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Abstract. A pseudo hyper G R-algebra is an algebraic structure involving two distinct hyperop-
erations. Properties of this hyper algebra have been studied and given illustrations. This paper
focuses on the quotient structure of pseudo hyper G R-algebras. From an equivalence relation on
a pseudo hyper GR-algebra H, we can define a congruence relation on H that is used in the con-
struction of the quotient structure H/I, where I is the congruence class of 0 under the congruence
relation. Moreover, some isomorphism theorems of pseudo hyper G R-algebras are included in this

paper.
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1. Introduction

Algebraic hyperstructures were introduced by a French mathematician, Marty [6],
in 1934. They represent a natural extension of classical hyperstructures in which the
composition of two elements of a given set is a set, instead of an element. Afterwards, this
new idea was expanded rapidly and showed itself as a new view of sets.

The introduction of hyperstructure theory led to the study of several
problems of noncommutative algebra. Algebraic hyperstructure theory has multiple ap-
plications to other fields such as: geometry, graphs and hypergraphs, binary relations,
lattices, groups, relation algebras, artificial intelligence, probabilities, and so on.

In 1966, Y. Imai and K. Iséki [1] initiated the notion of BC K-algebra as a generalization
of the concept of set-theoretic difference and propositional calculi. Furthermore, Y.B. Jun
et al. [5] applied hyperstructure theory to BC K-algebras and introduced the notion of
hyper BC K-algebras as a generalization of BCK-algebra.
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R.A. Indangan and G.C. Petalcorin [2] defined a new class of algebraic hyperstructure
called hyper G R-algebra. In this algebra, they presented a helpful understanding on how
this hyper algebra differs from the rest.

R.G. Manzano and G.C. Petalcorin [4] extended the study hyper G R-algebras by
intorducing a new definition involving two hyperoperations. This gives birth to pseudo
hyper G R-algebras.

2. Preliminaries

Let H be a nonempty set endowed with a hyperoperation “x”, that is, “*” is a

function from H x H to P*(H) = P(H) \ {@}. For two nonempty subsets A and B of
H, Ax B = Uucapepa*b. We shall use z xy instead of x = {y}, {z} x y or {z} = {y}.
When A is a nonempty subset of H and = € H, we agree to write Az instead of Ax{x}.
Similarly, we write  x A for {z}* A. In effect, Axx = J,cpa*xrand x A =J,c4 2 * a.
A set H endowed with a family I' of hyperoperations is called a hyperstructure. If T' is
singleton, that is, I' = {f}, then the hyperstructure is called a hypergroupoid.

Definition 2.1. [2] Let H be a nonempty set with “®” a hyperoperation on H. Then
(H;®,0) is called a hyper GR-algebra if it contains a constant 0 € H and for all x,y,z € H,
the following conditions are satisfied:

[HGR;] (z®2)®(y®2) <@ Y]
[HGR3) (z@y)®z=(T®2)®Y;
[HG R3] r < x;
[HGRs) 0® (0®2) < x, for all z # 0; and
[HGR5) (r®Yy) P2z <Yy ® 2.
where © < y if and only if 0 € x ® y, and for every A, B C H, A < B means that for

every a € A, there exists b € B such that a < b.

Example 2.2. [2] Let H = {0, 1,2}. Define the operation “®” by the Cayley table shown
below.
0 1 2
{0} {0} {0}
012 {01} {01}
{0,2}  {0,1,2} {0,2}
By routine calculations, (H;®,0) is a hyper G R-algebra.

Definition 2.3. [2] A hyper GR-algebra H is faithful if for all A/ B C H, 0 € A® B
implies A < B.

o~ O ®
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Definition 2.4. [2] Let H be a hyper GR-algebra and S be a subset of H containing 0.
If S is a hyper G R-algebra with respect to the hyperoperation ® on H, then we say that
S is a hyper subGR-algebra of H.

Theorem 2.5. [2] (Hyper SubGR-algebra Criterion)
Let H be a hyper GR-algebra and S be a nonempty subset of H. Then S is a hyper
subGR-algebra of H if and only if x ® y C S, for all x,y € S.

Definition 2.6. [4] Let H be a nonempty set with “®” and “o” be the two hyperopera-
tions on H. Then (H;®,®,0) is called a pseudo hyper GR-algebra, if it contains a constant
0 € H and for all z,y, z € H, the following conditions are satisfied:

[PHGR,] (r02)0Woz)<zeyand (x®2)® (y® 2) < TR Y;

[PHGR] (zoy)®z=(r®z2)Oy;

[PHGR3] Oczx®zand 0 €z x;

[PHGR4] 00 (0®z) < z, for all  # 0; and

[PHGR5] @Yy B2z <Y 2.

where x < y if and only if 0 € x ®y and 0 € x ® y, and for every A,B C H, A < B
means that for every a € A, there exists b € B such that a < b.

Example 2.7. [4] Let H = {0,1,2,3} and consider the following Cayley tables below.

®| 0 1 2 3
o[ {o,13  {o,1}  {o,1}  {o,1}
1| {o,1}  {o,1}  {o,1}  {0,1}
2 | {0,2} {o0,1,2} {0,2} {0,1,2}
31{0,1,2} {0,3} {0,1,3} {0,3}
©| o0 1 2 3
o[{0,1} {o,1}  {o,1}  {o0,1}
1| {13 {01}  {o,1}  {o,1}
2 | {0,2} {0,2} {0,1,2} {0,1,2}
3 1{0,3} {0,1,3} {0,1,3} {0,1,3}

By routine calculations, we see that (H;®,®,0) is a pseudo hyper G R-algebra.
Remark 2.8. [4] In a pseudo hyper GR-algebra H, the following are evident:
(i) r<z

i) (zoy) @<k (2®2)Oy
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(iii) (AoB)®C=(A®C)®B
(iv) A C B implies A < B.

Example 2.9. [4] Let H = N U {0} be the set of all nonnegative integers and let the
hyperoperations “®” and “®” be defined on H as follows:

z®y={0,2} and z ©y = {0, z,y}.
Then H is a pseudo hyper G R-algebra.

Remark 2.10. [4] Note that if the two hyperoperations are equal , that is, ® = ©, then
a pseudo hyper-GR algebra H becomes a hyper G R-algebra.

Definition 2.11. [4] Let H be a pseudo hyper GR-algebra and S be a subset of H
containing 0. If S itself is a pseudo hyper G R-algebra with respect to the hyperoperations
® and ® on H, then S is called a pseudo hyper subGR-algebra of H.

Theorem 2.12. [4] (Pseudo Hyper SubGR-algebra Criterion)
Let S be a nonempty subset of a pseudo hyper G R-algebra H. Then S is a pseudo hyper
subGR-algebra if and only if both x ® y C .S and x ©y C S for all z,y € S.

Example 2.13. [4] For any pseudo hyper GR-algebra H, the set S = {0} is a pseudo
hyper subGR-algebra of H.

3. Quotient Pseudo Hyper GR-algebras

In this section, we construct the structure of the quotient pseudo hyper G R-algebra
H/I from a pseudo hyper G R-algebra H via congruence relation.

All throughout, we denote a pseudo hyper G R-algebra (H, ®, ®,0) simply by H, unless
otherwise stated.

Definition 3.1. Let 6 be an equivalence relation on a pseudo hyper G R-algebra H and
A and B be nonempty subsets of H.

(i) AéB if there exist a € A and b € B such that afb;

(ii) AOB if for every a € A, there exists b € B such that afb and for every b € B, there
exists a € A such that afb;

(iii) 0 is called a right ®-congruence (resp. right ®-congruence) on H if afb implies

(a®u)f(b®u) (resp. (a ®u)f(b® u)) for all v in H;

(iv) 0 is called a left ®-congruence (resp. left ®-congruence) on H if afb implies (u ®

a)f(u®b) (resp. (u®a)f(u®b)) for all v in H;
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(v) 0 is called a ®-congruence (resp. ®-congruence) on H if it is a right and a left
@-congruence (resp. a right and left ®-congruence);

(vi) @ is called a left congruence on H if it is a left ®-congruence and a left ®-congruence
on H;

(vii) € is called a right congruence on H if it is a right ®-congruence and a right ®-
congruence on H;

(viii) 0 is called a congruence relation on H if it is a ®-congruence and ®-congruence on
H:; and

(ix) @ is called a regular congruence relation on H, if 0 is a congruence relation on H and
for any =,y € H, whenever (z ® y)0{0}, (y ® x)8{0}, (x ©® y)0{0}, and (y ® z)0{0},
we have z0y.

Example 3.2. Let H = {0,1,2} and consider the following Cayley tables below.

®| 0 1 2 ©| 0 1 2

0| {0y {0y {0 0] {0y {01} {0,2}
1]{0,1} {o0,1} {0,1} 1]{0,1} {0,1} {0,1,2}
2 | {0,2} {0,2} {0,2} 2 | {0,2} {0,1,2} {0,2}

Then (H;®,®,0) is a pseudo hyper GR-algebra.

Define 6 on H by 6 = {(0,0),(0,1),(1,0),(1,1),(2,2)}. It can be easily verified that 6
is an equivalence relation. We will show that 6 is a congruence relation using Definition

3.1. Since zfz for all x € Hy, we have (a®z)0(a® ), (r®a)f(z®a), (a®x)f(a®z) and

(r®a)f(x®a). Therefore, the remaining elements of # that is left for verification are (1,0)

and (0, 1) which can be done simultaneously. Since 160, we will show that (1 ®a)0(0® a),

(a®1)f(a®0), (1©a)f(0®a) and (a ®1)8(a ®0) for all a € H.

For a =0, ) i
1®0={0,1}6{0} =0®0 and 0® 1 = {0}6{0} =0® 0
1©0=1{0,1}6{0} =0© 0 and 0® 1 = {0}6{0} = 0 ® 0.

For a =1, ) )
1®1={0,1}6{0} =0®1land 1®1={0,1}6{0,1} =1®0
101={0,1}0{0,1} =001l and 1®1=1{0,1}0{0,1} =1 0.

For a = 2, ) )
l®2=1{0,1}0{0} =0®2and 2® 1 = {0,2}0{0,2} =2® 0

Therefore, 6 is a congruence relation.
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Definition 3.3. Let 0 be a congruence relation on a pseudo hyper G R-algebra H. The con-
gruence  class  of denoted by [x]p or I is given by
[zl = I, = {y € H[z0y}.

Lemma 3.4. Let 6 be an equivalence relation on H and A,B C H. If A6OB and BQ_C,
then AOC.

Proof. Let a € A. By Definition 3.1(ii), there exists b € B such that afb. Also, there exists
¢ € C such that bfc. By transitivity, afc.

Let ¢ € C'. Then there exists b € B such that bfc. But there exists a € A such that
abb. So, by transitivity, afc. Therefore, AGC. O

Lemma 3.5. Let 6 be an equivalence relation on H such that t ® 0 =2 and z © 0 = z,
for all x € H. Then the following hold:

(i) If 6 is a left ®-congruence (left ®-congruence) on H, then [0]y is a pseudo hyper
G R-ideal of type 8.

(i) If 0 is a left congruence on H, then [0]y is a pseudo hyper G R-ideal of type 4.

Proof. (i) Suppose that 6 is a left ®-congruence. Let y € [0]p and = € [O]Ey. Then
x®y < [0]p. Then for all a € z ® y, there exists b € [0]g such that 0 € a ® b. Since 6 is a
left ®-congruence, b0 implies that (a ® b)(a ® 0) and so (a ® b)fa. Now, 0 € a ® b and
(a®b)fa would imply that 00a and so z®y C [0]s. Since y0 and 6 is a left ®-congruence,
(r ® y)f(z ® 0). Thus, for all z € x ® y, we have z0x. Since z ® y C [0]p, 200. By
commutativity and transitivity, 200 and z0x means that x60. Hence, € [0]y. Therefore,
[0]g is a pseudo hyper G R-ideal of type 8.

Similarly, it is easy to show that [0]s is a pseudo hyper G R-algebra of type 8 for the
case of left ®-congruence.

(ii) Suppose that 6 is a left congruence on H. Let y € [0p and
S [O]éy. Then z ® y C [0]p. This means that z ® y < [0]g. Then for all a € z ® y,
there exists b € [0]p such that 0 € a ® b. Since 6 is a left ®-congruence, b0 implies that
(a®b)0(a®0) and so (a ® b)fa. Now, 0 € a® b and (a ® b)fa would imply that 0fa and
sox ®y C [0]p. Since yf0 and 6 is a left ®-congruence, (z ® y)d(x ® 0) or equivalently
(r ® y)@{x}. Thus, for all z € x ® y, we have z0x. Since x ® y C [0]y, 200. Now, 260 and
20z mean that £00. Hence, z € [0]p. Similarly, if y € [0]p and = € [O}é’y, then x € [0]p.

Therefore, [0]g is a pseudo hyper G R-ideal of type 4. O

The next example will give us the idea on how the quotient structure on a pseudo
hyper G R-algebra is constructed.

Example 3.6. Consider the pseudo hyper GR-algebra H = {0,1,2} in
Example 3.2. The relation 6 defined on H is a congruence relation as shown. More-
over, I = [0]p = {0,1} and I» = {2}. Let H/I denote the set of all congruence classes
on H, that is, H/I = {I,|x € H}. In our case, H/I = {I,I5}. Define hyperoperations
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®and @ on H/I by I, ® I, = {I,|z € 2 ®y} and [, ® I, = {I.|z €  ©® y} and
I. <1, <= 1Iyc I, ®I,andly € I, ® I,. Thus, for our case, we have the following
Cayley tables:

X ‘ I I © ‘ I I
Iy {3 I A1y AL}
I | {I, I} {I,I2} I | {I, I} {I,I2}

By routine calculations, (H/I;®,®,I) is a pseudo hyper G R-algebra.

Lemma 3.7. Let 6 be a congruence relation on a pseudo hyper G R-algebra H such that
x0z" and yby'. Then (z ® y)0(2’ ® y') and (x © y)0(2’ ©y').

Proof. Suppose that 6 is a congruence relation such that x0x’ and yfy’. Then I, = I, and
I,=1,. Let z€x®y. Then I, € I, ® I, = Iy ® I,y. Thus, I, € I,y ® I,y. This means
that z € 2’ ® y/. Hence, (x ® y)0(2' ® ¢/).

Similarly, we can show that (z ® y)0(z' ® /). O

We will now show in general that using congruence relation, the quotient structure
obtained is a pseudo hyper G R-algebra.

Theorem 3.8. Let 8 be a congruence relation on a pseudo hyper G R-algebra H such
that I = [0]p and H/I = {I, |x € H}, where I, = [z]g for all x € H. Then H/I with
hyperoperations ® and ©, and hyperorder < which are defined as follows:

IL@ly={l.|zecx®y}and [, ® I, ={I. |z € x ©®y}, and
I$<<Iy <~ IoEIa;@Iy andI()EIw@Iy.

is a pseudo hyper G R-algebra which we call the quotient pseudo hyper GR-algebra.

Proof. Let us show first that the hyperoperations @ and ® on H/I are well-defined.
Suppose that z,y,2’,y’ € H such that I, = Iy and I, = I,y. Let I, € I, ® I,. Then
there exists w € x ® y such that I, = I,. Since zfz’ and yfy’, and 0 is a congruence
on H, by Lemma 3.7, (x ® y)0(2'0y’). Hence, there exists 2z’ € 2/ ® y’ such that ufz’
and thus, I, = I,,. Since I» € I,y ® I,y and I, = I, = I;, we have I, € I, ® I,y. Thus,
I,®1I, C Iy®I,. Similarly, we can show that I,y ® I,y C I,®1,. Hence, [, ® I, = I,y @ I,y.
Therefore, the hyperoperation “®” is well-defined.

Similarly, we can show that I, © I, = I,y © I,y so that “@” is also well-defined.

Now, since H is a pseudo hyper GR-algebra, 0 € H and so,
Ip = [0]g = I € H/I. Hence, H/I is nonempty and I € H/I. It remains to show
that H/I satisfies all the axioms of a pseudo hyper G R-algebra.
[PHGR,y] Let I, € (I; ® I,) ® (I, ® I,), for some I, I,,I. € H/I. Then there are
I, € I,®I, and I, € I, ® I, such that I,, € I, ®I,. Hence, there are v/ € 2©z,v € y© 2
and w’ € u ® v such that I, = Iy, I, = Iy, and I, = I,+. Hence, ufu', v0v' and whw’.
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Since 6 is a congruence relation on H, by Lemma 3.7, (v ® v)8(v’ ®v'). From v’ € u® v,
there exists a € v/ ® v’ such that w'fa and so, I,y = I,. Thus, I, = I, = I,.

By PHGRion Hia € v/ v C (z®2)®(y©2) < x©y. Hence, there exists b € z Oy
such that a < b, which means that 0 € a © b and 0 € a ® b. Furthermore, I, € I, ® I,
Iyel,® I, andly € I, ® I,. Since I, = I,y = I,, we have Iy € I, ® I, and Iy € I, ® I
which means that I,, < I. This implies that (I, ® I,) ® (I, @ I.) < I, ® I,.

Similarly, we can show also that (I, ® I.) ® (I, ® I,) < I, ® I,,.

Therefore, [PHGR;] holds.

[PHGRy| Let I, € (I, ® I)) ® I,. Then there exists I,, € I, ® I, such that I,, € [, ® I.
Since I, € I, ® I, there exists v’ € = ® y such that ufu’, that is, I, = I,,. Hence,
Iy €1, ®1, Since I, € I, ® I, = I,y ® I, there exists w’ € v’ ® z such that w'6w. Now,
weu®zC(zoy)®z=(r®2) Oy, by PHGRy on H. Hence, w' € (z ® 2z) ® y and
w ®z C (r®y)® 2z This means that there exists b € z ® z such that w’ € b® y. Since
beax®z, Iy e I, ®1,. Also, I,y € Iy ® I,. Thus, I, = Iy € [, ®I, C (I, ® I.) ® I.
Hence, (I, ® 1)) ® I, C (I, ® I.) ® I,,.

For the other set inclusion, let I, € (I, ® I.) © I,. Then there exists I,, € I, ® I, such
that I,, € I,®1,. Since I,, € I, ®1I,, there exists v’ € z®z such that ufu/, that is, I, = I,y
Hence, I,y € I; ® I.. Since I, € I,,® I, = I,y ® I,;, there exists w’ € v/ ®y such that w'6w.
Now, w' €/ Oy C(x®2)Oy=(x@y)®z2, by PHGR2 on H. Hence, w' € (z ®y) ® z
and ' ©y C (z®2) ®y. This means that there exists b € x ®y such that w’ € b® z. Now,
be xOyimplies I, € I, ®I,. Also, Iy € I, ®1.. Thus, I, = I,y € &I, C ([, ®1,)RI..
Hence, (I, ® I,) @1, C (I, ® I)) ® I,.

Therefore, (I, ® I,) ® Iy = (I, ©® Iy) ® I, and [PHGR»] holds.
[PHGR3) By PHGR3 of H, 0 € x ® z and 0 € x ® 2 which means that Iy € I, ® I, and
Iy € I, ® I,. This means that I, < I,. Therefore, [PHG R3] holds.
[PGHR,) Let I, € Iy ® (Ip ® I;). Then there exists I,, € Iy ® I, for which I,, € Iy ® I,,.
Since I,, € Iy® I, there exists v’ € 0® x such that ufu’ and I, = I,,. Hence, I, € Iy ® I,.
Since I, € Iy © I, = Iy ® I/, there exists w’ € 0 ® v/ such that wdw’ and I,, = I,,,. Now,
w e00u C00(0®x) < z, by PHGR, of H. This means that w’ < x. Thus, I,y < I,.
Now, I, = I and so, I, < I . Since I, € Iy ® (Ip ® I;), we have Iy ® (Iy ® 1)) < I,.
Therefore, [PHG R4| holds.
[PHRGSs] Let I, € (I ® Iy) ® I,. Then there is I, € I, ® I, such that I, € I, ® I,.
Since I, € I, ® I, there exists v’ € z ® y such that wfu’ and I, = I,,. Also, since
I, € I, ® I, there exists w' € u ® z such that I, = I,s. Since 0 is a congruence on H
and ufu’, by Lemma 3.7, (u ® 2)0(v' ® z). Then there exists a € v’ ® z such that w'fa.
Thus, Iy =Ly =1,. Now,a €' ®2C (z®y)® 2 < y©® 2, PHGR; on H. Hence, there
exists b € y ©® z such that a < b. This means that 0 € a ® b and 0 € a ® b. Furthermore,
ILyelyol,, Iy€ 1,01, and Iy € I, ® I}, . Since I, = I,y = I,, we have Iy € I,, ©® I}, and
Iy € I, ® Iy and hence, I, < Ij. Note that [ € I, ® I,. Thus, (I, ® I,)) ® I, < I, ® I..
Hence, [PHGR;5] holds.

Therefore, (H/I;®,©,I) is a pseudo hyper G R-algebra. O

Lemma 3.9. Let 6 and 6 be two regular congruences on H such that
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[0]g = [0]g. Then 6 = 6.

Proof. Tt is enough to show that zfy <= xz0'y.

If 20y, then (z ® z)0(z ® y). Since 0 € x ® x and 0§ is a congruence on H, there
exists z €  ® y such that 00z. Then, z € [0]p = [0]pr and z € [0]j, that is, 00'z. Hence,
{0}0'(z ® y). Similarly, we can also show that {0}6'(y ® x). Thus, x6'y since ¢’ is regular.

Following the same argument, 26’y implies x6y. Therefore, § = ¢’. O

4. Isomorphism Theorems of Pseudo Hyper GR-algebras

This section discusses some hyper isomorphism theorems of pseudo hyper G R-algebras,
namely, the first and the third hyper isomorphism theorems. All throughout, H and H’
are pseudo hyper G R-algebras, unless otherwise stated.

Lemma 4.1. Let 0 be a regular congruence on a pseudo hyper G R-algebra H and I = [0]s.
Then the map m : H — H/I defined by 7(x) = I,, for all z € H, is an epimorphism,
called the canonical epimorphism.

Proof. Let x,y € H such that x = y. Then

m(x) = I = [zlo = [yl = I, = 7 (y)-

Hence, 7 is a well-defined map.

Now, observe that m(0) = [y = I. Next, we will show that 7 is a homomorphism. Pick
z,y € H. Let J € m(xz) ® m(y). Then J € I, ® I, and so there exists element u € x ® y
such that J = I, = 7(u) € m7(z®y). Thus, 7(x)®7(y) C m(z®y). Now, let L € m(x®y).
Then there exists an element v € = ® y such that L = w(v) = I,. Note that I, €
I,® 1, =n(x)®7(y). Hence, we have L € m(z) ®7(y) and m(z ®y) C 7(x) ®7(y). Thus,
m(x®y) = n(z) ®7(y). Similarly, for the hyperoperation ®, we can show that 7(z ®y) =
m(x) ® 7w(y). Thus, 7 is a hyper homomorphism.

Let I, € H/I with « € H. Then n(z) = I, € H/I. Therefore, 7 is a surjective map
and so, an epimorphism. O

Theorem 4.2. (Homomorphism Theorem) Let 6 be a regular congruence relation
on H and I = [0]p. If f: H — H' is a homomorphism of pseudo hyper G R-algebras
such that f(z) < f(y) and f(y) < f(z) imply that f(z) = f(y) for all x,y € H, then
f:H/I — H', which is defined by f(I,) = f(z), for allz € H, is a unique homomorphism
such that fom = f, where 7 denotes the canonical epimorphism and o is the composition
map. Moreover, if I = ker f, then f is a monomorphism.

Proof. Let 6 be a regular congruence relation on H and I = [0]g. Define f : H/I — H’
by f(I;) = f(x) for all x € H. Let x,y € H such that I, = I, and let t € I, = I,.
Since H/I is a pseudo hyper GR-algebra, by [PHGR3|, t < t and so, I, < I,. Hence
Iel,®I,and I € I, ®I,. It follows that there exist z € x ® y and z € v © y such that
I'=1,. Thus, z € I C ker f and so f(z) = 0. Since f is a hyper homomorphism, we have
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0'=f(z) = fa®y) = f(z)® f(y) and 0’ = f(z) = f(zOy) = f(z) © f(y). it follows that
f(xz) < f(y). Using the same argument, picking ¢’ € I, = I, will imply that f(y) < f(z).
Thus, by the hypothesis f(z) < f(y) and f(y) < f(x) imply that f(z) = f(y). Hence,
f(I;) = f(I,) and f is a well-defined map.

Let I, I, € H/I. We will show that f(I, ® 1) = f(I,) ® f(I,). Let w € f(I, ® ).
Then there exists I; € I, ® I, such that w = ( ¢+) = f(t). Now, I; € I, ® I, implies that
t€x©®yand

w=[(t) € flwoy) = [@)© fy) = [(L) © [(1,),
Thus, f(I, ® I,) C f(Is) ® f(Iy).
Now, let u € f( L)® f(I,) = f(x)® f(y) = f(x ©y). Then there exists an element v €

x ®y such that u = f(v). Hence I, € I; © 1, and we have u = f(v) = f(I,) € f(I, ® I,).

Thus, f(I.) © f(I,) € f(I. © I). Hence, f(I, © I,) = f(I.) © f(I,). In a similar manner,
we can show that f(I, ® I ) f(L) ® f(I,). Hence f is a homomorphism.
Now, dom(f o ) = H = domf and for al 2 € H,

(fom)(z) = f(n(z)) = f(I:) = f(z). Hence, fom = f.
To show the uniqueness of f, we suppose that there is another homomorphism g such
that gom = f. Let x € H. Then

Now, we will show that if I = ker f, then f is a monomorphism. Suppose that
f(I;) = f(I,) with z,y € H. Then f(z) = f(y). Since f is a homomorphism and by
[PHGR3),

O = f(0m) € fle®x) = f(z)® f(x) = f(z) ® f(y) = flz®Y).

So, there exists u € x ® y such that f(u) = 0. Hence, u € ker f = I and so, uf0. It
follows that (z ® y)0{0}. Also,

O = f(0m) € fle@x) = f(z)® f(x) = fly) ® f(z) = fly @ 2).

So, there exists v € y ® x such that f(v) = Ogs. Then v € ker f = I and so, v60.
Hence, (y ® 2)6{0}.
Similarly,
O = f(0n) € flz©x) = f(x) © f(z) = f(z) © f(y) = flzOy).

So, there exists u € x ® y such that f(u) = Ogs. This means that u € ker f = I and
so, uf0 which implies that (z © y)8{0}. Lastly,

O = f(0m) € flxOx) = f(2) O f(x) = fly) © f(z) = fly © 2).
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Thus, there exists v € y ® x such that f(v) = Og. Moreover,
v € ker f = I and v00. Thus, (y ® z)#{0}. Since # is a regular congruence relation,
it follows that z6y. Thus, I, = I,. Therefore, f is a one-to-one map. This proves the
theorem. O

Before we prove the First Isomorphism Theorem, let us consider the following example
which is a specific case of the next theorem.

Example 4.3. Consider the pseudo hyper GR-algebra H = {0,1,2} in
Example 3.6. We can verify that the given congruence relation 6 on H is regular.

In our case, I = [0]p = {0,1} and I» = {2}. Then H/I = {I, Is} whose Cayley table is
shown below

®| I I o| I Iy
LA Ly AL}
L | {1} {I,I} I | {I,I} {I,I}

By routine calculations, H/I is a pseudo hyper G R-algebra.
Now, consider the set H' = {0,1} together with the Cayley tables below

®| 0 1 ©| o 1
01 {0y {0} 01 {0y {0,1}
1]{0,1} {0,1} 1]{0,1} {0,1}

By routine calculations, H' is a pseudo hyper G R-algebra.
Define the map f : H — H' by f(0) =0 = f(1) and f(2) = 1. Then f is a homomorphism
as shown in table below

zlylz®y | feoy) | f@) | fly) | f@) e fly)
00| {o} {0} 0 0 {0}
01| {o} {0} 0 0 {0}
0|2/ {o} {0} 0 1 {0}
110/ {0,1} {0} 0 0 {0}
1[1]{0,1}| {0} 0| o {0}
1|21 {0,2} {0} 0 1 {0}
2101{0,2}| {0,1} 1 0 {0,1}

2 11){0,2}| {0,1} 1 0 {0,1}
2121({0,2}| {0,1} 1 1 {0,1}
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vyl z0y | flzoy) | fl@) | fly) | fl=)o fly)
0[0] {0 {0} 0 0 {0}
01| {0,1} {0} 0 0 {0}
0ol2] {0,2} | {o0,1} 0 1 {0,1}
1lo] {o,1) {0} 0 | 0 0}
11| {01} | {0} 0 | o {0}
12]{0,1,22 | {o,1} 0 1 {0,1}
210/| {0,2} | {o0,1} 1 0 {0,1}
2 [1]{0,1,2} | {0,1} 1 0 {0,1}
22| {0,2} | {0,1} 1 1 {0,1}

According how f is being defined, we have ker f = {0,1} = [0]p = I and Im f = {0,1} =
H'.
Let us define the map ¢ : H/I — H' by

0 ifl,=1
1) =
o) {1 otherwise.

We can verify that ¢ is an isomorphism. Moreover, H/ker f = I'm f.

Corollary 4.4. (First Isomorphism Theorem) Let 6 be a regular congruence relation
on H and I = [0]p. If f: H — H’ is a hyper homomorphism of pseudo hyper GR-
algebras such that f(z) < f(y) and f(y) < f(z) imply that f(z) = f(y) and ker f = I,
then H/ker f = Im f.

Proof. By Theorem 4.2, the map f:H/ker f — H'is a monomorp@ism and by Remark
?? (i), f : H/ker f = Im f is an isomorphism. Thus, H/ker f = I'm f. Since f(I,) = f(z)
for all x € H, Im f = Im f. Hence, the result follows. U

Proposition 4.5. Let K be a pseudo hyper subG R-algebra of H and # a regular congru-
ence on H and I = [0]g. Define K/I = {I, € H/I |z € K}. Then K/I is a pseudo hyper
subG R-algebra of H/I.

Proof. Since K is a pseudo hyper subGR-algebra of H, 0 € K and so,
[0]p = I € K/I which means that K/I is nonempty. Let I,,I, € K/I. Then z,y € K.
Since K is a pseudo hyper subGR algebra of H, v ® y C K. Suppose that I, € I, ® I,,.
Then z € x ®y C K. Thus, I, € K/I and I, ® I, C K/I. Similarly, suppose that
I.e I, ®1,. Then, z € x®y C K, and so, I, € K/I. Thus, I, ® I, C K/I. Therefore,
K/I is a pseudo hyper subG R-algebra of H/I. Il

Corollary 4.6. Let 0; and 6> be regular congruence relations on H, with J = [0]p, and
I = [0]p,. Define J/I ={I, € H/I|x € J}. If J is a pseudo hyper subG R-algebra of H,
then J/I is a pseudo hyper subGR-algebra of H/I.

Proof. By definition of J/I, it is easy to see that J/I C H/I. Since J is a pseudo hyper
subG R-algebra of H, by Proposition 4.5, J/I is pseudo hyper subG R-algebra of H. [
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Lemma 4.7. Let 6; and 603 be regular congruence relations on H, with
J = [0]p, and I = [0]p,. Define J/I = {I, € H/I|x € J} and a relation 6 on H/I
by 1,01, if and only if 6y, for all I, I, € H/I. Then 6 is a regular congruence relation
and [I]g = J/I.

Proof. Define a relation 6 on H/I by I,0I, if and only if z6;y, for all
I, 1, € H/I. We will show that  is a regular congruence relation on H/I.

We will show first that € is an equivalence relation on H/I. Note that 6, is an equiv-
alence relation on H. Let I, € H/I. Then x € H and x6;x on H, that is, I,01,, which
means that reflexivity of 6 on H/I holds. Now, let I, I, € H/I such that I,01,. Then
z,y € H and z61y on H. Since 61 is a symmetric relation on H, y6;x on H and so I,01,
on H/I, that is, 6 is a symmetric relation on H/I. Assume that 1,01, and I,0I,, where
I, 1,,I, € H/I. Then z,y,z € H and z61y and yf;z on H. Since 6, is transitive relation
on H, we have z6,z which tells us that I,0I,. Hence, 0 is a transitive relation on H/I.
Therefore, 6 is an equivalence relation.

Now, we will show that 6 is a congruence relation on H/I. Note that ; is a congruence
relation on H. Let I,,I,, I, € H/I for some a,z,y € H such that I,0I, on H/I. Note
that #; is a regular congruence. By definition of § on H/I, x61y on H and Definition
3.1(viii), (a®z)01(a®y), (z®a)di(y®a), (a®z)01(a®y), and (z©a)d1(y ®a). Thus, for
each v € a ® x, there exists v € a ® y such that uf;v and for each v € a ® y, there exists
u € a ® x such that ufjv. This means that for each I,, € I, ® I, there exists I, € I, ® I,
such that I,01, and for every I, € I, ® I, there exists I, € I, ® I, such that I,01,.
Hence, (I, ® I,)0(I, ® I,). In a similar manner, we can also show that (I, ® I,)0(I, ® I,).
On the other hand, for each r € a ® x, there exists s € a ® y such that r8;s and for all
s € a ®y, there exists r € a ® x such that rfys. This means that for each I, € I, ® I,
there exists I, € I, ® I, such that .01 and for every I, € I, ® I, there exists I, € I, ® I,

such that I,01,. Hence, (I, ® I;)0(l, ©® I,). In a similar manner, we can also show that
(I; ® 1,)0(I, ® 1,). Therefore, 6 is a congruence relation on H/I.

Finally, we will show that 6 is a regular congruence relation on H/I. Suppose that
(I ®1,)0{1}, (I, ®1,)0{I}, (I, ®I1,)0{I}, and (I, ® I,)0{I}. Then there exist u € z®y,
vEyYy®a, r €xOy, and s € y ® x such that L,0{I}, I,0{I}, I,0{I}, and I,6{I},
that is, u6;0, v6:0, r0;0, and s6;0. So we have, (z ® y)0:{0}, (y ® 2)0:{0},(x © y)6:1{0},
and (y © x)01{0}. Since 6; is a regular congruence relation on H, z6y, that is, I,01,.
Therefore, 0 is a regular congruence relation on H/I. Now,

g ={l, € H/I|1,01} ={I, € H/I| 26,0}
={l, € H/I|x c[0]p, = J}
={I, € H/I|x € J}
=J/I
Theorem 4.8. (Third Isomorphism Theorem) Let f : H — H’ be a homomorphism

of pseudo hyper GR-algebras H and H' such that f(z) < f(y) and f(y) < f(x) imply
that f(z) = f(y). Suppose further that #; and 0y are regular congruence relations on H
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with J = [0]p, and I = [0]p,. Then (H/I)/(J/I)= H/J, where J/I ={I, € H/I |x € J}.

Proof. Let f: H— H' be a homomorphism of pseudo hyper G R-algebras H and H' such
that f(x) < f(y) and f(y) < f(x) imply that f(x) = f(y). Suppose further that 6; and
0 are regular congruence relations on H with J = [0]g, and I = [0]p,.

Let 6 be a regular congruence relation on H/I defined in Lemma 4.7. We define the
map ¢ : H/I — H/J by o(I;) = Jy.

Suppose that I, = I,. Since 0 is a reflexive relation on H/I, I,0I, on H/I which
means that x6;y. Note that J = [0]p,. Now, if z € J = [0]p,, then x6,0 and 00;z. Since,
x01y, by transitivity of ; on H, 061y and so y#;0 which will imply that y € [0]g, = J.
Thus, ¢(I;) = J, = J = J, = ¢(I,) and ¢ is a well-defined map.

We will now show that ¢ is a homomorphism. Note that ¢)(I) = J. Let I, I, €
H/I. Let J, € (I ® I). Then, there exists I, € I, ® I, such that ¢(I,) = J,, that
is, Ju = ¢(I,) = J,. Since I, € I, ® I, v € x ® y. Hence, J, € J, ® Jy. Thus,
J, = Jy € o ®Jy = o(Iy) ® o(Iy) and so, (I ® I;) C ¢(I;) ® ¢(I,). Next, let
Jy € o(I) ® p(I,) = Jp ® Jy. Then, there exists an element v’ € = ® y such that
Jy = Jw = ¢(Ly). Since v € a®y, Iy € I, ® I, and J, = o(Iy) € o(I ® ;). So,
o(Iz) ® o(Iy) € Iy ® I). Therefore, (I, ® Iy) = (Iz) ® p(1y).

Now, let J, € ¢(I; ® I,). Then, there exists an element I, € I, ® I, such that
o(1y,) = J, that is, J, = ¢(I,) = J,. Since I, € I, ® I;, u € x ©®y. Hence, J,, € J, © Jy.
Thus, J, = Jy, € J, © Jy = ¢(Iz) © ¢(Iy) and so, ¢(I, © I,) C ¢(I;) ® ¢(Iy). Next,
let J. € (1) ® ¢(Iy) = Jy ® Jy. Then, there exists an element v’ € = ® y such that
Jy = Jy =¢(Ly). Since ' € x Oy, Iy € I, ® I, and so, Jy = p(Iy) € (I, ® I). So,
o(Iz) ® o(Iy) € (I ® I). Hence, p(I; © 1)) = ¢(I;) ® ¢(I,) and ¢ is a homomorphism.

Now,

ker o ={I, € H/I|¢(I;) = [0], }
={I, € H/I|J,=[0)p, = J}
={I,€e H/I|x € J}
=J/I.
By Lemma 4.7, ker ¢ = J/I = [I]g. Lastly, we will show that ¢ is onto. Let z € H

and I, € H/I. Thus, there exists an element I, € H/I such that ¢(I,) = J, and so ¢ is
onto. Therefore, by the First Isomorphism Theorem, (H/I)/(J/I) = Imy = H/J. O
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