Strong Resolving Hop Domination in Graphs
DOI:
https://doi.org/10.29020/nybg.ejpam.v16i1.4578Keywords:
strong resolving hop domination set, strong resolving hop domination number, hop dominated superclique, join, corona, lexicographic productAbstract
A vertex w in a connected graph G strongly resolves two distinct vertices u and v in V (G) if v is in any shortest u-w path or if u is in any shortest v-w path. A set W of vertices in G is a strong resolving set G if every two vertices of G are strongly resolved by some vertex of W. A set S subset of V (G) is a strong resolving hop dominating set of G if S is a strong resolving set in G and for every vertex v ∈ V (G) \ S there exists u ∈ S such that dG(u, v) = 2. The smallest cardinality of such a set S is called the strong resolving hop domination number of G. This paper presents the characterization of the strong resolving hop dominating sets in the join, corona and lexicographic product of graphs. Furthermore, this paper determines the exact value or bounds of their corresponding strong resolving hop domination number.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 European Journal of Pure and Applied Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.