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Abstract. Let G be an undirected graph with vertex and edge sets V (G) and E(G), respectively.
A set S ⊆ V (G) is called a hop independent hop dominating set of G if S is both hop independent
and hop dominating set of G. The minimum cardinality of hop independent hop dominating set of
G, denoted by γhih(G), is called the hop independent hop domination number of G. In this paper,
we show that the hop independent hop domination number of a graph G lies between the hop
domination number and the hop independence number of graph G. We characterize these types of
sets in the shadow graph, join, corona, and lexicographic product of two graphs. Moreover, either
exact values or bounds of the hop independent hop domination numbers of these graphs are given.
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1. Introduction

Since its introduction in 2015 (see [10]), hop domination has been one of the topics of
research or investigation in the area. To date, a number of variants of hop domination have
been introduced and studied. The newly defined variations and parameters are studied in
many classes of graphs including those which result from some binary operations (see [1],
[2], [4], [5], [6], [7], [9], and [11]).

Recently, Hassan et al. [3] introduced the concept of hop independent set in a graph and
defined the parameter called hop independence number of a graph. The hop independence
number may be equal or less or greater than the independence number of graph. A result
in [3] shows that the absolute difference between the independence number and the hop
independence number of a graph can be made arbitrarily large. Moreover, it was pointed
out that the maximum hop independent set in a graph G forms a hop dominating set,
that is, the hop independence number of a graph G is at least equal to the hop domination
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number of G. This observation, the way the variation “independent domination” for the
standard domination concept was introduced, and the possible future applications it may
offer researchers in the field, are some of the motivations the authors have for introducing
and studying hop independent hop domination in a graph. The newly defined concept
and the corresponding parameter will be studied initially for some graphs including those
that result from some binary operations.

2. Terminology and Notation

Two vertices u, v of a graph G are adjacent, or neighbors, if uv is an edge of G.
Moreover, an edge uv of G is incident to two vertices u, v of G. The set of neighbors
of a vertex u in G, denoted by NG(u), is called the open neighborhood of u in G. The
closed neighborhood of u in G is the set NG[u] = NG(u) ∪ {u}. If X ⊆ V (G), the open

neighborhood of X in G is the set NG(X) =
⋃
u∈X

NG(u). The closed neighborhood of X in

G is the set NG[X] = NG(X) ∪X.
Let G be a graph. A set D ⊆ V (G) is a dominating set of G if for every v ∈ V (G) \D,

there exists u ∈ D such that uv ∈ E(G), that is, NG[D] = V (G). The domination
number of G, denoted by γ(G), is the minimum cardinality of a dominating set of G. Any
dominating set D of G with cardinality γ(G), is called a γ-set of G.

Let G be a graph. A set D ⊆ V (G) is a total dominating set of G if for every v ∈ V (G),
there exists u ∈ D such that uv ∈ E(G), that is, NG(D) = V (G). The total domination
number of G, denoted by γt(G), is the minimum cardinality of a total dominating set of
G. Any total dominating set with cardinality equal to γt(G) is called a γt-set.

A vertex v in G is a hop neighbor of vertex u in G if dG(u, v) = 2. The set N2
G(u) =

{v ∈ V (G) : dG(v, u) = 2} is called the open hop neighborhood of u. The closed hop
neighborhood of u in G is given by N2

G[u] = N2
G(u) ∪ {u}. The open hop neighborhood of

X ⊆ V (G) is the set N2
G(X) =

⋃
u∈X

N2
G(u). The closed hop neighborhood of X in G is the

set N2
G[X] = N2

G(X) ∪X.
A set S ⊆ V (G) is a hop dominating set of G if N2

G[S] = V (G), that is, for every
v ∈ V (G)\S, there exists u ∈ S such that dG(u, v) = 2. The minimum cardinality among
all hop dominating sets of G, denoted by γh(G), is called the hop domination number of
G. Any hop dominating set with cardinality equal to γh(G) is called a γh-set.

A nonempty set S ⊆ V (G) is a hop independent set of G if dG(x, y) ̸= 2 for any two
vertices x, y ∈ S. The hop independence number of G, denoted by αh(G), is the largest
cardinality of a hop independent set of G. Any hop independent set of G with cardinality
αh(G) is called an αh-set of G.

A set S ⊆ V (G) is called a hop independent hop dominating set of G if S is both hop
independent and hop dominating set of G. The minimum cardinality of a hop independent
hop dominating set of G, denoted by γhih(G), is called the hop independent hop domination
number of G. Any hop independent hop dominating set of G with cardinality γhih(G) is
called a γhih-set of G.
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A set S ⊆ V (G) is a clique if the subgraph ⟨S⟩ induced by S is a complete graph. The
maximum cardinality of a clique of G, denoted by ω(G), is called the clique number of G.
A set C ⊆ V (G) is a pointwise non-dominating set if for every v ∈ V (G) \C, there exists
u ∈ C such that v /∈ NG(u). The minimum cardinality of a pointwise non-dominating set
of G, denoted by pnd(G), is called a pointwise non-domination number of G.

A set S ⊆ V (G) is a clique pointwise non-dominating set if S is both a clique and a
pointwise non-dominating set of G. The smallest cardinality of a clique pointwise non-
dominating set of G, denoted by cpnd(G), is called the clique pointwise non-domination
number of G. Any clique pointwise non-dominating set of G with cardinality cpnd(G) is
called a cpnd-set of G.

A total dominating set D ⊆ V (G) is called a total dominating hop independent hop
dominating set if it is a hop independent hop dominating set. The minimum cardinality
of a total dominating hop independent hop dominating set of G is denoted by γhiht (G).
Any total dominating hop independent hop dominating set D with cardinality γhiht (G) is
referred to as a γhiht -set.

The shadow graph S(G) of graph G is constructed by taking two copies of G, say G1

and G2, and then joining each vertex u ∈ G1 to the neighbors of its corresponding vertex
u′ ∈ G2.

Let G and H be any two graphs. The join G + H is the graph with vertex set
V (G+H) = V (G)∪ V (H) and edge set E(G+H) = E(G)∪E(H)∪ {uv : u ∈ V (G), v ∈
V (H)}. The corona G ◦ H is the graph obtained by taking one copy of G and |V (G)|
copies of H, and then joining the ith vertex of G to every vertex of the ith copy of H.
We denote by Hv the copy of H in G ◦ H corresponding to the vertex v ∈ G and write
v + Hv for ⟨{v}⟩ + Hv. The lexicographic product G[H] is the graph with vertex set
V (G[H]) = V (G) × V (H) and (v, a)(u, b) ∈ E(G[H]) if and only if either uv ∈ E(G) or
u = v and ab ∈ E(H).

Note that any non-empty set C ⊆ V (G)× V (H) can be written as C =
⋃
x∈S

[{x}× Tx],

where S ⊆ V (G) and Tx ⊆ V (H) for each x ∈ S. Specifically, Tx = {a ∈ V (H) : (x, a) ∈
C} for each x ∈ S.

3. Results

Proposition 1. Let G be any graph on n vertices. Then

γh(G) ≤ γhih(G) ≤ αh(G).

Proof. Since every hop independent hop dominating set S is a hop dominating set,
it follows that γh(G) ≤ γhih(G). Also, since every αh-set is a hop independent hop
dominating set, the right inequality holds.

Remark 1. The bounds given in Proposition 1 are tight. Moreover, strict inequalities can
also be attained.
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To see this, consider G = C4. Then γh(G) = γhih(G) = αh(G) = 2.
For the strict inequalities, let S1 = {c, e, g} (see Figure 1). Then S1 is a minimum

hop dominating set of G. Since dG(c, g) = 2, it follows that S1 is not a hop independent
set. Next, let S2 = {a, b, g, h}(see Figure 2). Then S2 is a minimum hop independent hop
dominating set of G. However, S2 is not a maximum hop independent set of G. In fact,
S3 = {a, b, h, i, j} (see Figure 3 ) is a maximum hop independent set of G. Consequently,
γh(G) = 3 < 4 = γhih(G) < 5 = αh(G).

G : c

d

b ea

f

g h

i

j

Figure 1: A graph G with γh(G) < γhih(G) < αh(G)
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Figure 2: A graph G with γh(G) < γhih(G) < αh(G)
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Figure 3: A graph G with γh(G) < γhih(G) < αh(G)

Theorem 1. [3] Let G be any graph on n vertices. Then S is a hop independent set of
G if and only if every component of ⟨S⟩ is complete. Moreover, αh(G) = n if and only if
every component of G is complete.

Theorem 2. Let G be a graph. Then γh(G) = γhih(G) if and only if G has a γh-set S
such that every component of ⟨S⟩ is complete.

Proof. Suppose γh(G) = γhih(G) and let S be a γhih-set of G. Then S is a hop
independent set of G. Hence, by Theorem 1, every component of ⟨S⟩ is complete. By
assumption, S is a γh-set of G.

Conversely, suppose G has a γh-set S such that every component of ⟨S⟩ is complete.
Then by Theorem 1, S is a hop independent set. Since S is a hop dominating set, it
follows that S is a hop independent hop dominating set. Hence, γhih(G) ≤ |S| = γh(G).
By Proposition 1, γh(G) = γhih(G).

The next result is immediate from Theorem 2.



J. Hassan, S. Canoy / Eur. J. Pure Appl. Math, 15 (4) (2022), 1783-1796 1787

Corollary 1. Let n ≥ 3 be any positive integer. Then

(i) γhih(Pn) = γh(Pn) and

(ii) γhih(Cn) = γh(Cn).

Theorem 3. Let G be any graph on n ≥ 2 vertices. Then 2 ≤ γhih(G) ≤ n. Moreover,
the following statements hold.

(i) γhih(G) = 2 if and only if γh(G) = 2.

(ii) γhih(G) = n if and only if every component C of G is complete.

Proof. Clearly, 2 ≤ γhih(G) ≤ n.

(i) Suppose γhih(G) = 2. By Proposition 1, γh(G) ≤ γhih(G) = 2. Since γh(G) ≥ 2 for
any graph of order n ≥ 2, it follows that γh(G) = 2.

Conversely, suppose γh(G) = 2, say S = {a, b} is a γh-set. Suppose, on the contrary,
that S is not a hop independent set, that is dG(a, b) = 2. Then there exists x ∈ V (G) such
that x ∈ NG(a)∩NG(b). This implies that x /∈ N2

G(a)∪N2
G(b), contrary to the assumption

that S is a hop dominating set. Therefore, S is a hop independent set and γhih(G) ≤ 2.
Consequently, γhih(G) = 2.

(ii) Suppose γhih(G) = n. Then S = V (G) = {v1, . . . , vn} is the only hop independent
hop dominating set of G. Thus, by Theorem 1, every component of ⟨S⟩ = G is complete.

For the converse, suppose that every component C of G is complete. Then by
Proposition 1, n = γh(G) ≤ γhih(G) ≤ αh(G) = n. Hence, γhih(G) = n.

The next result is a direct consequence of Theorem 3.

Corollary 2. Let n be a positive integer. Then each of the following statements holds.

(i) γhih(Kn) = n.

(ii) γhih(Kn) = n.

(iii) γhih(G) + γhih(G) = 2n if G = Kn.

(iv) γhih(G) ≤ n − 1 if G is a graph on n vertices and has at least one non-complete
component.

Proposition 2. Let G be a graph on n ≥ 3 vertices. If G has at least one non-complete
component, then

(i) 4 ≤ γhih(G) + γhih(G) ≤ 2n− 1, and

(ii) 4 ≤ γhih(G) · γhih(G) ≤ n2 − n.
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Proof. By Corollary 2(iv), γhih(G) ≤ n − 1 and by Theorem 3, γhih(G) ≤ n. These
imply that γhih(G)+γhih(G) ≤ n−1+n = 2n−1 and γhih(G)·γhih(G) ≤ (n−1)n = n2−n.
Since γhih(G) ≥ 2 for any graph of order at least 2, the left inequalities follow.

Theorem 4. Let G be any graph of order n ≥ 3. Then γhih(G) = n− 1 if and only if all
but one component H of G are cliques, where H = K|V (H)| \e (H is obtained from K|V (H)|
by deleting an edge e).

Proof. Suppose γhih(G) = n−1. Let S = V (G)\{v} be a γhih-set. Let G1, G2, . . . , Gk

be the components of ⟨S⟩. Then each Gi is a clique. Since v /∈ S and S is a hop
dominating set, there exists w ∈ S such that dG(v, w) = 2. Assume that w ∈ V (G1). Let
z ∈ NG(v)∩NG(w). Then z ∈ V (G1). Suppose there exists j ̸= 1 such that vp ∈ E(G) for
some p ∈ V (Gj). Then S∗ = V (G) \ {v, p} is a hop independent hop dominating set in G,
contrary to the assumption that γhih(G) = n−1. This implies that the components ofG are
⟨V (G1)∪{v}⟩, G2, . . . , Gk. Now, we will show that xv ∈ E(G) for every x ∈ V (G1) \ {w}.
Suppose there exists q ∈ V (G1) \ {w} such that qv /∈ E(G). Then dG(q, v) = 2. Let
D = {t ∈ V (G1) : vt /∈ E(G)}. Then |D| ≥ 2 and ⟨V (G1) \ D⟩ is a clique. Notice that
dG(v, t) = 2 for every t ∈ D. Now, let S′ = V (G) \ D. Then S′ is a hop dominating
set. Since the components of ⟨S′⟩ are ⟨V (G1) \ D⟩, G2, . . . , Gk, it follows that S′ is a
hop independent set. Hence, γhih(G) ≤ |S′| = n − |D| ≤ n − 2, a contradiction. Hence,
xv ∈ E(G) for every x ∈ V (G1) \ {w}. This implies that H = ⟨V (G1)∪ {v}⟩ = KV (H) \ e,
where e = vw.

The converse is clear.

The next result follows from Theorem 4.

Corollary 3. Let G be a connected graph of order n ≥ 3. Then γhih(G) = n − 1 if and
only if G = Kn \ e for some e ∈ E(Kn).

Theorem 5. Let G be a non-trivial connected graph. Then S is a hop independent hop
dominating set of S(G) if and only if one of the following conditions holds:

(i) S is a hop independent hop dominating set in G1.

(ii) S is a hop independent hop dominating set in G2.

(iii) S = SG1 ∪ SG2 such that SG1 ∪ S′
G2

and S′
G1

∪ SG2 are hop independent hop
dominating sets in G1 and G2, respectively, where S

′
G2

= {a ∈ V (G1) : a
′ ∈ SG2} and

S′
G1

= {a ∈ V (G2) : a
′ ∈ SG1}.

Proof. Let S be a hop independent hop dominating set of S(G). Set SG1 = S ∩V (G1)
and SG2 = S ∩ V (G2). If SG2 = ∅, then S = SG1 is a hop independent hop dominating
set of G1. If SG1 = ∅, then S = SG2 is a hop independent hop dominating set of
G2. Hence, (i) or (ii) holds. Next, suppose SG1 and SG2 are both non-empty. Let
S′
G2

= {a ∈ V (G1) : a′ ∈ SG2}. Suppose SG1 ∪ S′
G2

is not a hop independent set in
G1. Then there exist p, q ∈ SG1 ∪ S′

G2
such that dG1(p, q) = 2 = dS(G)(p, q). Since SG1
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and SG2 are hop independent sets, we may assume that p ∈ SG1 and q ∈ S′
G2

. Then
q′ ∈ SG2 and dS(G)(p, q

′) = 2, contrary to the assumption that S is a hop independent
set. Thus, SG1 ∪ S′

G2
is a hop independent set. Next, let x ∈ V (G1) \ SG1 ∪ S′

G2
. Then

x ∈ V (S(G)) \ S. Since S is a hop dominating of S(G), there exists y ∈ S such that
dS(G)(x, y) = 2. If y ∈ SG1 , then we are done. Suppose y ∈ SG2 , say y = z′, where
z ∈ V (G1). Then z ∈ S′

G2
and dS(G)(x, z) = dG1(x, z) = 2. Therefore, SG1 ∪ S′

G2
is a hop

dominating set. Consequently, SG1 ∪ S′
G2

is a hop independent hop dominating set of G1.
Similarly, S′

G1
∪ SG2 is a hop independent hop dominating set of G2. Hence, (iii) holds.

For the converse, suppose (i) holds. Then S is a hop independent set of S(G). Let
a ∈ V (S(G)) \ S. If a ∈ V (G1) \ S, then there exists b ∈ S such that

dG1(a, b) = dS(G)(a, b) = 2.

Suppose a ∈ V (G2), say a = v′, where v ∈ V (G1). If v ∈ S, then

dG1(a, v) = dS(G)(a, v) = 2.

If v /∈ S, then there exists w ∈ S such that dG1(v, w) = 2. It follows that

dS(G)(a,w) = dS(G)(v
′, w) = 2.

Therefore, S is a hop independent hop dominating set of S(G). Similarly, if (ii) holds, then
S is a hop independent hop dominating set of S(G). Now, suppose (iii) holds. Suppose
further that S = SG1 ∪SG2 is not a hop independent set in S(G). Then there exist a, b ∈ S
such that dS(G)(a, b) = 2. Since SG1 and SG2 are hop independent sets, we may assume
that a ∈ SG1 and b ∈ SG2 . Then dG2(a

′, b) = 2, contrary to the assumption that S′
G1

∪SG2

is a hop independent set in G2. Therefore, S is a hop independent set S(G). Next, let
y ∈ V (S(G)) \ S. Then y /∈ SG1 ∪ SG2 . Suppose y ∈ V (G2) \ SG2 , say y = z′, where
z ∈ V (G1). Then z /∈ S′

G2
. If z ∈ SG1 , then dS(G)(y, z) = dS(G)(z

′, z) = 2. Suppose
z /∈ SG1 . Since SG1 ∪ S′

G2
is a hop dominating set of G1, there exists p ∈ SG1 ∪ S′

G2
such

that dG1(p, z) = 2 = dS(G)(p, z). If p ∈ SG1 , then p ∈ S and dS(G)(p, z
′) = 2. If p ∈ S′

G2
,

then p′ ∈ SG2 ⊆ S and dG2(p
′, z′) = dS(G)(p

′, z′) = 2. Therefore, S is a hop dominating
set of S(G). Consequently, S is a hop independent hop dominating set of S(G).

Corollary 4. Let G be a non-trivial connected graph. Then γhih(S(G)) = γhih(G). In
particular, we have

(i) γhih(S(Kn)) = γhih(Kn) = n for every n ≥ 2,

(ii) γhih(S(Pn)) = γhih(Pn) = γh(Pn) for every n ≥ 2, and

(iii) γhih(S(Cn)) = γhih(Cn) = γh(Cn) for evey n ≥ 3.

Proof. Let S be a γhih-set of G. Then by Theorem 5, S is a hop independent hop
dominating set of S(G). Thus, γhih(S(G)) ≤ |S| = γhih(G).
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On the other hand, suppose S∗ is a γhih-set of S(G). If S∗ is of type (i) or (ii), then
S∗ is a hop independent hop dominating set of G by (i) and (ii) of Theorem 5. Hence,
γhih(S(G)) = |S∗| ≥ γhih(G). Suppose S∗ is of type (iii), say S∗ = SG1 ∪ SG2 . Then
S∗
G = SG1 ∪ S′

G2
is a hop independent hop dominating set of G1 by Theorem 5(iii). This

implies that γhih(S(G)) = |S∗| = |S∗
G| ≥ γhih(G). Consequently, γhih(S(G)) = γhih(G).

Statements (i), (ii) and (iii) follow from Corollary 1, Theorem 3 and Theorem 5.

Lemma 1. [8] Let G be a graph of order n. Then every component of S(G) is a complete
graph if and only if G = Kn.

Theorem 6. Let G be a graph on n vertices. Then 2 ≤ γhih(S(G)) ≤ 2n. Moreover,
γhih(S(G)) = 2n if and only if G = Kn.

Proof. Since 2 ≤ |V (S(G))| ≤ 2n, it follows that 2 ≤ γhih(S(G)) ≤ 2n by Theorem
3. Suppose γhih(S(G)) = 2n. Then every component of S(G) is a complete graph by
Theorem 3. Hence, G = Kn by Lemma 1.

For the converse, suppose G = Kn. Then S(G) = K2n. Hence, γhih(S(G)) = 2n by
Theorem 3.

Theorem 7. Let G be a graph of order n. Then 1 ≤ cpnd(G) ≤ n. Moreover,

(i) cpnd(G) = 1 if and only if G has an isolated vertex.

(ii) cpnd(G) = 2 if and only if G has no isolated vertex and there exist adjacent vertices
x and y of G such that NG(x) ∩NG(y) = ∅.

(iii) cpnd(G) = n if and only if G is a complete graph.

Proof. Celarly, 1 ≤ cpnd(G) ≤ n.
(i) Suppose cpnd(G) = 1, say {p} is a cpnd-set of G. Clearly, p is an isolated vertex

of G.
Conversely, suppose G has an isolated vertex, say a. Then {a} is a cpnd-set of G.

Hence, cpnd(G) = 1.
(ii) Suppose cpnd(G) = 2, say C = {x, y} is a clique pointwise non-dominating set

of G. Then x and y are adjacent. By (i), G has no isolated vertex. Now, suppose that
NG(x) ∩ NG(y) ̸= ∅. Let a ∈ NG(x) ∩ NG(y). Then a ∈ V (G) \ C. Since a is adjacent
to both x and y, it follows that C is not a pointwise non-dominating set, a contradiction.
Hence, NG(x) ∩NG(y) = ∅.

Conversely, suppose G has no isolated vertex and there exist adjacent vertices x and
y of G such that NG(x) ∩NG(y) = ∅. Let C = {x, y} and a ∈ V (G) \C. By assumption,
a is not adjacent to x or y. This implies that C is a clique pointwise non-dominating
set, and so cpnd(G) ≤ 2. Since G has no isolated vertex, cpnd(G) ≥ 2. Consequently,
cpnd(G) = 2.

(iii) Suppose cpnd(G) = n. Then C = V (G) is the only clique pointwise non-
dominating set of G. It follows that G is a complete graph.

The converse is clear.

The next result follows immediately from Theorem 7(ii).



J. Hassan, S. Canoy / Eur. J. Pure Appl. Math, 15 (4) (2022), 1783-1796 1791

Corollary 5. Let n be any positive integer. Then

(i) cpnd(Pn) = 2 for any n ≥ 2.

(ii) cpnd(Cn) = 2 for any n ≥ 4.

Theorem 8. [7] Let G and H be any two graphs. A set S ⊆ V (G+H) is hop dominating
set of G+H if and only if S = SG ∪SH , where SG and SH are pointwise non-dominating
sets of G and H, respectively.

Theorem 9. [3] Let G and H be graphs. Then S is a non-empty hop independent set of
G+H if and only if one of the following statements holds:

(i) S is a clique in G.

(ii) S is a clique in H

(iii) S ∩ V (G) and S ∩ V (G) are cliques in G and H, respectively.

Theorem 10. Let G and H be two graphs. A set S ⊆ V (G + H) is a hop independent
hop dominating set of G + H if and only if S = SG ∪ SH , where SG and SH are clique
pointwise non-dominating sets of G and H, respectively.

Proof. Suppose S is a hop independent hop dominating set of G +H. Then SG and
SH are both non-empty. Since S is a hop dominating set, SG and SH are pointwise non-
dominating sets of G and H, respectively by Theorem 8. Since S is a hop independent
set, SG and SH are cliques in G and H, respectively, by Theorem 9. Therefore, SG and
SH are clique pointwise non-dominating sets of G and H, respectively.

Conversely, suppose that S = SG ∪ SH , where SG and SH are clique pointwise non-
dominating sets of G and H, respectively. Since SG and SH are pointwise non-dominating
sets, S = SG ∪ SH is a hop dominating set of G+H by Theorem 8. Since SG and SH are
cliques, it follows that S = SG ∪ SH is a hop independent set of G + H by Theorem 9.
Consequently, S = SG ∪ SH is a hop independent hop dominating set of G+H.

The next result follows from Theorem 7, Corollary 5 and Theorem 10.

Corollary 6. Let G and H be graphs. Then γhih(G + H) = cpnd(G) + cpnd(H). In
particular, we have

(i) γhih(Kn +H) = n+ cpnd(H) for all n ≥ 1,

(ii) γhih(G+H) = 2 if G and H contain isolated vertices,

(iii) γhih(Wn) = γhih(K1 + Cn) = 3 for all n ≥ 4,

(iv) γhih(Fn) = γhih(K1 + Pn) = 3 for all n ≥ 2,

(v) γhih(Kn +Km) = n+m for all n,m ≥ 1,
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(vi) γhih(Pn + Pm) = 4 for all n,m ≥ 2,

(vii) γhih(Cn + Cm) = 4 for all n,m ≥ 4, and

(viii) γhih(K1,n) = γhih(K1 +Kn) = 2 for all n ≥ 1.

Theorem 11. [3] Let G be a non-trivial connected graph and let H be any graph. Then
S is a hop independent set in G ◦H if and only if S = A ∪ (∪v∈V (G)Sv) and satisfies the
following conditions:

(i) A is a hop independent set of G.

(ii) Sv is empty or a clique in Hv for each v ∈ V (G) \NG(A).

(iii) Sv = ∅ for each v ∈ NG(A).

Theorem 12. [7] Let G and H be any two graphs. A set C ⊆ V (G) is a hop dominating
set of G ◦H if and only if C = A∪ (∪v∈V (G)∩NG(A)Sv)∪ (∪w∈V (G)\NG(A)Ew) and satisfies
the following conditions:

(i) A ⊆ V (G) such that for each w ∈ V (G) \A, there exists x ∈ A with dG(w, x) = 2 or
there exists y ∈ V (G) ∩NG(w) with V (Hy) ∩ C ̸= ∅.

(ii) Sv ⊆ V (Hv) for each v ∈ V (G) ∩NG(A).

(iii) Ew ⊆ V (Hw) is a pointwise non-dominating set of Hw for each w ∈ V (G) \NG(A).

Theorem 13. Let G be a non-trivial connected graph and let H be any graph. Then C
is a hop independent hop dominating set of G ◦ H if and only if C = A ∪ (∪v∈V (G)Cv),
where A ⊆ V (G), Cv ⊆ V (Hv) for each v ∈ V (G), and satisfies the following conditions:

(i) A = ∅ or A is a hop independent set of G.

(ii) Cy = ∅ for each y ∈ NG(A).

(iii) For each v ∈ V (G)\N2
G[A], there exists w ∈ NG(v) such that Cw is a hop independent

set of Hw.

(iv) For each v ∈ V (G) \NG(A), Cv is a clique pointwise non-dominating set.

Proof. Suppose C is a hop independent hop dominating set of G◦H. Let A = C∩V (G)
and Cv = C ∩ V (Hv) for each v ∈ V (G). Suppose further that A ̸= ∅. Since C is a hop
independent set, A is a hop independent set of G by Theorem 11(i). This shows that (i)
holds. Clearly, (ii) holds by Theorem 11(iii). Next, let v ∈ V (G) \ N2

G[A]. Then v /∈ A
and dG(u, v) ̸= 2 for every u ∈ A. Since C is a hop dominating set of G ◦H, there exists
x ∈ C such that dG◦H(x, v) = 2. It follows that x ∈ Cw for some w ∈ NG(v). Since C is
a hop independent set, it follows that Cw is a hop independent set of Hw, showing that
(iii) holds. Property (iv) follows immediately from Theorem 11(ii) and Theorem 12(iii).
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For the converse, suppose that C has the given form and satisfies conditions (i), (ii),
(iii) and (iv). Then by Theorem 11, C is a hop independent set of G ◦ H. Next, let
a ∈ V (G ◦H) \ C and v ∈ V (G) such that a ∈ V (v +Hv). Consider the following cases:

Case 1: a = v.
Then a ∈ V (G)\A. If a ∈ N2

G(A), then dG(a, b) = dG◦H(a, b) = 2 for some b ∈ A ⊆ C.
If a /∈ N2

G(A), then there exists w ∈ NG(a) such that Cw is a hop independent set by (iii).
Choose any p ∈ Cw. Then p ∈ C and dG◦H(a, p) = 2.

Case 2: a ̸= v.
Then a ∈ V (Hv) \ Cv. If v ∈ NG(A), say cv ∈ E(G ◦ H) for some c ∈ A ⊆ C,

then dG(c, a) = 2. Suppose v /∈ NG(A). By (iv), there exists q ∈ Cv ⊆ C such that
dG◦H(q, a) = 2. Thus, C is a hop dominating set.
Therefore, C is a hop independent hop dominating set in G ◦H.

Consider the following families of graphs:

G1 = {G : G admits a dominating hop independent hop dominating set} and

G2 = {G : G admits a total dominating hop independent hop dominating set}.

Let G be a graph. Denote by

H = {A : A is a hop independent hop dominating set of G},

H1
G = {B : B is a dominating hop independent hop dominating set of G} ifG ∈ G1, and

H2
G = {T : T is a total dominating hop independent hop dominating set of G} ifG ∈ G2.

Corollary 7. Let G be a non-trivial connected graph and let H be any graph. Then

γhih(G ◦H) ≤ min{|A|+ |V (G) \NG(A)|cpnd(H) : A ∈ H}.

In particular, we have

(i) γhih(G ◦H) ≤ min{|B|+ |B \NG(B)|cpnd(H) : B ∈ H1
G} if G ∈ G1, and

(ii) γhih(G ◦H) ≤ γhiht (G) if G ∈ G2
G.

Proof. Let A ∈ H. For each v ∈ V (G) \ NG(A), let Cv be a cpnd-set of Hv. Then
C = A∪(∪v∈V (G)\NG(A)Cv) is a hop independent hop dominating set of G◦H by Theorem
13. Thus,

γhih(G ◦H) ≤ |C| = |A|+
∑

v∈V (G)\NG(A)

|Cv| = |A|+ |V (G) \NG(A)|cpnd(H).

Since A is arbitrary, it follows that

γhih(G ◦H) ≤ min{|A|+ |V (G) \NG(A)|cpnd(H) : A ∈ H}.
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Let G ∈ G1 and let B ∈ H1
G. Since B is a dominating set, it follows that

V (G) \NG(B) = B \NG(B).

Hence, (i) follows from the first inequality. Next, let G ∈ G2 and let T ∈ H2
G. Since T is

a total dominating set of G, it follows that V (G) = NG(T ). Thus,

γhih(G ◦H) ≤ min{|T | : T ∈ H2
G} = γhiht (G)

by the first inequality. Hence, (ii) holds.

Theorem 14. [3] Let G and H be non-trivial connected graphs. Then C =
⋃
x∈S

[{x}×Tx],

where S ⊆ V (G) and Tx ⊆ V (H) for each x ∈ S, is a hop independent set of G[H] if and
only if the following conditions hold.

(i) S is a hop independent set of G.

(ii) Tx is a clique in H for each x ∈ S.

Theorem 15. [7] Let G and H be connected non-trivial graphs. A subset C
⋃

x∈S [{x}×Tx]
of V (G[H] is a hop dominating set of G[H] if and only if the following conditions hold.

(i) S is a hop dominating set of G.

(ii) Tx is a pointwise non-dominating set of H for each x ∈ S with |N2
G(x) ∩ S| = 0.

Theorem 16. Let G and H be non-trivial connected graphs. Then C =
⋃
x∈A

[{x} × Tx],

where A ⊆ V (G) and Tx ⊆ V (H) for each x ∈ A, is a hop independent hop dominating
set of G[H] if and only if the following conditions hold.

(i) A is a hop independent hop dominating set of G.

(ii) Tx is a clique pointwise non-dominating set in H for each x ∈ A.

Proof. Suppose C =
⋃
x∈A

[{x} × Tx] is a hop independent hop dominating set of G[H].

Since C is a hop independent set, it follows that A is a hop independent set of G by
Theorem 14. Moreover, since C is a hop dominating set of G, A is a hop dominating set
by Theorem 15. Hence, (i) holds. Also, by Theorem 14 and Theorem 15, Tx is a clique
pointwise non-dominating set of H for each x ∈ A, respectively. Hence, (ii) holds.

Conversely, suppose that C =
⋃
x∈B

[{x}×Tx] and satisfies (i) and (ii). Then by Theorem

14 and Theorem 15, C is a hop independent hop dominating set of G[H].
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Corollary 8. Let G and H be non-trivial connected graphs. Then

γhih(G[H]) = γhih(G)cpnd(H).

In particular, we have

(i) γhih(Kn[Km]) = γhih(Kn)cpnd(Km) = nm for any n,m ≥ 1,

(ii) γhih(Kn[Pm]) = γhih(Kn)cpnd(Pm) = 2n for any n ≥ 1,m ≥ 3,

(iii) γhih(Kn[Cm]) = γhih(Kn)cpnd(Cm) = 2n for any n ≥ 1,m ≥ 4,

(iv) γhih(Pn[Pm]) = γhih(Pn)cpnd(Pm) = 2γh(Pn) for any n,m ≥ 3, and

(v) γhih(Cn[Cm]) = γhih(Cn)cpnd(Cm) = 2γh(Cn) for any n,m ≥ 4.

Proof. Let A be a γhih-set of G and let T be a cpnd-set of H. For each x ∈ A, set

Tx = T . Then C =
⋃
x∈A

[{x} × Tx] = A × T is a hop independent hop dominating set of

G[H] by Theorem 16. Hence, γhih(G[H]) ≤ |C| = γhih(G)cpnd(H).

On the other hand, if C ′ =
⋃
x∈A′

[{x} × Rx] is a γhih-set of G[H], then A′ is a hop

independent hop dominating set of G and Rx is a clique pointwise non-dominating set of
H for every x ∈ A′ by Theorem 16. Hence,

γhih(G[H]) = |C ′| =
∑
x∈A′

|Rx| ≥ |A′|cpnd(H) ≥ γhih(G)cpnd(H).

Consequently, γhih(G[H]) = γhih(G)cpnd(H). The assertions in (i), (ii), (iii), (iv) and (v)
follow from Theorem 2, Corollary 1, Theorem 7, Corollary 5, and the first part.

4. Conclusion

The concept of hop independent hop domination has been introduced and initially
investigated in this study. As pointed out, every graph admits a hop independent hop
dominating set and the hop independent hop domination number of a graph lies between
the hop domination number and the hop independence number of the graph. Graphs
which attained some specific values for their hop independent hop domination number
have been characterized. Necessary and sufficient conditions for a subset in the shadow
graph, join, corona, and lexicographic product of two graphs have been obtained. These
characterizations have been used to obtain bounds or exact value of the hop independent
hop domination number of each of these graphs. It may be interesting to find bounds
for this newly defined parameter in terms of other known parameters, investigate the
concept for trees and other interesting graphs, and determine the complexity of the hop
independent hop domination problem.
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