Structural and Spectral Properties of k-Quasi Class Q(N) and k-Quasi Class Q*(N) Operators

Authors

  • Shqipe Lohaj "Hasan Prishtina" University

DOI:

https://doi.org/10.29020/nybg.ejpam.v15i4.4580

Keywords:

-quasi-, Aluthge Transformation

Abstract

Let T be a bounded linear operator on a complex Hilbert space H. In this paper we introduce two new classes of operators: k−quasi class Q(N ) and k−quasi class Q*(N ).

An operator T ∈ L(H) is of k−quasi class Q(N ) for a fixed real number N ≥ 1 and k a natural number, if T satisfies N ∥T^k+1(x)∥^2 ≤ ∥T^k+2(x)∥^2 + ∥T^k(x)∥^2, for all x ∈ H.

An operator T ∈ L(H) is of k−quasi class Q*(N ) for a fixed real number N ≥ 1 and k a natural number, if T satisfies
N ∥T*T^k(x)∥^2 ≤ ∥T^k+2(x)∥^2 + ∥T^k(x)∥^2, for all x ∈ H.

We study structural and spectral properties of these classes of operators. Also we compare this new classes of operators with other known classes of operators

Downloads

How to Cite

Lohaj, S. (2022). Structural and Spectral Properties of k-Quasi Class Q(N) and k-Quasi Class Q*(N) Operators. European Journal of Pure and Applied Mathematics, 15(4), 1836–1853. https://doi.org/10.29020/nybg.ejpam.v15i4.4580