EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 15, No. 4, 2022, 1822-1835
ISSN 1307-5543 - ejpam.com
Published by New York Business Global

Acyclic and Star Coloring of Powers of Paths and Cycles

Ali Etawi ${ }^{1, *}$, Manal Ghanem ${ }^{1}$, Hasan Al-Ezeh ${ }^{1}$
${ }^{1}$ Mathematics, The University of Jordan, Amman, Jordan

Abstract

Let $G=(V, E)$ be a graph. The $k^{t h}$ - power of G denoted by G^{k} is the graph whose vertex set is V and in which two vertices are adjacent if and only if their distance in G is at most k. A vertex coloring of G is acyclic if each bichromatic subgraph is a forest. A star coloring of G is an acyclic coloring in which each bichromatic subgraph is a star forest. The minimum number of colors such that G admits an acyclic (star) coloring is called the acyclic (star) chromatic number of G and is denoted by $\chi_{a}(G)\left(\chi_{s}(G)\right)$. In this paper we prove that for $n \geq k+1$, $\chi_{s}\left(P_{n}^{k}\right)=\min \left\{\left\lfloor\frac{k+n+1}{2}\right\rfloor, 2 k+1\right\}$ and $\chi_{a}\left(P_{n}^{k}\right)=k+1$. Further, we show that for $n \geq(k+1)^{2}$, $2 k+1 \leq \chi_{s}\left(C_{n}^{k}\right) \leq 2 k+2$ and $k+2 \leq \chi_{a}\left(C_{n}^{k}\right) \leq k+3$. Finally, we derive the formula $\chi_{a}\left(C_{n}^{k}\right)=k+2$ for $n \geq(k+1)^{3}$.

2020 Mathematics Subject Classifications: 05C15, 05C38
Key Words and Phrases: Acyclic Coloring, Powers of Cycles, Powers of Paths, Star Coloring

1. Introduction

Graph Theory is widely used in many areas such as the study of molecules and construction of bonds in chemistry, operations research, modeling transport networks, activity networks, computational biochemistry, map coloring, and GSM mobile phone networks, and others [8]. Graph coloring is a branch of graph theory that deals with such applications. Coloring of a graph is an assignment of colors to the elements like vertices, edges, or faces (regions) of a graph. A coloring is called proper coloring if no two adjacent elements are assigned the same color. The most common types of graph colorings are vertex coloring, edge coloring, and face coloring. A k-coloring of a graph $G=(V(G), E(G))$ is a function $c: V(G) \rightarrow\{1,2, \ldots, k\}$. An acyclic coloring of a graph G is a proper coloring such that all induced bicolored subgraphs of G contain no cycles, in other words, every two color classes induce a forest. Star coloring is acyclic coloring where every bicolored subgraph induces a star forest. The chromatic number of G, denoted $\chi(G)$, is the minimum α such that G admits a k - proper coloring; the acyclic chromatic number of a graph G, denoted $\chi_{a}(G)$, is the minimum number k such that G admits a k-acyclic coloring;

[^0]Email addresses: etawi_1412@yahoo.com (A. Etawi), m.ghanem@ju.edu.jo (M. Ghanem)
and the star chromatic number of a graph G, denoted $\chi_{s}(G)$, is the minimum number k such that G admits a $k-$ star coloring.

All graphs considered in this article are finite undirected and simple (no loops or multiple edges). All coloring considered in this article is vertex coloring. The following is an obvious observation that we use in our work.

Observation: For a proper coloring c of a graph G the following hold:
(1) c is an acyclic coloring of G if and only if every cycle in G admits at least three colors.
(2) c is a star coloring of G if and only if every path on four vertices in G admits at least three colors.

Acyclic and star coloring were introduced in the early seventies by Grünbaum [3]. Grünbaum showed that a graph with a maximum degree 3 has 4 - acyclic colorings. Burnstein [2] proved that a graph with a maximum degree 4 has 5 -acyclic colorings. Wood [10] studied the star and acyclic chromatic numbers of subdivision graph G^{\prime} of a graph G. A great deal of research has been conducted since then. Recently, Wang et al. [9] studied the acyclic choosability of graphs with bounded degrees. Acyclic and star coloring problems are specialized vertex coloring problems that arise in the efficient computation of Hessians using automatic differentiation or finite differencing when both sparsity and symmetry are exploited.

The $k^{\text {th }}$ power of a graph G is defined on the same set of vertices as G and has an edge between any pair of vertices of distance at most k in G. The problem of the coloring of squares of graphs has applications to frequency allocation. Transceivers in a radio network communicate using channels at given radio frequencies. Graph coloring formalizes this problem. When the constraint is that nearby pairs of transceivers cannot use the same channel due to interference. However, if two transceivers are using the same channel and both are adjacent to a third station, a clashing of signals is experienced at that third station. This can be avoided by additionally requiring all neighbors of a node to be assigned different colors, i.e., that vertices of distance at most 2 receive different colors. This is equivalent to coloring the square of the underlying network.

We attempt here to contribute to both of these perspectives, graph powers and acyclic (star) colorings. We focus on the powers of paths and cycles. As usual, P_{n} denotes the path on n vertices; and C_{n} denotes the cycle on n vertices. Acyclic colorings are hereditary in the sense that the restriction of an acyclic coloring to a subgraph is an acyclic coloring. Thus, the acyclic chromatic number is nondecreasing from subgraph to supergraph.

The main purpose of this article is to bound and determine the star and acyclic chromatic numbers of powers of paths and cycles. We prove that for large graph sizes, the star and acyclic chromatic numbers of powers of paths and cycles tend to have exact formulas in terms of the power k. As a consequence, we find the value of $\chi_{a}\left(P_{n}^{k}\right)$ and
$\chi_{s}\left(P_{n}^{k}\right)$ in terms of k, we give an upper bound and a sharp lower bound of $\chi_{a}\left(C_{n}^{k}\right)$ in terms of k when $(k+1)^{2} \leq n<(k+1)^{3}$. We derived the exact value of $\chi_{a}\left(C_{n}^{k}\right)$ in terms of k for $n \geq(k+1)^{3}$. Additionally, we give an upper bound and sharp lower bound $\chi_{s}\left(C_{n}^{k}\right)$ in terms of k for $(k+1)^{2} \leq n$. The underlying common technique is the exploitation of the structure of bicolored induced subgraphs, the bounds that we reach in this article are tight with intervals of two values only. Our results are summarized below, [Bold] bounds are sharp.
Graph G

Range of n	$\chi_{s}(G)$	$\chi_{a}(G)$

$1 \leq n \leq k+1$	\mathbf{n}	\mathbf{n}
$k+2 \leq n \leq 3 k+1$	$\left\lfloor\frac{\mathbf{k}+\mathbf{n}+\mathbf{1}}{\mathbf{2}}\right\rfloor$	$\mathbf{k}+\mathbf{1}$
$n \geq 3 k+1$	$\mathbf{2 k}+\mathbf{1}$	

$1 \leq n \leq 2 k+1$	\mathbf{n}	\mathbf{n}
$2 k+2 \leq n<(k+1)^{2}$	$\mathbf{k}+\mathbf{2} \leq \chi_{s}(G) \leq \mathbf{n}$	$k+2 \leq \chi_{a}(G) \leq \mathbf{n}$
$(k+1)^{2} \leq n<(k+1)^{3}$	$\mathbf{2} \mathbf{k}+\mathbf{1} \leq \chi_{s}(G) \leq 2 k+2$	$\mathbf{k + 2} \leq \chi_{a}(G) \leq k+3$
$n \geq(k+1)^{3}$		$\mathbf{k + 2}$

2. Acyclic Coloring of P_{n}^{k}

Let P_{n}^{k} denote the path of order n with vertex set $V\left(P_{n}^{k}\right)=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ and edge set $E\left(P_{n}^{k}\right)=\left\{v_{i} v_{j}: 1 \leq|i-j| \leq k\right\}$. Clearly, P_{n}^{k} is a complete graph when $n \leq k+1$ and hence $\chi_{a}\left(P_{n}^{k}\right)=n$.

Example 1. In Figure 1 (a), P_{8}^{2} admits an acyclic coloring as shown, the induced subgraph over the vertices colored by the color classes $\{a, b\}$ is P_{6}, which is not a star.

Figure 1: Acyclic Coloring but not Star Coloring

Obviously, every star coloring is acyclic coloring while the converse need not be true in general.

In this section we calculate the acyclic chromatic number as well as the star chromatic number of P_{n}^{k}.

Definition 1. Chordless cycles: A chordless cycle in a graph, also called a hole or an induced cycle, is a cycle such that no two vertices of the cycle are connected by an edge that does not itself belong to the cycle.

Definition 2. Chordal graph: A chordal graph is a graph in which all cycles of four or more vertices have a chord.

Proposition 1. ([1]). For every chordal graph G, $\chi_{a}(G)=\chi(G)$.

In the following theorem, we will determine $\chi_{a}\left(P_{n}^{k}\right)$ for $n \geq k+2$.
Theorem 1. For $n \geq k+2, \chi_{a}\left(P_{n}^{k}\right)=k+1$.
Proof. Observing that for $k \geq 3, P_{n}^{k}$ contains no cordless cycle, and so by Proposition 1 we have $\chi_{a}\left(P_{n}^{k}\right)=\chi\left(P_{n}^{k}\right)=k+1$.

3. Star Coloring of P_{n}^{k}

In this section, we divide the vertices of paths P_{n} into three partitions Prefix, Main and Suffix. By that, we were able to determine the value of star chromatic number of P_{n}^{k}.

Lemma 1. For $n \geq k+1, \chi_{s}\left(P_{n}^{k}\right) \leq \min \left\{2 k+1,\left\lfloor\frac{n+k+1}{2}\right\rfloor\right\}$.
Proof. Define $c: V\left(P_{n}^{k}\right) \rightarrow\left\{c_{0}, c_{1}, \ldots, c_{2 k}\right\}$ by $c\left(v_{j}\right)=c_{j \bmod (2 k+1)}$. If $v_{a}-v_{b}-v_{c}-v_{d}$ is a bicolored path in P_{n}^{k}, then $2 k+1=d_{P_{n}}\left(v_{a}, v_{c}\right) \leq d_{P_{n}}\left(v_{a}, v_{b}\right)+d_{P_{n}}\left(v_{b}, v_{c}\right) \leq 2 k$, a contradiction. So $\chi_{s}\left(P_{n}^{k}\right) \leq 2 k+$ Clearly, $\chi_{s}\left(P_{n}^{k}\right)=n \leq\left\lfloor\frac{n+k+1}{2}\right\rfloor$ for $n=k+1$. And $\chi_{s}\left(P_{n}^{k}\right) \leq 2 k+1 \leq\left\lfloor\frac{n+k+1}{2}\right\rfloor$ for $n \geq 3 k+2$. Now for $k+1<n \leq 3 k+1$ we have two cases:

Case 1. $n=k+(2 i+1)$ for $1 \leq i \leq k$. Then $\chi_{s}\left(P_{n}^{k}\right) \leq k+i+1=\left\lfloor\frac{k+n+1}{2}\right\rfloor$.
To see that, define the $(k+i+1)-$ proper coloring $c: V\left(P_{n}^{k}\right) \rightarrow\left\{c_{0}, c_{1}, \ldots, c_{k+i}\right\}$ by $c\left(v_{j}\right)=c_{j \bmod (k+i+1)}$, and suppose that $v_{a}-v_{b}-v_{c}-v_{d}$ is a bicolored path in P_{n}^{k} where $a<b<c<d$, then $d_{P_{n}}\left(v_{a}, v_{d}\right)=d_{P_{n}}\left(v_{a}, v_{c}\right)+d_{P_{n}}\left(v_{b}, v_{d}\right)-d_{P_{n}}\left(v_{b}, v_{c}\right) \leq k+2 i=n-1$. So, $d_{p_{n}}\left(v_{b}, v_{c}\right) \geq k+2$, a contradiction.

Case 2. $n=k+(2 i)$ for $1 \leq i \leq k$. Then $\chi_{s}\left(P_{n}^{k}\right) \leq k+i=\left\lfloor\frac{k+n+1}{2}\right\rfloor$.
To see that, define the $(k+i)-$ proper coloring $c: V\left(P_{n}^{k}\right) \rightarrow\left\{c_{0}, c_{1}, \ldots, c_{k+i-1}\right\}$ by $c\left(v_{j}\right)=c_{j \bmod (k+i)}$, and suppose that $v_{a}-v_{b}-v_{c}-v_{d}$ is a bicolored path in P_{n}^{k}. Since $d_{P_{n}}\left(v_{a}, v_{d}\right)=d_{P_{n}}\left(v_{a}, v_{c}\right)+d_{P_{n}}\left(v_{b}, v_{d}\right)-d_{P_{n}}\left(v_{b}, v_{c}\right) \leq k+2 i-1$, we have $d_{P_{n}}\left(v_{b}, v_{c}\right) \geq k+1$, a contradiction.

Lemma 2. For $n=k+2 i+1$ where $0 \leq i \leq k, \chi_{s}\left(P_{n}^{k}\right) \geq k+i+1$.
Proof. Let P_{n} denote the path of order n with
$V\left(P_{n}\right)=\left\{p_{i}, p_{i-1}, \ldots, p_{2}, p_{1}, \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k+1}, s_{1}, s_{2}, \ldots, s_{i}\right\}$, and edge set $E\left(P_{n}\right)=\left\{p_{x} p_{x+1}\right.$: $x=1,2, \ldots, i-1\} \cup\left\{v_{x} v_{x+1}: x=1,2, \ldots, k\right\} \cup\left\{s_{x} s_{x+1}: x=1,2, \ldots, i-1\right\} \cup\left\{p_{1} v_{1}, v_{k+1} s_{1}\right\}$. Define three induced cliques of P_{n}^{k}, Prefix $\left(P_{r}\left(P_{n}^{k}\right)\right)$, Main $\left(M_{a}\left(P_{n}^{k}\right)\right)$ and Suffix $\left(S_{u}\left(P_{n}^{k}\right)\right)$ with vertex sets $V\left(P_{r}\left(P_{n}^{k}\right)\right)=\left\{p_{1}, p_{2}, \ldots, p_{i}\right\}, V\left(M_{a}\left(P_{n}^{k}\right)\right)=\left\{v_{1}, v_{2}, \ldots, v_{k+1}\right\}$ and $V\left(S_{u}\left(P_{n}^{k}\right)\right)=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\}$. Let $M=\left\{m_{1}, m_{2}, \ldots, m_{k+1}\right\}$ and $N=\left\{n_{1}, n_{2}, \ldots, n_{i-1}\right\}$ be two disjoint sets of colors, and let $c: V\left(P_{n}^{k}\right) \rightarrow M \cup N$ be a $(k+i)$ - proper coloring with $c\left(v_{\alpha}\right)=m_{\alpha}$. Then $c\left(P_{r}\left(P_{n}^{k}\right)\right) \cap M \neq \phi$ and $c\left(S_{u}\left(P_{n}^{k}\right)\right) \cap M \neq \phi$. Let j and h be the least indices where $c\left(p_{j}\right)=m_{x}$ and $c\left(s_{h}\right)=m_{y}$ for some $x, y \in\{1,2, \ldots, k+1\}$. Then $d_{P_{n}}\left(p_{j}, v_{x}\right), d_{P_{n}}\left(v_{y}, s_{h}\right) \geq k+1$, and hence $x \geq k-j+2, y \leq h$.

Claim (1) $h>i-j+1$.
Let $x, y \in\{1,2, \ldots, k+1\}$ where $c\left(p_{j}\right)=m_{x}$. Suppose that there exists $l \leq i-j+1$ such that $c\left(s_{l}\right)=m_{y}$, then $k+1 \leq d_{p_{n}}\left(v_{y}, s_{l}\right)=k+1-y+l$ and hence $y \leq l$. But $d_{p_{n}}\left(p_{j}, v_{y}\right)=j+y-1 \leq j+l-1 \leq i$ and $d_{p_{n}}\left(v_{x}, s_{l}\right)=k+1-x+l \leq i$, so $p_{j}-v_{y}-v_{x}-s_{l}$ is a bicolored path in P_{n}^{k}. Hence $c\left(s_{l}\right) \in N$ for all $l=1,2, \ldots, i-j+1$.

Claim (2) If $A=\left\{c\left(p_{1}\right), c\left(p_{2}\right), \ldots, c\left(p_{j-1}\right)\right\}$ and $B=\left\{c\left(s_{1}\right), c\left(s_{2}\right), \ldots, c\left(s_{h-1}\right)\right\}$, then $A \cap B$ has at most $h-i+j-2$ distinct colors.
Let $t=h-(i-j+1)$. If $i+t<k$, then
$h+j-1 \leq k$, so $y+j-1 \leq k$. Since $d_{p_{n}}\left(p_{j}, v_{y}\right)=j+y-1 \leq j+h-1 \leq j+(k-j+1)-1=k$ and $d_{p_{n}}\left(v_{x}, s_{h}\right)=(k+1-x)+h \leq(k+1-(k-j+2))+(t+i-j+1)=t+i<k$, we have a bicolored path $p_{j}-v_{y}-v_{x}-s_{h}$ in P_{n}^{k}. So $i+t \geq k$.
Now suppose that $x \geq i+t+2-j$ and $y \leq k+1-j$, then $p_{j}-v_{y}-v_{x}-s_{h}$ is a bicolored path in P_{n}^{k}. Since $x \geq k-j+2$ and $y \leq h=t+i-j+1$, either x or $y \in\{k+2-j, k+3-j, \ldots, i+t+1-j\}$.

Case 1. $k+2-j \leq y \leq i+t+1-j$.
Let $y=k+2-j+w$ for $0 \leq w \leq i+t-k-1$ and let $w_{1} \in\{1,2, \ldots, j-1\}, w_{2} \in$ $\{1,2, \ldots, h-1\}$. Clearly, $c\left(p_{w_{1}}\right), c\left(s_{w_{2}}\right) \in N$. If there exist $p_{w_{1}}, s_{w_{2}}$ adjacent to v_{y} such that $c\left(p_{w_{1}}\right)=c\left(s_{w_{2}}\right)$, then $p_{w_{1}}-v_{y}-s_{w_{2}}-s_{h}$ is a bicolored path in P_{n}^{k}. Therefore, $c\left(p_{w_{1}}\right) \neq c\left(s_{w_{2}}\right)$ when $p_{w_{1}}$ and $s_{w_{2}}$ are adjacent to v_{y}.
Let $|A \cap B|=t+\alpha$ for some integer α. If a is the number of vertices in $P_{r}\left(P_{n}^{k}\right)$ that are adjacent to v_{y}, then $d_{P_{n}}\left(v_{y}, p_{a}\right)=a+y-1=a+(k+2-j+w)-1=k$, and thus $a=j-w-1$. So there exist $w=j-1-a$ vertices that are colored from the set A and are not adjacent to v_{y}. Therefore, there exist at least $(t+\alpha)-w$ vertices from $P_{r}\left(P_{n}^{k}\right)$ that are adjacent to v_{y} and colored using colors from $A \cap B$.
Also, if b is the number of vertices in $S_{u}\left(P_{n}^{k}\right)$ that are adjacent to v_{y}, then $k=d_{P_{n}}\left(v_{y}, s_{b}\right)$. So, $b=k-j+1+w$, and thus the number of vertices in $S_{u}\left(P_{n}^{k}\right)$ colored from the set B and are not adjacent to v_{y} is $(h-1)-b=t+i-k-1-w$. Then there exist at least $(t+\alpha)-(t+i-k-w-1)=\alpha+k+w+1-i$ vertices from $S_{u}\left(P_{n}^{k}\right)$ that are adjacent to v_{y} and colored from $A \cap B$. Hence the total number of distinct colors is greater than or equal $(\alpha+k+1+w-i)+(t+\alpha-w)=t+2 \alpha+(k-i)+1 \geq 1+t+2 \alpha$, but, $1+t+2 \alpha \leq|(A \cap B)|=t+\alpha$ yields to $\alpha \leq-1$.

Case 2. $\quad x \leq i+t+1-j$

If we mimic the proof of case (1), we get $|A \cap B| \leq t-1$. So the number of distinct colors to color $S_{u}\left(P_{n}^{k}\right)$ and $P_{r}\left(P_{n}^{k}\right)$ from N is $|A|+|B|-|A \cap B| \geq(j-1)+(h-1)-(t-1)=i$ colors. Therefore, for $n=k+2 i+1, \chi_{s}\left(P_{n}^{k}\right) \geq k+i+1$.

Example 2. Figure 2 shows an example of the cases in Lemma 2. Let $M=\{k+2-j, i+$ $t+1-j\}$.

Figure 2: Cases of star coloring P_{10}^{3}

Lemma 3. For $n=k+2 i$ where $1 \leq i \leq k, \chi_{s}\left(P_{n}^{k}\right) \geq k+i$.
Proof. Let $n_{1}=n-1$. Then $\chi_{s}\left(P_{n_{1}}^{k}\right) \leq \chi_{s}\left(P_{n}^{k}\right)$ since $P_{n 1}^{k}$ is a subgraph of P_{n}^{k}. But $n_{1}=k+2(i-1)+1$, so by using Lemma 2 we get $\chi_{s}\left(P_{n_{1}}^{k}\right) \geq k+(i-1)+1=k+i$.

As a consequence of Lemmas 1- 2 we have $\chi_{s}\left(P_{n}^{k}\right) \leq \min \left\{\left\lfloor\frac{n+k+1}{2}\right\rfloor, 2 k+1\right\}$ for $n \geq$ $k+1$, and $\chi_{s}\left(P_{n}^{k}\right) \geq\left\lfloor\frac{n+k+1}{2}\right\rfloor$ for $n \in\{k+2 i, k+2 i+1\}$, where $0 \leq i \leq k$. Moreover, $2 k+1 \leq \chi_{s}\left(P_{n}^{k}\right) \leq \chi_{s}\left(P_{n^{\prime}}^{k}\right)$ for all $n^{\prime} \geq n$. So, we can conclude the following theorem.

Theorem 2. For $n \geq k+1, \chi_{s}\left(P_{n}^{k}\right)=\min \left\{\left\lfloor\frac{n+k+1}{2}\right\rfloor, 2 k+1\right\}$.
Example 3. $\chi_{s}\left(P_{10}^{2}\right)=\min \left\{\left\lfloor\frac{10+2+1}{2}\right\rfloor, 2(2)+1\right\}=\min \{6,5\}=5$

Example 4. $\chi_{s}\left(P_{8}^{3}\right)=\min \left\{\left\lfloor\frac{8+3+1}{2}\right\rfloor, 2(3)+1\right\}=\min \{6,7\}=6$

Figure 3: Star Coloring of P_{10}^{2}

Figure 4: Star Coloring of P_{8}^{3}

4. Acyclic Coloring of C_{n}^{k}

The technique that we followed in this section was to squeeze $\chi_{a}\left(C_{n}^{k}\right)$ between upper and lower bounds until we reached the exact value of $\chi_{a}\left(C_{n}^{k}\right)$ for a wide range of cases, and to find an upper bound and a sharp lower bound for $\chi_{a}\left(C_{n}^{k}\right)$ for other cases. Then we built on previous studies on the proper coloring of C_{n}^{k}, and added some colors to break one of these conditions, by which we were able to determine upper bounds for $\chi_{a}\left(C_{n}^{k}\right)$.

Let C_{n}^{k} denote the cycle of order n with vertex set $V\left(C_{n}^{k}\right)=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ and edge set $E\left(C_{n}^{k}\right)=\left\{v_{i} v_{j}: 1 \leq|i-j|, n-|i-j| \leq k\right\}$. Clearly, C_{n}^{k} is a complete graph when $n \leq 2 k+1$ and hence $\chi_{a}\left(C_{n}^{k}\right)=n$.

We will start by determining a lower bound for $\chi_{a}\left(C_{n}^{k}\right)$ when $n>2 k+1$.
Theorem 3. For $n>2 k+1, \chi_{a}\left(C_{n}^{k}\right) \geq k+2$.
Proof. Let $c: V\left(C_{n}^{k}\right) \rightarrow\left\{c_{0}, c_{1}, \ldots, c_{k}\right\}$ be a $(k+1)-$ coloring of C_{n}^{k}.
Since $\left\{v_{0}, v_{1}, \ldots, v_{k}\right\}$ induces a $(k+1)$ - clique in C_{n}^{k}, without loss of generality, define c by $c\left(v_{j}\right)=c_{j \bmod (k+1)}$ for $j=0,1, \ldots, n-1$. Let $n=q(k+1)+r$ where $q \geq 2$ and $0 \leq r \leq k$. Then we have two cases:

Case 1. $r>0$. Then $c\left(v_{r-1}\right)=c\left(v_{n-1}\right)$ and $d_{C_{n}}\left(v_{n-1}, v_{r-1}\right)=r \leq k$, a contradiction.
Case 2. $r=0$. For $1 \leq i \leq k$, the induced subgraph C_{i} of C_{n}^{k} where $V\left(C_{i}\right)=\left\{v_{0}, v_{i}, v_{(k+1)}, v_{(k+1)+i}, \ldots, v_{(q-1)(k+1)}, v_{(q-1)(k+1)+i}\right\}$, is a bicolored cycle of C_{n}^{k} using two colors c_{0} and c_{i}, a contradiction.
Hence $\chi_{a}\left(C_{n}^{k}\right) \geq k+2$.
Lemma 4. Let $c=\left\{c_{1}, c_{2}, \ldots, c_{r}\right\}$ be a proper coloring of C_{n}^{k} and $P=\left\{T_{i}: i=1,2, \ldots, r\right\}$ be the color classes of c. If C_{L} is a bicolored cycle in C_{n}^{k}, then the following holds. If $T_{i} \cap$ $V\left(C_{L}\right) \neq \phi$ then $T_{i} \subseteq V\left(C_{L}\right)$.

Proof. Clearly, L is even, $L \geq 4$. Obviously, when $\left|T_{i}\right|=2 T_{i} \subseteq V\left(C_{L}\right)$. Now let $\left|T_{i}\right| \geq 3$ and C_{L} be a bicolored cycle with $V\left(C_{L}\right)=\left\{v_{x_{1}}, v_{y_{1}}, v_{x_{2}}, v_{y_{2}}, \ldots, v_{x_{\frac{L}{2}}}, v_{y_{\frac{L}{2}}}\right\}$ and
$E\left(C_{L}\right)=\left\{v_{x_{i}} v_{y_{i}}: i=1,2, \ldots, \frac{L}{2}\right\} \cup\left\{v_{y_{i}} v_{x_{i+1}}: i=1,2, \ldots, \frac{L}{2}-1\right\} \cup\left\{v_{y_{\frac{L}{2}}} v_{x_{1}}\right\}$. Assume that there exists $v_{h} \in T_{i}-V\left(C_{L}\right)$. If v_{h} lies between $v_{x_{i}}$ and $v_{x_{i+1}}$ for some $i=1,2, \ldots, \frac{L}{2}-1$, then $d_{C_{n}}\left(v_{x_{i}}, v_{h}\right)<d_{C_{n}}\left(v_{x_{i}}, v_{y_{i}}\right) \leq k$ or $d_{C_{n}}\left(v_{h}, v_{x_{i+1}}\right)<d_{C_{n}}\left(v_{y_{i}}, v_{x_{i+1}}\right) \leq k$, a contradiction. And if v_{h} lies between $v_{x_{\frac{L}{2}}}$ and $v_{x_{1}}$, then $d_{C_{n}}\left(v_{x_{\frac{L}{2}}}, v_{h}\right)<d_{C_{n}}\left(v_{x_{\frac{L}{2}}}, v_{y_{i}}\right) \leq k$ or $d_{C_{n}}\left(v_{h}, v_{x_{1}}\right)<d_{C_{n}}\left(v_{y_{i}}, v_{x_{1}}\right) \leq k$, a contradiction. Thus $T_{i} \subseteq V\left(C_{L}\right)$.

Since C_{L} is an induced bicolored cycle of C_{n}^{k}, we have $k<d_{C_{n}}\left(v_{x_{i}}, v_{x_{i+1}}\right), d_{C_{n}}\left(v_{y_{i}}, v_{y_{i+1}}\right)$ $\leq 2 k$ for $i=1,2, \ldots, \frac{L}{2}-1$, and $k<d_{C_{n}}\left(v_{x_{\frac{L}{2}}}, v_{x_{1}}\right), d_{C_{n}}\left(v_{y_{\frac{L}{2}}}, v_{y_{1}}\right) \leq 2 k$. Using 4 to get $T_{i}, T_{j} \subseteq V\left(C_{L}\right)$ are induced cycles of $C_{n}^{2 k}$, and $\left|T_{i}\right|=\left|T_{j}\right| \geq \frac{n}{2 k}$ for some i and j.

Definition 3. A clique of C_{n}^{k} is called consecutive if it is composed of vertices of consecutive integer indices (module n).
Lemma 5. [7] Let $n \geq \max \{3, k+1\}$, write $n=q(k+1)+r$ where $q \geq 1$ and $0 \leq r \leq k$. Then $\chi\left(C_{n}^{k}\right)=k+1+\left\lceil\frac{r}{q}\right\rceil$.

Lemma 6. [6] For any two integers n, k if $\alpha \mid n$ and $k<h$ then C_{n}^{k} is α-colorable if and only if C_{n}^{k} contains no $\alpha+1$ consecutive clique..
Lemma 7. [5] Let $n=q(k+1)+r$ where $q \geq 1$ and $0 \leq r \leq k$. Then
(1) $r=0$ implies that c_{1}^{\prime} defined by $c_{1}^{\prime}\left(v_{i}\right)=i \bmod (k+1)$ is a $(k+1)-$ proper coloring of C_{n}^{k}.
(2) $r \neq 0, k_{1}=\left\lceil\frac{r}{q}\right\rceil$, and $t=\left\lfloor\frac{r}{k_{1}}\right\rfloor, w=k+1+r-k_{1} t$, and $\alpha=k+1+k_{1}$ imply that
c_{2}^{\prime} defined by $c_{2}^{\prime}\left(v_{i}\right)=\left\{\begin{array}{cl}c_{i} \bmod \alpha & \text { if } \quad i \in\{0,1,2, \ldots, t \alpha+w-1\} \\ c_{(i-(t \alpha+w)) \bmod (k+1)} & \text { if } \quad i \in\{t \alpha+w, \ldots, n-1\}\end{array}\right.$
is a proper-coloring of C_{n}^{k} using H colors only.
Proof. (1) $r=0$ implies that $\alpha=k+1$ divides n and by Lemma $6, C_{n}^{k}$ can be colored using $k+1$ colors.
(2) Let $r \neq 0, k_{1}=\left\lceil\frac{r}{q}\right\rceil, t=\left\lfloor\frac{r}{k_{1}}\right\rfloor$, and $\alpha=k+1+k_{1}$. Then we have two cases,

Case 1. $q=t$. In this case we have $q=t \leq \frac{r}{k_{1}} \leq \frac{r}{\frac{r}{q}}=q$, and thus $k_{1}=\frac{r}{q}$, which implies that $\alpha=k+1+\frac{r}{q}$ and so, $q \alpha=q(k+1)+r=n$. Therefore, α divides n and by Lemma 6, c_{2}^{\prime} is a α - proper coloring of C_{n}^{k}.

Case 2. $q \neq t$. Let $w=k+1+r-k_{1} t$, and color C_{n}^{k} using c_{2}^{\prime}. Notice that $r \geq$ $k_{1}\left\lfloor\frac{r}{k_{1}}\right\rfloor=k_{1} t$ and $r-k_{1}=k_{1}\left(\frac{r}{k_{1}}-1\right) \leq k_{1}\left\lfloor\frac{r}{k_{1}}\right\rfloor=k_{1} t$ which leads to $0 \leq r-k_{1} t \leq k_{1}$. Thus $k+1 \leq w \leq \alpha$. Moreover, the cardinality of the subset of vertices $\left\{v_{t \alpha+w}, \ldots, v_{n-1}\right\}$ is a multiple of $(k+1)$ since $n-t \alpha-w=(q-t-1)(k+1)$ and $t \leq q-1$. Finally, note that $c_{2}^{\prime}\left(v_{t \alpha+w-1}\right)=w-1$, and so $k \leq c_{2}^{\prime}\left(v_{t \alpha+w-1}\right) \leq \alpha-1$. Also $c_{2}^{\prime}\left(v_{n-1}\right)=k$. Hence c_{2}^{\prime} is a proper coloring of C_{n}^{k} that uses at most α colors.

In general when $n<(k+1)^{2}$, $\chi_{a}\left(C_{n}^{k}\right)$ does not have a lower bound in terms of k since the value of $\chi\left(C_{n}^{k}\right)$ changes as the ratio $\frac{r}{q}$ change, to illustrate this consider the following example.

Example 5. Let $k=5$. Then:

$$
\begin{aligned}
& \text { If } n=2(k+1)+1, \text { then } \chi\left(C_{n}^{k}\right)=5+1+\left\lceil\frac{1}{2}\right\rceil=k+2, \text { and } \chi_{a}\left(C_{n}^{k}\right) \geq k+2 . \\
& \text { If } n=2(k+1)+5, \text { then } \chi\left(C_{n}^{k}\right)=5+1+\left\lceil\frac{5}{2}\right\rceil=k+4, \text { and } \chi_{a}\left(C_{n}^{k}\right) \geq k+4 .
\end{aligned}
$$

Remark 1. : Let $n=q(k+1)+r$ where $q \geq k+1$ and $0 \leq r \leq k$. Apply Lemma 7 to get $k_{1}=1, t=r, w=k+1, t \neq q, \alpha=k+2$, and

$$
c_{2}^{\prime}\left(v_{i}\right)= \begin{cases}c_{i \bmod (k+2)} & \text { if } i \in\{0,1, \ldots, r(k+2)+k\} \\ c_{\{i-r(k+2)+k+1\}} \bmod (k+1) & \text { if } i \in\{r(k+2)+k+1, \ldots, n-1\}\end{cases}
$$

is a $(k+2)-$ proper coloring of C_{n}^{k}.

In the following lemmas, we will consider $n \geq(k+1)^{2}$.
Lemma 8. Let $n=q(k+1)$ where $q \geq k+1$, and
$c_{3}^{\prime}\left(v_{i}\right)= \begin{cases}c_{k+1} & \text { if } i=h(k+2) \text { and } h=0,1, \ldots, k-1 \\ c_{1}^{\prime}\left(v_{i}\right) & \text { otherwise } .\end{cases}$
Then:
(1) c_{3}^{\prime} is a $(k+2)-$ proper coloring of C_{n}^{k}.
(2) T_{i} does not induce a cycle in $C_{n}^{2 k}$ for $0 \leq i \leq k-1$.
(3) c_{3}^{\prime} is a $(k+2)-$ acyclic coloring of C_{n}^{k}.

Proof. (1) Since c_{1}^{\prime} is a proper coloring it is enough to check the vertices with color c_{k+1}. Since $d_{C_{n}}\left(v_{h(k+2)}, v_{(h+1)(k+2)}\right)=k+2$ for $0 \leq h \leq k-1$, and $d_{C_{n}}\left(v_{(k-1)(k+2)}, v_{0}\right) \geq k+2$, we have c_{3}^{\prime} is a proper coloring of C_{n}^{k}.
(2) If $q \leq 3$, then $\left|T_{0}\right|=q-1<\frac{q(k+1)}{2 k}$. Now, consider $q>3$, then T_{0} does not induce a cycle in $C_{n}^{2 k}$ since $d_{C_{n}}\left(v_{(q-1)(k+1)}, v_{(k+1)}\right) \geq 2(k+1)$. Also T_{i} where $1 \leq i \leq k-1$ doesn't induce a cycle in $C_{n}^{2 k}$ since $v_{i(k+1)+i} \notin T_{i}$ and $d_{C_{n}}\left(v_{(i-1)(k+1)+i}, v_{(i+1)(k+1)+i}\right)=2(k+1)$. Note that the coloring c_{1}^{\prime} colors the vertices of C_{n}^{k} by repeating $c_{1}, c_{2}, \ldots, c_{k}$, which makes the distance between any two vertices having the same color be $(k+1)$. Adding c_{k+1} in c_{3}^{\prime} denies one occurrence of each color of $c_{1}, c_{2}, \ldots, c_{k-1}$ which makes a distance between two vertices having the same color become $2(k+1)$. Accordingly, the color classes $T_{1}, T_{2}, \ldots, T_{k-1}$ will not induce a cycle in $C_{n}^{2 k}$ as shown in the below table:

(3) Suppose that C_{L} is a bicolored cycle in C_{n}^{k}, then $V\left(C_{L}\right)=T_{i} \cup T_{j}$ for some i and j.

Note that $k=\left|T_{k+1}\right| \neq\left|T_{k}\right| \geq k+1$. So $V\left(C_{L}\right) \neq T_{k+1} \cup T_{k}$ and hence i or $j \leq k-1$.
From part (2) and Lemma 4, we get a contradiction. Therefore, c_{3}^{\prime} is a $(k+2)-$ acyclic coloring of C_{n}^{k}.

Lemma 9. Let $n=(k+1)^{2}+k$, and

$$
c_{4}^{\prime}\left(v_{i}\right)= \begin{cases}c_{k+2} & \text { if } i=j(k+3) \text { for } j \in\{0,1, \ldots, k-1\} \\ c_{k+1} & \text { if } i=k(k+3) \\ c_{2}^{\prime}\left(v_{i}\right) & \text { otherwise } .\end{cases}
$$

Then
(1) c_{4}^{\prime} is a $(k+3)-$ proper coloring of C_{n}^{k}.
(2) For $0 \leq i \leq k, T_{i}$ is not an induced cycle of $C_{n}^{2 k}$.
(3) c_{4}^{\prime} is a $(k+3)-$ acyclic coloring of C_{n}^{k}.

Proof. (1) Since c_{2}^{\prime} is a proper coloring, $d_{C_{n}}\left(v_{h(k+3)}, v_{(h+1)(k+3)}\right)=k+3$ for $0 \leq$ $h \leq k-1$, and $d_{C_{n}}\left(v_{(k-1)(k+3)}, v_{0}\right)=k+4$, we have c_{4}^{\prime} is a $(k+3)$-proper coloring of C_{n}^{k}. Moreover, to keep c_{4}^{\prime} proper coloring, c_{k+1} was assigned to v_{n-1} instead c_{k+2} since $d_{C_{n}}\left(v_{0}, v_{n-1}\right)=1$.
(2) If $k \leq 2$, then $\left|T_{0}\right|=k<\frac{(k+1)^{2}+k}{2 k}$. If $k>2$, then $d_{C_{n}}\left(v_{k(k+2)}, v_{(k+2)}\right) \geq 2(k+1)$. If $0<i \leq k$, then $v_{i(k+2)+i} \notin T_{i}$ and thus $d_{C_{n}}\left(v_{(i-1)(k+2)+i}, v_{(i+1)(k+2)+i}\right)=2(k+2)$.
Adding c_{k+2} in c_{4}^{\prime} denies one occurrence of each color of $c_{1}, c_{2}, \ldots, c_{k}$ which makes a distance between two vertices having the same color become $2(k+1)$. Accordingly, the color classes $T_{1}, T_{2}, \ldots, T_{k}$ will not induce a cycle in $C_{n}^{2 k}$ as shown in the below table:

(3) Assume that C_{L} is a bicolored cycle in C_{n}^{k}, then $V\left(C_{L}\right)=T_{i} \cup T_{j}$ for some i, j. Clearly $k+1=\left|T_{k+1}\right| \neq\left|T_{k+2}\right|=k$, so i or $j \leq k$ say i, then T_{i} is not an induced cycle of $C_{n}^{2 k}$.

Lemma 10. Let $n=q(k+1)+r, 0<r<k+1, q \geq k+1$ and $n \neq(k+1)^{2}+k$. Let
$c_{5}^{\prime}\left(v_{i}\right)= \begin{cases}c_{k+2} & \text { if } i=j(k+3) \text { for } j \in\{0,1, \ldots, r\} \\ c_{k+1} & \text { if } i=r(k+3)+j(k+2) \text { for } j \in\{1,2, \ldots, k-r\} \\ c_{2}^{\prime}\left(v_{i}\right) & \text { otherwise } .\end{cases}$
Then:
（1）c_{5}^{\prime} is a $(k+3)-$ proper coloring of C_{n}^{k} ．
（2）For $i \in\{0, \ldots, k\}, T_{i}$ is not an induced cycle of $C_{n}^{2 k}$ ．
（3）c_{5}^{\prime} is a $(k+3)-$ acyclic coloring of C_{n}^{k} ．
Define $P_{1}=\{0, k+3,2(k+3), \ldots, r(k+3)\}$ and $P_{2}=\{r(k+3)+(k+2), r(k+3)+2(k+$ 2），$\ldots, r(k+3)+(k-r)(k+2)\}$ ．

Proof．（1）Since $d_{C_{n}}\left(v_{h(k+3)}, v_{(h+1)(k+3)}\right)=k+3$ for $0 \leq h \leq r-1, d_{C_{n}}\left(v_{r(k+3)}, v_{0}\right) \geq$ $k+3, d_{C_{n}}\left(v_{r(k+3)+h(k+2)}, v_{r(k+3)+(h+1)(k+2)}\right)=k+2$ for $1 \leq h \leq k-r-1$ ， $d_{C_{n}}\left(v_{n-((k-r)(k+2)-q)}, v_{k+1}\right) \geq k+2$ and c_{2}^{\prime} is a proper coloring，we have c_{5}^{\prime} is a proper coloring of C_{n}^{k} ．
（2）To show that T_{i} is not an induced cycle of $C_{n}^{2 k}$ for $i \in\{0, \ldots, k\}$ ，consider the following cases

Case 1．$\quad i=0$ ．Then $v_{0} \notin T_{0}$ and $d_{C_{n}}\left(v_{n-k}, v_{k+2}\right)=2 k+2$ ．
Case 2．$\quad 0<i<r$ ．Then $v_{i(k+2)+i} \notin T_{i}$ and $d_{C_{n}}\left(v_{(i-1)(k+2)+i}, v_{(i+1)(k+2)+i}\right)=$ $2(k+2)$ ．

Case 3．$i=r$ ．Then $v_{r(k+2)+i} \notin T_{i}$ and $d_{C_{n}}\left(v_{(r-1)(k+2)+i}, v_{r(k+2)+(k+1)+i}\right)=2 k+3$.
Case 4．$\quad r<i<k$ ．Then $v_{r(k+3)+(i-r)(k+2)} \notin T_{i}$ and $d_{C_{n}}\left(v_{r(k+3)+(i-r-1)(k+2)}, v_{r(k+3)+(i-r+1)(k+2)}\right)=2(k+2)$ ．

Case 5．$\quad i=k$ ．Then $v_{r(k+3)+(k-r)(k+2)} \notin T_{k}$ and $d_{C_{n}}\left(v_{r(k+3)+(k-r-1)(k+2)}, v_{k}\right) \geq$ $2 k+3$ when $q \leq k+2$ ．while $d_{C_{n}}\left(v_{r(k+3)+(k-r-1)(k+2)}, v_{r(k+3)+(k-r+1)(k+2)}\right)=2(k+2)$ when $q \geq k+3$ ．
Therefore，T_{k} is not an induced cycle of $C_{n}^{2 k}$ ．
Adding c_{k+2} to P_{1} denies a turn of each color of $c_{1}, c_{2}, \ldots, c_{r}$ ，and adding c_{k+1} to P_{2} does the same for colors $c_{r+1}, c_{r+2}, \ldots, c_{k}$ ．Also the distance between the last vertex in P_{1} that is colored with c_{k+1} and the first vertex in P_{2} that is colored with c_{k+1} is $(k+1)$ which keeps the coloring proper as shown in the below table：

Rule	$i \bmod (k+2)$																				$(i-x) \bmod (k+1)$								
i	\bigcirc	\checkmark	．．	\sim + $*$	∞ + $*$	$\stackrel{+}{+}$	．．．	＋	ヘ	N ＋ べ	\ldots	∞ + － －			¢		®	－		T 1 $\%$	\＆	．．．	¢ + ¿	L x \vdots ¢ ¢				，	$\stackrel{7}{4}$
$c_{2}\left(v_{i}\right)$	c_{0}	c_{1}	\ldots	c_{0}	c_{1}	c_{2}	\ldots	c_{1}	c_{2}	c_{3}	\ldots	c_{2}	c_{3}	\ldots	c_{r}	．．	c_{r}	c_{r+1}	\ldots	c_{k}	c_{0}	．．．	c_{r}	c_{r+1}	\ldots	c_{r}	c_{r+1}	\ldots	c_{k+1}
$c_{5}\left(v_{i}\right)$	c_{k+2}	c_{1}	\cdots	c_{0}	c_{k+2}	c_{2}	\cdots	c_{1}	c_{k+2}	c_{3}	\cdots	c_{2}	c_{k+2}	\ldots	c_{r}	\ldots	c_{k+2}	c_{r+1}	．．．	c_{k}	c_{0}	．．．	c_{r}	c_{r+1}	\cdots	c_{r}	c_{k+1}	\ldots	c_{k+1}
		L			$(k+2$			－							ᄂ			$2(k+1)$	＋				－						
						\llcorner			$2(k+2)$			\perp						L			＋			」					
													$=r($	k	2）+	k													

（3）Since $d_{C_{n}}\left(v_{0}, v_{k+1}\right)=k+1$ and T_{i} not an induced cycle of $C_{n}^{2 k}$ for $i \leq k, c_{5}^{\prime}$ is a $(k+3)-$ acyclic coloring for C_{n}^{k} ．

Lemma 11．Let $n=q(k+1)+r, 0<r \leq k, q \geq k+1, q-r \geq k+1$ and

$$
c_{6}^{\prime}\left(v_{i}\right)= \begin{cases}c_{k+1} & \text { if } i=(r+j)(k+2)+(k+1) \text { for } j \in\{0,1, \ldots, k-1\} \\ c_{2}^{\prime}\left(v_{i}\right) & \text { otherwise } .\end{cases}
$$

Then:

(1) c_{6}^{\prime} is a $(k+2)-$ proper coloring of C_{n}^{k}.
(2) For $i \in\{0, \ldots, k-1\}, T_{i}$ is not an induced cycle of $C_{n}^{2 k}$.
(3) c_{6}^{\prime} is a $(k+2)-$ acyclic coloring of C_{n}^{k}.

Proof. (1) Note that $d_{C_{n}}\left(v_{(r+h)(k+2)+k+1}, v_{(r+h+1)(k+2)+k+1}\right)=k+2$ for $0 \leq h \leq k-2$, $d_{C_{n}}\left(v_{(r+k-1)(k+2)+k+1}, v_{k+1}\right) \geq k+3$, and $d_{C_{n}}\left(v_{r(k+2)-1}, v_{r(k+2)+k+1}\right)=k+2$. Therefore, c_{6}^{\prime} is a proper coloring of C_{n}^{k}.
(2) For $0 \leq i<k-1, v_{(r+i)(k+2)+(k+1)} \notin T_{i}$ and $d_{C_{n}}\left(v_{(r+i)(k+2)}, v_{(r+i)(k+2)+2(k+1)}\right)=$ $2(k+1)$.
For $i=k-1$ we have the following two cases:
Case 1. $q-r>k+1$. Then $v_{(r+k-1)(k+2)+(k+1)} \notin T_{k-1}$ and $d_{C_{n}}\left(v_{(r+k-1)(k+2)}, v_{(r+k-1)(k+2)+2(k+1)}\right)=2(k+1)$.

Case 2. : \quad. \quad. $=k+1$. Then $v_{(r+k-1)(k+2)+(k+1)} \notin T_{k-1}$ and $d_{C_{n}}\left(v_{(r+k-1)(k+2)}, v_{k-1}\right)=2(k+1)$.
Hence T_{i} is not an induced cycle of $C_{n}^{2 k}$ for $i \in\{0, \ldots, k-1\}$.
(3) Note that $r+k=\left|T_{k+1}\right| \neq\left|T_{k}\right| \geq r+k+1$. Moreover, T_{i} is not an induced cycle in $C_{n}^{2 k}$ for $i \leq k-1$, so c_{6}^{\prime} is a $(k+2)-$ acyclic coloring for C_{n}^{k}.

As a consequence of Lemmas 4-11 we get the following theorem.
Theorem 4. Let C_{n}^{k} be the $k^{\text {th }}$-power of a cycle of order n. Then
(1) $k+2 \leq \chi_{a}\left(C_{n}^{k}\right) \leq k+3$ if $n \geq(k+1)^{2}$.
(2) $\chi_{a}\left(C_{n}^{k}\right)=k+2$ if $n=q(k+1)+r$ and $q-r \geq k+1$.
(3) $\chi_{a}\left(C_{n}^{k}\right)=k+2$ if $n \geq(k+1)^{3}$.

According to Theorem 4 when n is between $(k+1)^{2}$ and $(k+1)^{3}, \chi_{a}\left(C_{n}^{k}\right)$ varies between $k+2$ and $k+3$, while for $n \geq(k+1)^{3}, \chi_{a}\left(C_{n}^{k}\right)=k+2$.

The following example shows that $k+2$ is a sharp lower bound for $\chi_{a}\left(C_{n}^{k}\right)$ when $n=(k+1)^{2}$.

Example 6. Let $k=2$ and $n=(k+1)^{2}$, then $c_{2}^{\prime}\left(C_{n}^{k}\right)$ uses only 4 colors to acyclic color $C_{n}^{k}, \chi_{a}\left(C_{n}^{k}\right)=k+2$. The union of any two color classes induces a disjoint collection of trees.

5. Star Coloring of C_{n}^{k}

In this section we bound $\chi_{s}\left(C_{n}^{k}\right)$ between two values by combining some results from previous sections with the relation between $\chi_{s}(G)$ and $\chi\left(G^{2}\right)$.

Lemma 12. [4] Let G be a graph of order n and G^{2} be the square graph of G. Then, $\chi_{s}(G) \leq \chi\left(G^{2}\right)$, where $\chi(G)$ denotes the (proper) chromatic number of G.

Theorem 5. For $n \geq(k+1)^{2}, 2 k+1 \leq \chi_{s}\left(C_{n}^{k}\right) \leq 2 k+2$.
Proof. Let $n=q(k+1)+r$. Using Lemmas 5 and 12 to get $\chi\left(C_{n}^{2 k}\right)=2 k+1+\left\lceil\frac{r}{q}\right\rceil=2 k+2$ and $\chi_{s}\left(C_{n}^{k}\right) \leq 2 k+2$. Moreover, P_{n}^{k} is a subgraph of C_{n}^{k}, so $\chi_{s}\left(P_{n}^{k}\right) \leq \chi_{s}\left(C_{n}^{k}\right)$. According to Lemma $1 \chi_{s}\left(P_{n}^{k}\right)=2 k+1$, so $2 k+1 \leq \chi_{s}\left(C_{n}^{k}\right)$.

The following example shows that $k+2$ is a sharp lower bound for $\chi_{a}\left(C_{n}^{k}\right)$.
Example 7. Let $k=2$ and $n=(k+1)^{2}+1$, then $c\left(C_{n}^{k}\right)$ uses only 5 colors to star color $C_{10}^{2}, \chi_{s}\left(C_{n}^{k}\right)=2 k+1$. The union of any two color classes induces a disjoint collection of stars.

References

[1] H. L. Bodlaender, M. R. Fellows, M. T. Hallett, H. T. Wareham, and T. J. Warnow. The hardness of perfect phylogeny, feasible register assignment and other problems on thin colored graphs. Theoretical Computer Science, 244:167-188, 2000.
[2] M.I. Burstein. Every 4-valent graph has an acyclic 5-coloring. Soobshch. Akad. Nauk Gruzin SSR, 93:21-24, 1979.
[3] B. Grunbaum. Acyclic colorings of planar graphs. Isr.J. Math, 19:390-412, 1973.
[4] F. Guillaume, A. Raspaud, and B. Reed. Star coloring of graphs. Journal of Graph Theory Wiley, 47(3):163-182, 2004.
[5] M. F. Jimenez and M.V. Pabon. A note on coloring powers of cycles. Research Report 18A - 70, Facultad de Ciencias de la Universidad de los Andes, Bogota, Colombia, 2005.
[6] J. B. Orlin, M. A. Bonuccelli, and D. P. Bovet. An o $\left(n^{2}\right)$ algorithm for coloring proper circular arc graphs. SIAM J. Alg. Disc. Meth., 2(2):88-93, 1981.
[7] A. Prowse and D. R. Woodall. Choosability of powers of circuits. Graphs and Combinatorics, 19:137-144, 2003.
[8] N. Vedavathi and D. Gurram. Applications on graph theory. International Journal of Engineering Research and Technology, 2(1):1-4, 2013.
[9] J. Wang, L. Y. Miao, J. B. Li, and Y. L. Liu. Acyclic choosability of graphs with bounded degree. Acta Mathematica Sinica English Series, 38:560-570, 2022.
[10] D. R. Wood. Acyclic, star and oriented colourings of graph subdivisions. Discrete Mathematics and Theoretical Computer Science, 7:37-50, 2005.

[^0]: *Corresponding author.
 DOI: https://doi.org/10.29020/nybg.ejpam.v15i4.4574

