6, 7, 8 and 9, the proportions of susceptible and infected in-

dividuals in classes C; and Cy are consistent, [(sl*, it i i, s, i, i, i3 ) =

(0.49548, 0.12853, 0.017559, 0.0027783, 0.19918, 0.11941, 0.029047, 0.0080157 )}, i.e., the

population tends to endemic equilibrium E* when Ry > 1. This indicates that, regard-
less of initial conditions, the infected population eventually reaches endemic equilibrium
over time and the disease-free equilibrium point becomes unstable when Rg > 1. These
numerical simulations support our theoretical results.

10. Conclusions

In this paper, we have developed a mathematical model for the spread of HIV disease
within two different age classes. We proposed a basic reproduction number that depends
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Figure 8: Time series plot of the proportions of individuals infected at stage 2 in classes C; and Cy for
Ro = 1.408 > 1 using various initial conditions and parameter values reported in Table 5.

Figure 9: Time series plot of the proportions of individuals infected at stage 3 in classes C; and Cy for
Ro = 1.408 > 1 using various initial conditions and parameter values reported in Table 5.

on the characteristics of the two age classes. We have proved that if the Routh-Hurwitz cri-
terion are satisfied, then the disease-free equilibrium (DFE) Eg is locally asymptotically
stable. We constructed a Lyapunov function to prove that the disease-free equilibrium
(DFE) Ey is globally stable when Ry < 1. For Ry > 1, we obtain from mathematical
analysis a quadratic equation in ii. It has been proven that the existence of an endemic
equilibrium depends on the existence of at least one real positive value for i}. The stability
analysis of endemic equilibrium produces that if the Routh-Hurwitz criterion are satisfied,
then the endemic equilibrium E* is locally asymptotically stable. The important math-
ematical results in this paper were all corroborated by numerical simulations performed
using MATLAB. Indeed, we verified through numerical experiments that the disease-free
equilibrium Eq is stable when Ry < 1. On the other hand, we numerically verified that, if
Ro > 1, then the endemic equilibrium E* becomes stable.
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