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Acyclic and Star Coloring of Powers of Paths and Cycles
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Abstract. Let G = (V,E) be a graph. The kth− power of G denoted by Gk is the graph whose
vertex set is V and in which two vertices are adjacent if and only if their distance in G is at
most k. A vertex coloring of G is acyclic if each bichromatic subgraph is a forest. A star coloring
of G is an acyclic coloring in which each bichromatic subgraph is a star forest. The minimum
number of colors such that G admits an acyclic (star) coloring is called the acyclic (star) chromatic
number of G and is denoted by χa(G)(χs(G)). In this paper we prove that for n ≥ k + 1,
χs(P

k
n ) = min{⌊k+n+1

2 ⌋, 2k + 1} and χa(P
k
n ) = k + 1. Further, we show that for n ≥ (k + 1)2,

2k+1 ≤ χs(C
k
n) ≤ 2k+2 and k+2 ≤ χa(C

k
n) ≤ k+3. Finally, we derive the formula χa(C

k
n) = k+2

for n ≥ (k + 1)3.
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1. Introduction

Graph Theory is widely used in many areas such as the study of molecules and con-
struction of bonds in chemistry, operations research, modeling transport networks, activity
networks, computational biochemistry, map coloring, and GSM mobile phone networks,
and others [8]. Graph coloring is a branch of graph theory that deals with such applica-
tions. Coloring of a graph is an assignment of colors to the elements like vertices, edges,
or faces (regions) of a graph. A coloring is called proper coloring if no two adjacent ele-
ments are assigned the same color. The most common types of graph colorings are vertex
coloring, edge coloring, and face coloring. A k− coloring of a graph G = (V (G), E(G)) is
a function c : V (G) → {1, 2, ..., k}. An acyclic coloring of a graph G is a proper coloring
such that all induced bicolored subgraphs of G contain no cycles, in other words, every
two color classes induce a forest. Star coloring is acyclic coloring where every bicolored
subgraph induces a star forest. The chromatic number of G, denoted χ(G), is the mini-
mum α such that G admits a k−proper coloring; the acyclic chromatic number of a graph
G, denoted χa(G), is the minimum number k such that G admits a k − acyclic coloring;
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and the star chromatic number of a graph G, denoted χs(G), is the minimum number k
such that G admits a k − star coloring.

All graphs considered in this article are finite undirected and simple (no loops or
multiple edges). All coloring considered in this article is vertex coloring. The following is
an obvious observation that we use in our work.

Observation: For a proper coloring c of a graph G the following hold:
(1) c is an acyclic coloring of G if and only if every cycle in G admits at least three

colors.
(2) c is a star coloring of G if and only if every path on four vertices in G admits at

least three colors.

Acyclic and star coloring were introduced in the early seventies by Grünbaum
[3]. Grünbaum showed that a graph with a maximum degree 3 has 4− acyclic colorings.
Burnstein [2] proved that a graph with a maximum degree 4 has 5 − acyclic colorings.
Wood [10] studied the star and acyclic chromatic numbers of subdivision graph G′ of a
graph G. A great deal of research has been conducted since then. Recently, Wang et al. [9]
studied the acyclic choosability of graphs with bounded degrees. Acyclic and star coloring
problems are specialized vertex coloring problems that arise in the efficient computation
of Hessians using automatic differentiation or finite differencing when both sparsity and
symmetry are exploited.

The kth power of a graph G is defined on the same set of vertices as G and has
an edge between any pair of vertices of distance at most k in G. The problem of the
coloring of squares of graphs has applications to frequency allocation. Transceivers in
a radio network communicate using channels at given radio frequencies. Graph coloring
formalizes this problem. When the constraint is that nearby pairs of transceivers cannot
use the same channel due to interference. However, if two transceivers are using the same
channel and both are adjacent to a third station, a clashing of signals is experienced at
that third station. This can be avoided by additionally requiring all neighbors of a node
to be assigned different colors, i.e., that vertices of distance at most 2 receive different
colors. This is equivalent to coloring the square of the underlying network.

We attempt here to contribute to both of these perspectives, graph powers and
acyclic (star) colorings. We focus on the powers of paths and cycles. As usual, Pn denotes
the path on n vertices; and Cn denotes the cycle on n vertices. Acyclic colorings are
hereditary in the sense that the restriction of an acyclic coloring to a subgraph is an
acyclic coloring. Thus, the acyclic chromatic number is nondecreasing from subgraph to
supergraph.

The main purpose of this article is to bound and determine the star and acyclic
chromatic numbers of powers of paths and cycles. We prove that for large graph sizes,
the star and acyclic chromatic numbers of powers of paths and cycles tend to have exact
formulas in terms of the power k. As a consequence, we find the value of χa(P

k
n ) and



A. Etawi, M. Ghanem, H. Al-Ezeh / Eur. J. Pure Appl. Math, 15 (4) (2022), 1822-1835 1824

χs(P
k
n ) in terms of k, we give an upper bound and a sharp lower bound of χa(C

k
n) in terms

of k when (k + 1)2 ≤ n < (k + 1)3. We derived the exact value of χa(C
k
n) in terms of k

for n ≥ (k + 1)3. Additionally, we give an upper bound and sharp lower bound χs(C
k
n)

in terms of k for (k + 1)2 ≤ n. The underlying common technique is the exploitation of
the structure of bicolored induced subgraphs, the bounds that we reach in this article are
tight with intervals of two values only. Our results are summarized below, [Bold] bounds
are sharp.

Graph G Range of n χs(G) χa(G)

P k
n

1 ≤ n ≤ k + 1 n n

k + 2 ≤ n ≤ 3k + 1 ⌊k+n+1
2

⌋
k+1

n ≥ 3k + 1 2k+1

Ck
n

1 ≤ n ≤ 2k + 1 n n

2k + 2 ≤ n < (k + 1)2 k+2 ≤ χs(G) ≤ n k + 2 ≤ χa(G) ≤ n

(k + 1)2 ≤ n < (k + 1)3 k+2 ≤ χa(G) ≤ k + 3

n ≥ (k + 1)3

2k+1 ≤ χs(G) ≤ 2k + 2

k+2

2. Acyclic Coloring of P k
n

Let P k
n denote the path of order n with vertex set V (P k

n ) = {v0, v1, ..., vn−1} and edge
set E(P k

n )={vivj : 1 ≤ |i− j| ≤ k}. Clearly, P k
n is a complete graph when n ≤ k + 1 and

hence χa(P
k
n ) = n.

Example 1. In Figure 1 (a), P 2
8 admits an acyclic coloring as shown, the induced subgraph

over the vertices colored by the color classes {a, b} is P6, which is not a star.

a
v1

b

v2

c

v3

a
v4

b

v5

c

v6

a
v7

b

v8

(a) Acyclic coloring of P 2
8

1 2 4 5 7 8

(b) The induced subgraph over the color classes {a,b}

Figure 1: Acyclic Coloring but not Star Coloring

Obviously, every star coloring is acyclic coloring while the converse need not be true
in general.
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In this section we calculate the acyclic chromatic number as well as the star chromatic
number of P k

n .

Definition 1. Chordless cycles: A chordless cycle in a graph, also called a hole or an
induced cycle, is a cycle such that no two vertices of the cycle are connected by an edge
that does not itself belong to the cycle.

Definition 2. Chordal graph: A chordal graph is a graph in which all cycles of four or
more vertices have a chord.

Proposition 1. ([1]). For every chordal graph G, χa(G) = χ(G).

In the following theorem, we will determine χa(P
k
n ) for n ≥ k + 2.

Theorem 1. For n ≥ k + 2, χa(P
k
n ) = k + 1.

Proof. Observing that for k ≥ 3, P k
n contains no cordless cycle, and so by Proposition

1 we have χa(P
k
n ) = χ(P k

n ) = k + 1.

3. Star Coloring of P k
n

In this section, we divide the vertices of paths Pn into three partitions Prefix, Main
and Suffix. By that, we were able to determine the value of star chromatic number of P k

n .

Lemma 1. For n ≥ k + 1, χs(P
k
n ) ≤ min{2k + 1, ⌊n+k+1

2 ⌋}.

Proof. Define c : V (P k
n ) → {c0, c1, ..., c2k} by c(vj) = cj mod (2k+1). If va − vb − vc − vd

is a bicolored path in P k
n , then 2k + 1 = dPn(va, vc) ≤ dPn(va, vb) + dPn(vb, vc) ≤ 2k, a

contradiction. So χs(P
k
n ) ≤ 2k + 1.Clearly, χs(P

k
n ) = n ≤ ⌊n+k+1

2 ⌋ for n = k + 1. And

χs(P
k
n ) ≤ 2k+1 ≤ ⌊n+k+1

2 ⌋ for n ≥ 3k+2. Now for k+1 < n ≤ 3k+1 we have two cases:

Case 1. n = k + (2i+ 1) for 1 ≤ i ≤ k. Then χs(P
k
n ) ≤ k + i+ 1 = ⌊k+n+1

2 ⌋.
To see that, define the (k + i + 1)− proper coloring c : V (P k

n ) → {c0, c1, ..., ck+i} by
c(vj) = cj mod(k+i+1), and suppose that va − vb − vc − vd is a bicolored path in P k

n where
a < b < c < d, then dPn

(va, vd) = dPn
(va, vc) + dPn(vb, vd)− dPn(vb, vc) ≤ k + 2i = n− 1.

So, dpn (vb, vc) ≥ k + 2, a contradiction.
Case 2. n = k + (2i) for 1 ≤ i ≤ k. Then χs(P

k
n ) ≤ k + i = ⌊k+n+1

2 ⌋.
To see that, define the (k + i)− proper coloring c : V (P k

n ) → {c0, c1, ..., ck+i−1} by
c(vj) = cj mod(k+i), and suppose that va − vb − vc − vd is a bicolored path in P k

n . Since
dPn(va, vd) = dPn(va, vc)+dPn(vb, vd)−dPn(vb, vc) ≤ k+2i−1, we have dPn(vb, vc) ≥ k+1,
a contradiction.



A. Etawi, M. Ghanem, H. Al-Ezeh / Eur. J. Pure Appl. Math, 15 (4) (2022), 1822-1835 1826

Lemma 2. For n = k + 2i+ 1 where 0 ≤ i ≤ k, χs(P
k
n ) ≥ k + i+ 1.

Proof. Let Pn denote the path of order n with
V (Pn) = {pi, pi−1, ..., p2, p1,v1,v2, ...,vk+1, s1, s2, ..., si}, and edge set E(Pn) = {pxpx+1 :
x = 1, 2, ..., i− 1}∪{vxvx+1 : x = 1, 2, ..., k}∪{sxsx+1 : x = 1, 2, ..., i− 1}∪{p1v1, vk+1s1}.
Define three induced cliques of P k

n , Prefix (Pr(P
k
n )), Main (Ma(P

k
n )) and Suffix

(Su(P
k
n )) with vertex sets V (Pr(P

k
n )) = {p1, p2, ..., pi}, V (Ma(P

k
n )) = {v1, v2, ..., vk+1}

and V (Su(P
k
n )) = {s1, s2, ..., si}. Let M = {m1,m2, ...,mk+1} and N = {n1, n2, ..., ni−1}

be two disjoint sets of colors, and let c : V (P k
n ) → M ∪N be a (k + i) − proper coloring

with c(vα) = mα. Then c(Pr(P
k
n )) ∩M ̸= ϕ and c(Su(P

k
n )) ∩M ̸= ϕ. Let j and h be the

least indices where c(pj) = mx and c(sh) = my for some x, y ∈ {1, 2, ..., k + 1}. Then
dPn(pj , vx), dPn(vy, sh) ≥ k + 1, and hence x ≥ k − j + 2, y ≤ h.

Claim (1) h > i− j + 1.
Let x, y ∈ {1, 2, ..., k + 1} where c(pj) = mx. Suppose that there exists l ≤ i − j + 1
such that c(sl) = my, then k + 1 ≤ dpn(vy, sl) = k + 1 − y + l and hence y ≤ l. But
dpn(pj , vy) = j+y−1 ≤ j+ l−1 ≤ i and dpn(vx, sl) = k+1−x+ l ≤ i, so pj−vy−vx−sl
is a bicolored path in P k

n . Hence c(sl) ∈ N for all l = 1, 2, ..., i− j + 1.
Claim (2) If A = {c(p1), c(p2), ..., c(pj−1)} and B = {c(s1), c(s2), ..., c(sh−1)},

then A ∩B has at most h− i+ j − 2 distinct colors.
Let t = h− (i− j + 1). If i+ t < k, then
h+j−1 ≤ k, so y+j−1 ≤ k. Since dpn(pj , vy) = j+y−1 ≤ j+h−1 ≤ j+(k−j+1)−1 = k
and dpn(vx, sh) = (k + 1− x) + h ≤ (k + 1− (k − j + 2)) + (t+ i− j + 1) = t+ i < k, we
have a bicolored path pj − vy − vx − sh in P k

n . So i+ t ≥ k.
Now suppose that x ≥ i + t + 2 − j and y ≤ k + 1 − j, then pj − vy − vx − sh is a
bicolored path in P k

n . Since x ≥ k − j + 2 and y ≤ h = t + i − j + 1, either x or
y ∈ {k + 2− j, k + 3− j, ..., i+ t+ 1− j}.

Case 1. k + 2− j ≤ y ≤ i+ t+ 1− j.
Let y = k + 2 − j + w for 0 ≤ w ≤ i + t − k − 1 and let w1 ∈ {1, 2, ..., j − 1}, w2 ∈
{1, 2, ..., h − 1}. Clearly, c(pw1), c(sw2) ∈ N. If there exist pw1 , sw2 adjacent to vy such
that c(pw1) = c(sw2), then pw1 − vy − sw2 − sh is a bicolored path in P k

n . Therefore,
c(pw1) ̸= c(sw2) when pw1 and sw2 are adjacent to vy.
Let |A ∩ B| = t + α for some integer α. If a is the number of vertices in Pr(P

k
n ) that

are adjacent to vy, then dPn(vy, pa) = a + y − 1 = a + (k + 2 − j + w) − 1 = k, and thus
a = j−w− 1. So there exist w = j− 1−a vertices that are colored from the set A and are
not adjacent to vy. Therefore, there exist at least (t + α) − w vertices from Pr(P

k
n ) that

are adjacent to vy and colored using colors from A ∩B.
Also, if b is the number of vertices in Su(P

k
n ) that are adjacent to vy, then k = dPn(vy, sb).

So, b = k − j + 1 + w, and thus the number of vertices in Su(P
k
n ) colored from the set B

and are not adjacent to vy is (h − 1) − b = t + i − k − 1 − w. Then there exist at least
(t + α) − (t + i − k − w − 1) = α + k + w + 1 − i vertices from Su(P

k
n ) that are adjacent

to vy and colored from A ∩ B. Hence the total number of distinct colors is greater than
or equal (α + k + 1 + w − i) + (t + α − w) = t + 2α + (k − i) + 1 ≥ 1 + t + 2α, but,
1 + t+ 2α ≤ |(A ∩B)| = t+ α yields to α ≤ −1.

Case 2. x ≤ i+ t+ 1− j
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If we mimic the proof of case (1), we get |A∩B| ≤ t− 1.So the number of distinct colors
to color Su(P

k
n ) and Pr(P

k
n ) from N is |A|+ |B| − |A∩B| ≥ (j− 1)+ (h− 1)− (t− 1) = i

colors. Therefore, for n = k + 2i+ 1, χs(P
k
n ) ≥ k + i+ 1.

Example 2. Figure 2 shows an example of the cases in Lemma 2. Let M = {k+2− j, i+
t+ 1− j}.

p3 p2 p1
1
v1

2
v2

3
v3

4
v4 s1 s2 s3

Case

j h

A B

Path

p3 p2 p1
1
v1

2
v2

3
v3

4
v4 s1 s2 s3

Case

j h

A B

Path

p3 p2 p1
1
v1

2
v2

3
v3

4
v4 s1 s2 s3

Case

j h

A B

Path

p3 p2 p1
1
v1

2
v2

3
v3

4
v4 s1 s2 s3

Case

j h

A B

Path

Prefix Main Suffix

Graph Parameters: n = 10 k = 3 i = 3 t = h− i+ j − 1

j is the smallest index in Prefix such that v(pj) ∈ m, c(pj) = c(vx) A = {c(p1), c(p2), ..., c(pj−1)}
h is the smallest index in Suffix such that v(sh) ∈ m, c(sh) = c(vy) B = {c(s1), c(s2), ..., c(sh−1)}

(a) h ≤ i− j + 1 = 2

2 2
p1 s1
p2 − v1 − v3 − s2

3 1

(b)x > i+ t+ 1− j = 3
y < k + 2− j = 3

2 3
p1 s1,s2
p2 − v2 − v4 − s3

4 2

(c)
|A ∩ B| > h − i + j − 2

|A ∩ B| > 1 and y = 3

3 3
p1,p2 s1,s2
p1 − v3 − s2 − s3

4 6 5 6 5 3

(d)
|A ∩ B| > h − i + j − 2

|A ∩ B| > 1 and x = 3

3 3
p1,p2 s1,s2
p3 − p1 − v3 − s3

3 6 5 6 5 1

Figure 2: Cases of star coloring P 3
10

Lemma 3. For n = k + 2i where 1 ≤ i ≤ k, χs(P
k
n ) ≥ k + i.

Proof. Let n1 = n − 1. Then χs(P
k
n1
) ≤ χs(P

k
n ) since P k

n1 is a subgraph of P k
n . But

n1 = k+2(i− 1)+ 1, so by using Lemma 2 we get χs(P
k
n1
) ≥ k+ (i− 1)+ 1 = k+ i.

As a consequence of Lemmas 1- 2 we have χs(P
k
n ) ≤ min{⌊n+k+1

2 ⌋, 2k + 1} for n ≥
k + 1, and χs(P

k
n ) ≥ ⌊n+k+1

2 ⌋ for n ∈ {k + 2i, k + 2i + 1}, where 0 ≤ i ≤ k. Moreover,
2k + 1 ≤ χs(P

k
n ) ≤ χs(P

k
n′) for all n′ ≥ n. So, we can conclude the following theorem.

Theorem 2. For n ≥ k + 1, χs(P
k
n ) = min{⌊n+k+1

2 ⌋, 2k + 1}.

Example 3. χs(P
2
10) = min{⌊10+2+1

2 ⌋, 2(2) + 1} = min{6, 5} = 5

Example 4. χs(P
3
8 ) = min{⌊8+3+1

2 ⌋, 2(3) + 1} = min{6, 7} = 6
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1

v1
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v3

4

v4

5

v5

1

v6

2

v7

3

v8

4

v9

5

v10

Figure 3: Star Coloring of P 2
10

1

v1

2

v2

3

v3

4

v4

5

v5

6

v6

1

v7

2

v8

Figure 4: Star Coloring of P 3
8

4. Acyclic Coloring of Ck
n

The technique that we followed in this section was to squeeze χa(C
k
n) between

upper and lower bounds until we reached the exact value of χa(C
k
n) for a wide range of

cases, and to find an upper bound and a sharp lower bound for χa(C
k
n) for other cases.

Then we built on previous studies on the proper coloring of Ck
n, and added some colors

to break one of these conditions, by which we were able to determine upper bounds for
χa(C

k
n).

Let Ck
n denote the cycle of order n with vertex set V (Ck

n) = {v0, v1, ..., vn−1} and
edge set E(Ck

n)={vivj : 1 ≤ |i− j|, n− |i− j| ≤ k}. Clearly, Ck
n is a complete graph when

n ≤ 2k + 1 and hence χa(C
k
n) = n.

We will start by determining a lower bound for χa(C
k
n) when n > 2k + 1.

Theorem 3. For n > 2k + 1, χa(C
k
n) ≥ k + 2.

Proof. Let c : V (Ck
n) → {c0, c1, ..., ck} be a (k + 1)− coloring of Ck

n.
Since {v0, v1, ..., vk} induces a (k+1)− clique in Ck

n, without loss of generality, define c by
c(vj) = cj mod (k+1) for j = 0, 1, ..., n− 1. Let n = q(k+1)+ r where q ≥ 2 and 0 ≤ r ≤ k.
Then we have two cases:

Case 1. r > 0. Then c(vr−1) = c(vn−1) and dCn(vn−1, vr−1) = r ≤ k, a contradiction.
Case 2. r = 0. For 1 ≤ i ≤ k , the induced subgraph Ci of C

k
n where

V (Ci) = {v0, vi, v(k+1), v(k+1)+i, ..., v(q−1)(k+1), v(q−1)(k+1)+i}, is a bicolored cycle of Ck
n

using two colors c0 and ci, a contradiction.
Hence χa(C

k
n) ≥ k + 2.

Lemma 4. Let c ={c1, c2, ..., cr} be a proper coloring of Ck
n and P = {Ti : i = 1, 2, ..., r} be

the color classes of c. If CL is a bicolored cycle in Ck
n, then the following holds. If Ti ∩

V (CL) ̸= ϕ then Ti ⊆ V (CL).

Proof. Clearly, L is even, L ≥ 4. Obviously, when |Ti| = 2 Ti ⊆ V (CL). Now let
|Ti| ≥ 3 and CL be a bicolored cycle with V (CL) = {vx1 , vy1 , vx2 , vy2 , ..., vxL

2

, vyL
2

} and
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E(CL) = {vxivyi : i = 1, 2, ..., L2 } ∪ {vyivxi+1 : i = 1, 2, ..., L2 − 1} ∪ {vyL
2

vx1}. Assume that

there exists vh ∈ Ti − V (CL). If vh lies between vxi and vxi+1 for some i = 1, 2, ..., L2 − 1,
then dCn(vxi , vh

) < dCn(vxi , vyi) ≤ k or dCn(vh, vxi+1) < dCn(vyi , vxi+1) ≤ k, a
contradiction. And if vh lies between vxL

2

and vx1 , then dCn(vxL
2

, v
h
) < dCn(vxL

2

, vyi) ≤ k

or dCn(vh, vx1) < dCn(vyi , vx1) ≤ k, a contradiction. Thus Ti ⊆ V (CL).

Since CL is an induced bicolored cycle of Ck
n, we have k < dCn(vxi , vxi+1), dCn(vyi , vyi+1)

≤ 2k for i = 1, 2, ..., L2 − 1, and k < dCn(vxL
2

, vx1), dCn(vyL
2

, vy1) ≤ 2k. Using 4 to get

Ti, Tj ⊆ V (CL) are induced cycles of C2k
n , and |Ti| = |Tj | ≥ n

2k for some i and j.

Definition 3. A clique of Ck
n is called consecutive if it is composed of vertices of consec-

utive integer indices (module n).

Lemma 5. [7] Let n ≥ max{3, k+ 1}, write n = q(k+ 1) + r where q ≥ 1 and 0 ≤ r ≤ k.
Then χ(Ck

n) = k + 1 + ⌈ rq ⌉.

Lemma 6. [6] For any two integers n,k if α|n and k < h then Ck
n is α−colorable if and

only if Ck
n contains no α+ 1 consecutive clique..

Lemma 7. [5] Let n = q(k + 1) + r where q ≥ 1 and 0 ≤ r ≤ k. Then
(1) r = 0 implies that c′1 defined by c′1(vi) = i mod (k+1) is a (k+1)−proper coloring

of Ck
n.
(2) r ̸= 0, k1 = ⌈ rq ⌉, and t = ⌊ r

k1
⌋, w = k + 1+ r − k1t, and α = k + 1+ k1 imply that

c′2 defined by c′2(vi) =

{
ci mod α if i ∈ {0, 1, 2, ..., tα+ w − 1}

c(i−(tα+w)) mod (k+1) if i ∈ {tα+ w, ..., n− 1}

is a proper-coloring of Ck
n using H colors only.

Proof. (1) r = 0 implies that α = k + 1 divides n and by Lemma 6, Ck
n can be colored

using k + 1 colors.
(2) Let r ̸= 0, k1 = ⌈ rq ⌉, t = ⌊ r

k1
⌋, and α = k + 1 + k1. Then we have two cases,

Case 1. q = t. In this case we have q = t ≤ r
k1

≤ r
r
q
= q, and thus k1 = r

q , which

implies that α = k + 1 + r
q and so, qα = q(k + 1) + r = n. Therefore, α divides n and by

Lemma 6, c′2 is a α− proper coloring of Ck
n.

Case 2. q ̸= t. Let w = k + 1 + r − k1t, and color Ck
n using c′2. Notice that r ≥

k1⌊ r
k1
⌋ = k1t and r − k1 = k1(

r
k1

− 1) ≤ k1⌊ r
k1
⌋ = k1t which leads to 0 ≤ r − k1t ≤ k1.

Thus k + 1 ≤ w ≤ α. Moreover, the cardinality of the subset of vertices {vtα+w, ..., vn−1}
is a multiple of (k + 1) since n− tα− w = (q − t− 1)(k + 1) and t ≤ q − 1. Finally, note
that c′2(vtα+w−1) = w − 1, and so k ≤ c′2(vtα+w−1) ≤ α − 1. Also c′2(vn−1) = k. Hence c′2
is a proper coloring of Ck

n that uses at most α colors.

In general when n < (k+1)2, χa(C
k
n) does not have a lower bound in terms of k since

the value of χ(Ck
n) changes as the ratio r

q change, to illustrate this consider the following
example.
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Example 5. Let k = 5. Then:
If n = 2(k + 1) + 1, then χ(Ck

n) = 5 + 1 +
⌈
1
2

⌉
= k + 2, and χa(C

k
n) ≥ k + 2.

If n = 2(k + 1) + 5, then χ(Ck
n) = 5 + 1 +

⌈
5
2

⌉
= k + 4, and χa(C

k
n) ≥ k + 4.

Remark 1. : Let n = q(k+1)+ r where q ≥ k+1 and 0 ≤ r ≤ k. Apply Lemma 7 to get
k1 = 1, t = r, w = k + 1, t ̸= q, α = k + 2, and

c′2(vi) =

{
ci mod (k+2) if i ∈ {0, 1, ..., r(k + 2) + k}
c{i−r(k+2)+k+1} mod (k+1) if i ∈ {r(k + 2) + k + 1, ..., n− 1}

is a (k + 2)−proper coloring of Ck
n.

In the following lemmas, we will consider n ≥ (k + 1)2.

Lemma 8. Let n = q(k + 1) where q ≥ k + 1, and

c′3(vi) =

{
ck+1 if i = h(k + 2) and h = 0, 1, ..., k − 1
c′1(vi) otherwise.

Then:
(1) c′3 is a (k + 2)− proper coloring of Ck

n.
(2) Ti does not induce a cycle in C2k

n for 0 ≤ i ≤ k − 1.
(3) c′3 is a (k + 2)− acyclic coloring of Ck

n.

Proof. (1) Since c′1 is a proper coloring it is enough to check the vertices with color ck+1.
Since dCn(vh(k+2), v(h+1)(k+2)) = k+2 for 0 ≤ h ≤ k−1, and dCn(v(k−1)(k+2), v0) ≥ k+2, we

have c′3 is a proper coloring of Ck
n.

(2) If q ≤ 3, then |T0| = q − 1 < q(k+1)
2k . Now, consider q > 3, then T0 does not induce a

cycle in C2k
n since dCn(v(q−1)(k+1), v(k+1)) ≥ 2(k + 1). Also Ti where 1 ≤ i ≤ k − 1 doesn’t

induce a cycle in C2k
n since vi(k+1)+i /∈ Ti and dCn(v(i−1)(k+1)+i, v(i+1)(k+1)+i) = 2(k + 1).

Note that the coloring c′1 colors the vertices of Ck
n by repeating c1, c2, ..., ck, which makes

the distance between any two vertices having the same color be (k + 1). Adding ck+1

in c′3 denies one occurrence of each color of c1, c2, ..., ck−1 which makes a distance be-
tween two vertices having the same color become 2(k + 1). Accordingly, the color classes
T1, T2, ..., Tk−1 will not induce a cycle in C2k

n as shown in the below table:

Rule i mod(k + 1)

i 0 1 ... k
+
1

k
+
2

k
+
3

... 2k
+
3

2(
k
+
2)

2k
+
5

... 3k
+
5

3(
k
+
2)

3k
+
7

... (k
−

1
)(
k
+

2
)
−

1

(k
−

1
)(
k
+

2
)

(k
−

1
)(
k
+

2
)
+

1

... q(
k
+
1)

−
2

n
−
1

c1(vi) c0 c1 ... c0 c1 c2 ... c1 c2 c3 ... c2 c3 c4 ... ck−2 ck−1 ck ... ck−1 ck

c3(vi) ck+1 c1 ... c0 ck+1 c2 ... c1 ck+1 c3 ... c2 ck+1 c4 ... ck−2 ck+1 ck ... ck−1 ck

⌞ 2(k + 1) ⌟
⌞ 2(k + 1) ⌟
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(3) Suppose that CL is a bicolored cycle in Ck
n, then V (CL) = Ti ∪ Tj for some i and j.

Note that k = |Tk+1| ≠ |Tk| ≥ k + 1. So V (CL) ̸= Tk+1 ∪ Tk and hence i or j ≤ k − 1.
From part (2) and Lemma 4, we get a contradiction. Therefore, c′3 is a (k + 2)− acyclic
coloring of Ck

n.

Lemma 9. Let n = (k + 1)2 + k, and

c′4(vi) =


ck+2 if i = j(k + 3) for j ∈ {0, 1, ..., k − 1}
ck+1 if i = k(k + 3)
c′2(vi) otherwise.

Then
(1) c′4 is a (k + 3)−proper coloring of Ck

n.
(2) For 0 ≤ i ≤ k, Ti is not an induced cycle of C2k

n .
(3) c′4 is a (k + 3)− acyclic coloring of Ck

n.

Proof. (1) Since c′2 is a proper coloring, dCn(vh(k+3), v(h+1)(k+3)) = k + 3 for 0 ≤
h ≤ k − 1, and dCn(v(k−1)(k+3), v0) = k + 4, we have c′4 is a (k + 3)−proper coloring of

Ck
n. Moreover, to keep c′4 proper coloring, ck+1 was assigned to vn−1 instead ck+2 since

dCn(v0, vn−1) = 1.

(2) If k ≤ 2, then |T0| = k < (k+1)2+k
2k . If k > 2, then dCn(vk(k+2), v(k+2)) ≥ 2(k + 1).

If 0 < i ≤ k, then vi(k+2)+i /∈ Ti and thus dCn(v(i−1)(k+2)+i, v(i+1)(k+2)+i) = 2(k + 2).
Adding ck+2 in c′4 denies one occurrence of each color of c1, c2, ..., ck which makes a distance
between two vertices having the same color become 2(k+1). Accordingly, the color classes
T1, T2, ..., Tk will not induce a cycle in C2k

n as shown in the below table:

Rule i mod(k + 2)

i 0 1 ... k
+
2

k
+
3

k
+
4

... 2k
+
5

2(
k
+
2)

+
2

2k
+
7

... 3k
+
8

3(
k
+
2)

+
3

... (k
−

1
)(
k
+

2
)
+

k
−

2

(k
−

1
)(
k
+

2
)
+

k
−

1

(k
−

1
)(
k
+

2
)
+

k

k
(k

+
2
)
−

1

... k
(k

+
2)

+
k
−
1

n
−
1

c2(vi) c0 c1 ... c0 c1 c2 ... c1 c2 c3 ... c2 c3 ... ck−2 ck−1 ck ck+1 ... ck−1 ck

c4(vi) ck+2 c1 ... c0 ck+2 c2 ... c1 ck+2 c3 ... c2 ck+2 ... ck−2 ck+2 ck ck+1 ... ck−1 ck+1

⌞ 2(k + 2) ⌟
⌞ 2(k + 2) ⌟ ⌞ k + 1 ⌟

(3) Assume that CL is a bicolored cycle in Ck
n, then V (CL) = Ti∪Tj for some i, j. Clearly

k+1 = |Tk+1| ≠ |Tk+2| = k, so i or j ≤ k say i, then Ti is not an induced cycle of C2k
n .

Lemma 10. Let n = q(k + 1) + r, 0 < r < k + 1, q ≥ k + 1 and n ̸= (k + 1)2 + k. Let

c′5(vi) =


ck+2 if i = j(k + 3) for j ∈ {0, 1, ..., r}
ck+1 if i = r(k + 3) + j(k + 2) for j ∈ {1, 2, ..., k − r}
c′2(vi) otherwise.

Then:
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(1) c′5 is a (k + 3)−proper coloring of Ck
n.

(2) For i ∈ {0, ..., k}, Ti is not an induced cycle of C2k
n .

(3) c′5 is a (k + 3)− acyclic coloring of Ck
n.

Define P1 = {0, k+3, 2(k+3), ..., r(k+3)} and P2 = {r(k+3)+ (k+2), r(k+3)+ 2(k+
2), ..., r(k + 3) + (k − r)(k + 2)}.

Proof. (1) Since dCn(vh(k+3), v(h+1)(k+3)) = k+3 for 0 ≤ h ≤ r− 1, dCn(vr(k+3), v0) ≥
k + 3, dCn(vr(k+3)+h(k+2), vr(k+3)+(h+1)(k+2)) = k + 2 for 1 ≤ h ≤ k − r − 1,
dCn(vn−((k−r)(k+2)−q), vk+1) ≥ k + 2 and c′2 is a proper coloring, we have c′5 is a proper

coloring of Ck
n.

(2) To show that Ti is not an induced cycle of C2k
n for i ∈ {0, ..., k}, consider the following

cases
Case 1. i = 0. Then v0 /∈ T0 and dCn(vn−k, vk+2) = 2k + 2.
Case 2. 0 < i < r. Then vi(k+2)+i /∈ Ti and dCn(v(i−1)(k+2)+i, v(i+1)(k+2)+i) =

2(k + 2).
Case 3. i = r. Then vr(k+2)+i /∈ Ti and dCn(v(r−1)(k+2)+i, vr(k+2)+(k+1)+i) = 2k + 3.
Case 4. r < i < k. Then vr(k+3)+(i−r)(k+2) /∈ Ti and

dCn(vr(k+3)+(i−r−1)(k+2), vr(k+3)+(i−r+1)(k+2)) = 2(k + 2).
Case 5. i = k. Then vr(k+3)+(k−r)(k+2) /∈ Tk and dCn(vr(k+3)+(k−r−1)(k+2), vk) ≥

2k + 3 when q ≤ k + 2. while dCn(vr(k+3)+(k−r−1)(k+2), vr(k+3)+(k−r+1)(k+2)) = 2(k + 2)
when q ≥ k + 3.
Therefore, Tk is not an induced cycle of C2k

n .
Adding ck+2 to P1 denies a turn of each color of c1, c2, ..., cr , and adding ck+1 to P2 does
the same for colors cr+1, cr+2, ..., ck. Also the distance between the last vertex in P1 that
is colored with ck+1 and the first vertex in P2 that is colored with ck+1 is (k + 1) which
keeps the coloring proper as shown in the below table:

Rule i mod(k + 2) (i− x)mod(k + 1)

i 0 1 ... k
+

2

k
+

3

k
+

4

... 2
k
+

5

2
(k

+
3
)

2
k
+

7

... 3
k
+

8

3
(k

+
3
)

... (r
−

1
)(
k
+

2
)
+

r

... r(
k
+

3
)

r(
k
+

3
)
+

1

... x
−

1
x ... x
+

r

x
+

r
+

1

... r
(k

+
3
)
+

k
+

1

r
(k

+
3
)
+

k
+

2

... n
-1

c2(vi) c0 c1 ... c0 c1 c2 ... c1 c2 c3 ... c2 c3 ... cr ... cr cr+1 ... ck c0 ... cr cr+1 ... cr cr+1 ... ck+1

c5(vi) ck+2 c1 ... c0 ck+2 c2 ... c1 ck+2 c3 ... c2 ck+2 ... cr ... ck+2 cr+1 ... ck c0 ... cr cr+1 ... cr ck+1 ... ck+1

⌞ 2(k + 2) ⌟ ⌞ 2(k + 1) + 1 ⌟
⌞ 2(k + 2) ⌟ ⌞ k + 1 ⌟

x = r(k + 2) + k + 1

(3) Since dCn(v0, vk+1) = k + 1 and Ti not an induced cycle of C2k
n for i ≤ k, c′5 is a

(k + 3)− acyclic coloring for Ck
n.

Lemma 11. Let n = q(k + 1) + r, 0 < r ≤ k, q ≥ k + 1, q − r ≥ k + 1 and

c′6(vi) =

{
ck+1 if i = (r + j)(k + 2) + (k + 1) for j ∈ {0, 1, ..., k − 1}
c′2(vi) otherwise.
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Then:
(1) c′6 is a (k + 2)−proper coloring of Ck

n.
(2) For i ∈ {0, ..., k − 1}, Ti is not an induced cycle of C2k

n .
(3) c′6 is a (k + 2)− acyclic coloring of Ck

n.
Proof. (1) Note that dCn(v(r+h)(k+2)+k+1, v(r+h+1)(k+2)+k+1) = k+2 for 0 ≤ h ≤ k−2,

dCn(v(r+k−1)(k+2)+k+1, vk+1) ≥ k+3, and dCn(vr(k+2)−1, vr(k+2)+k+1) = k+2. Therefore,

c′6 is a proper coloring of Ck
n.

(2) For 0 ≤ i < k − 1, v(r+i)(k+2)+(k+1) /∈ Ti and dCn(v(r+i)(k+2), v(r+i)(k+2)+2(k+1)) =
2(k + 1).
For i = k − 1 we have the following two cases:

Case 1. q − r > k + 1. Then v(r+k−1)(k+2)+(k+1) /∈ Tk−1 and
dCn(v(r+k−1)(k+2), v(r+k−1)(k+2)+2(k+1)) = 2(k + 1).

Case 2. : q − r = k + 1. Then v(r+k−1)(k+2)+(k+1) /∈ Tk−1 and
dCn(v(r+k−1)(k+2), vk−1) = 2(k + 1).

Hence Ti is not an induced cycle of C2k
n for i ∈ {0, ..., k − 1}.

(3) Note that r + k = |Tk+1| ̸= |Tk| ≥ r + k + 1. Moreover, Ti is not an induced cycle in
C2k
n for i ≤ k − 1, so c′6 is a (k + 2)− acyclic coloring for Ck

n.

As a consequence of Lemmas 4-11 we get the following theorem.

Theorem 4. Let Ck
n be the kth-power of a cycle of order n. Then

(1) k + 2 ≤ χa(C
k
n) ≤ k + 3 if n ≥ (k + 1)2.

(2) χa(C
k
n) = k + 2 if n = q(k + 1) + r and q − r ≥ k + 1.

(3) χa(C
k
n) = k + 2 if n ≥ (k + 1)3.

According to Theorem 4 when n is between (k+1)2 and (k+1)3, χa(C
k
n) varies between

k + 2 and k + 3, while for n ≥ (k + 1)3, χa(C
k
n) = k + 2.

The following example shows that k + 2 is a sharp lower bound for χa(C
k
n) when

n = (k + 1)2.

Example 6. Let k = 2 and n = (k + 1)2, then c′2(C
k
n) uses only 4 colors to acyclic color

Ck
n, χa(C

k
n) = k + 2. The union of any two color classes induces a disjoint collection of

trees.

1
v1

2
v2

3
v3

1
v4

2
v5

4
v6

1
v7

3
v8

4
v9

T1,T2

T1,T3

T1,T4

T2,T3

T2,T4

T3,T4

v1 v2 v4 v5 v7

v1 v3 v4 v7 v8

v4 v6 v7 v9 v1

v2 v3 v5 v8

v9 v2 v5 v6

v6 v8 v9 v3
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5. Star Coloring of Ck
n

In this section we bound χs(C
k
n) between two values by combining some results from

previous sections with the relation between χs(G) and χ(G2).

Lemma 12. [4] Let G be a graph of order n and G2 be the square graph of G. Then,
χs(G) ≤ χ(G2), where χ(G) denotes the (proper) chromatic number of G.

Theorem 5. For n ≥ (k + 1)2, 2k + 1 ≤ χs(C
k
n) ≤ 2k + 2.

Proof. Let n = q(k+1)+r. Using Lemmas 5 and 12 to get χ(C2k
n ) = 2k+1+

⌈
r
q

⌉
= 2k+2

and χs(C
k
n) ≤ 2k + 2. Moreover, P k

n is a subgraph of Ck
n, so χs(P

k
n ) ≤ χs(C

k
n). According

to Lemma 1 χs(P
k
n ) = 2k + 1, so 2k + 1 ≤ χs(C

k
n).

The following example shows that k + 2 is a sharp lower bound for χa(C
k
n).

Example 7. Let k = 2 and n = (k + 1)2 + 1, then c(Ck
n) uses only 5 colors to star color

C2
10, χs(C

k
n) = 2k + 1. The union of any two color classes induces a disjoint collection of

stars.

1
v1

2
v2

3
v3

4
v4

5
v51

v6

4
v7

2
v8

3
v9

5
v10T1,T2

T1,T3

T1,T4

T1,T5

T2,T3

T2,T4

T2,T5

T3,T4

T3,T5

T4,T5

v1 v2 v6 v7

v9 v1 v3 v6

v4 v6 v7 v1

v10 v1 v5 v6

v2 v3 v8 v9

v2 v4 v7 v8

v8 v10 v2 v5

v3 v4 v7 v9

v3 v5 v9 v10

v4 v5 v7 v10

References

[1] H. L. Bodlaender, M. R. Fellows, M. T. Hallett, H. T. Wareham, and T. J. Warnow.
The hardness of perfect phylogeny, feasible register assignment and other problems
on thin colored graphs. Theoretical Computer Science, 244:167–188, 2000.

[2] M.I. Burstein. Every 4-valent graph has an acyclic 5-coloring. Soobshch. Akad. Nauk
Gruzin SSR, 93:21–24, 1979.

[3] B. Grunbaum. Acyclic colorings of planar graphs. Isr.J. Math, 19:390–412, 1973.

[4] F. Guillaume, A. Raspaud, and B. Reed. Star coloring of graphs. Journal of Graph
Theory Wiley, 47(3):163–182, 2004.

[5] M. F. Jimenez and M.V. Pabon. A note on coloring powers of cycles. Research Report
18A - 70, Facultad de Ciencias de la Universidad de los Andes, Bogota, Colombia,
2005.



REFERENCES 1835

[6] J. B. Orlin, M. A. Bonuccelli, and D. P. Bovet. An o(n2) algorithm for coloring proper
circular arc graphs. SIAM J. Alg. Disc. Meth., 2(2):88–93, 1981.

[7] A. Prowse and D. R. Woodall. Choosability of powers of circuits. Graphs and Com-
binatorics, 19:137–144, 2003.

[8] N. Vedavathi and D. Gurram. Applications on graph theory. International Journal
of Engineering Research and Technology, 2(1):1–4, 2013.

[9] J. Wang, L. Y. Miao, J. B. Li, and Y. L. Liu. Acyclic choosability of graphs with
bounded degree. Acta Mathematica Sinica English Series, 38:560–570, 2022.

[10] D. R. Wood. Acyclic, star and oriented colourings of graph subdivisions. Discrete
Mathematics and Theoretical Computer Science, 7:37–50, 2005.


