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Abstract. The coefficient conjugate serves as the foundation for many conjugate gradient meth-
ods. The quadratic model is used to derive a novel coefficient conjugate in this study. Its global
convergence result might be produced under Wolfe line search circumstances. The conjugate gra-
dient method’s performance for unconstrained optimization problems is demonstrated through
numerical tests.
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1. Introduction

One of the most important iterative approaches for solving the unconstrained opti-
mization issue is the Conjugate Gradient (CG) method, which is as follows:

f(x∗) = min
x∈Rn

f(x). (1)

where f : Rn → R is a smooth function, see [7, 11, 12]. The goal function and its gradient
are all that is required of the CG techniques in each iteration, see [13]. As a result, this
strategy is particularly well suited to solving optimization problems. These approaches
use the following iterative formula:

xk+1 = xk + αkdk. (2)

If f is a quadratic, the one-dimensional minimizer along the ray may be calculated ana-
lytically as:

αk = −
gTk dk

dTkQdk
(3)
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Iterative procedures are required for generic non-linear functions, in [9] has further infor-
mation about this. The Wolfe requirements are frequently employed in the convergence
analysis and implementation of conjugate gradient techniques to obtain the step length
αk satisfying:

f(xk + αkdk) ≤ f(xk) + δαkg
T
k dk (4)

dTk g(xk + αkdk) ≥ σdTk gk (5)

where 0 < δ < σ < 1. More information is available in [8, 15]. In practice, the conjugate
gradient search direction for the next iteration looks like this:

dk+1 = −gk+1 + βkdk (6)

where βk is a scalar. There are two well-known methods for selecting βk:

βFR
k =

∥gk+1∥2

∥gk∥2
, βDY

k+1 =
∥gk+1∥2

dTk yk
(7)

separately by the Fletcher-Reeves (FR) approach [2] and the Dai-Yan (DY) method [1]. It
approaches have good convergence properties, but their numerical results aren’t as good as
the others [9]. Many variations of this method have been developed throughout the years,
and some are extensively utilized in practice. Take, for example, Hideaki and Yasushi [14]
and Basim [3]:

βHY
k =

∥gk+1∥2

2/αk(fk − fk+1)
, βB

k =
∥gk+1∥2

(fk − fk+1)/αk − gTk dk/2
(8)

These algorithms have a very high numerical efficiency. The quadratic model has been
established to improve efficiency for unconstrained problems, in order to maximize the ben-
efits of the original conjugate gradient approaches. A few novel optimization approaches
have been presented in this regard [4–6]. Using a conjugacy condition, we provide a modi-
fied conjugate gradient technique in this paper. The sufficient descent property is satisfied
by the new search direction, which is independent of the line search and the convex-
ity assumption on the objective function. Under the conventional assumptions, the new
method has global convergence for generic functions. When dealing with unconstrained
optimization issues, numerical experiments show that the new approach is superior.

2. Deriving new Coefficient Conjugate

As everyone is aware, the following outcomes are produced when the objective function
to be decreased is quadratic and accurate line searches are used:

dTk+1Qdk = 0 (9)

where Q is Hessian matrix. The conjugacy condition is what it’s called. In [13] has further
information. Because the dk+1 = −gk+1 + βkdk for the conjugate gradient technique, the
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following is the result:

βk =
gTk+1Qsk

dTkQsk
(10)

as a result, a coefficient conjugacy is obtained. We now utilize a quadratic model to derive
the new conjugate gradient approach, which can be represented as:

fk+1 = fk + sTk gk +
1

2
sTkQ(xk)sk (11)

We may calculate the first order derivative:

∇fk+1 = gk +Q(xk)sk (12)

Using (12) in (11) we get the following:

sTk yk + fk+1 − fk =
1

2
sTkQ(xk)sk (13)

We may write the equation (13) by using (3), as follows:

dTkQ(xk)sk =
1

2

αk(g
T
k dk)

2

(sTk yk + (fk+1 − fk))
= ρks

T
k yk (14)

We generate a new formula βk by plugging (14) into (10):

βk =
gTk+1yk

ρks
T
k yk

, ρ1k =
1

2

αk(g
T
k dk)

2

sTk yk(s
T
k yk + (fk+1 − fk))

(15)

Because f is a quadratic function and exact line search is used, the following is the result:

βk =
∥gk+1∥2

ρks
T
k yk

, ρ1k =
1

2

αk(g
T
k dk)

2

sTk yk(s
T
k yk + (fk+1 − fk))

(16)

Using and exact line search in (13), then (16) reduces to:

ρ2k =
1

2

αk(g
T
k dk)

2

sTk yk(−sTk gk + (fk+1 − fk))
(17)

and

ρ3k =
1

2

αk(g
T
k dk)

2

sTk yk(αkg
T
k gk + (fk+1 − fk))

(18)

As a result, our proposal, the so-called BN, becomes clear. The proposed technique is
provided with a new algorithm based on the aforementioned.
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2.1. Algorithm

Step 1. Givenx1 ∈ Rn. Set k = 1 and d1 = −g1.

Step 2. Let the step size αk satisfying the (4) and (5).

Step 3. Let xk+1 = xk + αkdk. If ∥gk+1∥ ≤ 10−6, then stop.

Step 4. Update βk by the (16), then dk+1 by (6).

Step 5. Set k = k + 1 and go to Step2.

The descent condition exposes a useful characteristic for the new formula conjugate
gradient technique. Additional properties are highly crucial in the convergence proved in
this investigation. The preceding material is summarized in the following theorem.

Theorem 1. If we use the new way to create {xk} and {dk}, we get:

dTk+1gk+1 < 0, and dTk+1gk+1 = βkd
T
k gk (19)

Proof. It goes without saying that if dk = −gk then dT1 g1 < 0. Assume that dTk gk < 0
for any k. From (6) and (17), it is simple to deduce:

dTk+1gk+1 = −gTk+1gk+1 + βkd
T
k gk+1

= −βk
[
ρks

T
k yk

]
+ βkd

T
k gk+1

= βk[d
T
k gk+1 − ρks

T
k yk]

(20)

We may deduce the following from equations (15) and (20):

dTk+1gk+1 = βkd
T
k gk (21)

It is obvious that dTk gk < 0, thus we get:

dTk+1gk+1 < 0 (22)

The proof is finished.Other methods, can be proven in the same way.

3. Convergence Analysis

We look at how new algorithms are converged. On the objective function, the following
assumptions are made.

• D = {x|f(x) ≤ f(x0)} is a bounded level set.

• In some neighborhood D that contains L0, the gradient is Lipschitz continuous; that
is, L exists such that:

∥g(υ)− g(ω)∥ ≤ L ∥υ − ω∥ ∀υ, ω ∈ D (23)

For further information, read [1, 10] and Zoutendijk [16] achieved the following
significant finding.
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Lemma 1. Allow all assumptions to be true. Consider any iteration algorithm that uses
the Wolfe line search to get αk. Then:

∞∑
k=1

(gTk dk)
2

∥dk∥2
< ∞ (24)

Theorem 2. Assume that all of your assumptions are correct. If (19) is satisfied by
formula βk, we have:

lim
k→∞

inf ∥gk∥ = 0 (25)

Proof. Assume that (25) isn’t true by induction. (6) is rewritten as dk+1+gk+1 = βkdk,
and upon squaring both sides, we obtain:

∥dk+1∥2 + ∥gk+1∥2 + 2dTk+1gk+1 = (βk)
2 ∥dk∥2 (26)

Applying (21), yields:

∥dk+1∥2 =
(dTk+1gk+1)

2

(dTk gk)
2

∥dk∥2 − 2dTk+1gk+1 − ∥gk+1∥2 (27)

Equation (27) is divided into (dTk+1gk+1)
2, we get:

∥dk+1∥2

(dTk+1gk+1)2
=

∥dk∥2

(dTk gk)
2
− ∥gk+1∥2

(dTk+1gk+1)2
− 2

dTk+1gk+1
(28)

The equation becomes, by completing the square:

∥dk+1∥2

(dTk+1gk+1)2
≤ ∥dk∥2

(dTk gk)2
−
(

∥gk+1∥
(dTk+1gk+1)

+ 1
∥gk+1∥2

)
+ 1

∥gk+1∥2

≤ ∥dk∥2

(dTk gk)2
+ 1

∥gk+1∥2

(29)

Hence,

∥dk+1∥2

(dTk+1gk+1)2
≤

k+1∑
i=1

1

∥gi∥2
(30)

Suppose that there exists c1 > 0 such that ∥gk∥ ≥ c1 for all k ∈ n.Then :

∥dk+1∥2

(dTk+1gk+1)2
<

k + 1

c21
(31)

Assume and note in Equation (31) that:

∞∑
k=1

(gTk dk)
2

∥dk∥2
= ∞ (32)
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Based on Lemma 1, we get limk→∞ inf ∥gk∥ = 0 holds. Other methods, can be proven in
the same way.

4. Numerical Results

The outcomes of mathematical experiments are presented in this section. The FR-
Algorithm was contrasted with the innovative conjugate gradient algorithm. Fortran was
used to create both algorithms. Section 1. contains the exam questions. We investi-
gated numerical experiments for 15 extended unconstrained optimization problems with
the number of variables for each test function. We use the inequality as a termination
condition. Table 1 contains the findings of the Wolfe condition test, with the following def-
initions for each column: The terminology used to describe the issue comprises problem,
problem size, dim, number of iterations (NI), and number of function evaluations (NF).
Table 1 shows how many challenges these strategies have addressed in terms of iterations
and function evaluations.

Problem numbers indicant for : 1. is the Trigonometric, 2. is the Extended Rosenbrock,
3. is the Hager, 4. is the Extended Tridiagonal 1, 5. is the Generalized Tridiagonal 2, 6.
is the Extended PSC1, 7. is the Extended Tridiagonal 2, 8. is EDENSCH (CUTE), 9. is
the STAIRCASE S1, 10. is the DENSCHNA (CUTE), 11. is the DENSCHNC (CUTE),
12. is the Extended White & Holst, 13. is the Extended Block-Diagonal BD2, 14. is the
Generalized quartic GQ2, 15. is the Extended Beale.
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Table 1: The numerical results of the FR and New methods

FR algorithm BN1 (16) BN2 (17) BN3 (18)
P. No. n NI NF NI NF NI NF NI NF

1 100 19 35 18 33 18 33 18 34
1000 38 65 32 57 34 62 38 65

2 100 47 93 40 80 40 82 42 90
1000 78 131 37 78 34 74 39 85

3 100 61 1024 47 665 25 43 28 46
1000 Fail Fail Fail Fail Fail Fail Fail Fail

4 100 32 64 10 21 10 21 13 27
1000 77 129 16 31 16 31 15 31

5 100 37 67 40 63 40 63 44 70
1000 73 115 65 102 67 107 61 98

6 100 15 31 8 17 8 17 8 17
1000 8 17 7 15 7 15 7 15

7 100 40 65 35 56 37 58 36 56
1000 43 68 49 382 39 59 42 65

8 100 69 1202 45 637 38 364 26 48
1000 98 1967 65 1279 43 440 33 257

9 100 671 1066 441 689 480 763 612 982
1000 Fail Fail Fail Fail Fail Fail Fail Fail

10 100 20 33 10 19 10 19 10 19
1000 19 35 9 18 9 18 9 18

11 100 49 80 15 28 14 26 15 26
1000 129 166 13 26 13 26 13 26

12 100 43 88 38 86 33 75 37 79
1000 46 92 34 77 35 76 40 89

13 100 122 156 12 23 12 23 12 23
1000 130 166 12 23 12 23 12 23

14 100 112 147 34 57 37 61 34 58
1000 110 145 38 58 40 60 35 55

15 100 32 52 12 24 12 24 16 32
1000 22 42 12 24 12 24 19 38

Total 2240 7341 1194 4668 1175 2687 1314 2472

The novel procedure saves NI and NF over time when compared to the conventional
Fletcher and Reeves (FR) methodology, notably for our set of test problems, as demon-
strated in Table 2. Table 1 compares the new methods to the Fletcher and Reeves [2]
convex optimization strategy.
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Table 2: Ratio of algorithm New cost to HS cost

FR algorithm BN1 (16) BN2 (17) BN3 (18)

NI 100% 53.30 % 52.45 % 58.66 %

NF 100 % 63.58 % 36.60 % 33.67 %

5. Final Thoughts

In this study, we provide a novel, globally convergent, functional nonlinear CG method,
and fulfills the descent property under certain assumptions, and is based on the strictly
convex quadratic function represented by (10) According to computer studies, the unique
kinds given in this study are successful.
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