Strong Resolving Hop Domination in Graphs
DOI:
https://doi.org/10.29020/nybg.ejpam.v16i1.4578Keywords:
strong resolving hop domination set, strong resolving hop domination number, hop dominated superclique, join, corona, lexicographic productAbstract
A vertex w in a connected graph G strongly resolves two distinct vertices u and v in V (G) if v is in any shortest u-w path or if u is in any shortest v-w path. A set W of vertices in G is a strong resolving set G if every two vertices of G are strongly resolved by some vertex of W. A set S subset of V (G) is a strong resolving hop dominating set of G if S is a strong resolving set in G and for every vertex v ∈ V (G) \ S there exists u ∈ S such that dG(u, v) = 2. The smallest cardinality of such a set S is called the strong resolving hop domination number of G. This paper presents the characterization of the strong resolving hop dominating sets in the join, corona and lexicographic product of graphs. Furthermore, this paper determines the exact value or bounds of their corresponding strong resolving hop domination number.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 European Journal of Pure and Applied Mathematics

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the journal, the author(s) accept(s) the transfer of copyright of the article to European Journal of Pure and Applied Mathematics.
European Journal of Pure and Applied Mathematics will be Copyright Holder.