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1. Introduction

In 1996, Dontchev [8] introduced and studied the concept of contra-continuous func-
tions. In 1999, Dontchev and Noiri [10] considered a slightly weaker form of contra-
continuity called contra-semicontinuity and investigated the class of strongly S-closed
spaces. In 2001, Caldas and Jafari [7] introduced and investigated the concept of contra-
β-continuous functions. In 2002, Jafari and Noiri [16] introduced and studied a new form of
functions called contra-precontinuous functions. In 2004, Ekici [11] introduced and inves-
tigated almost contra-precontinuity as a new generalization of regular set-connectedness
[9], contra-precontinuity [16], contra-continuity [8], almost s-continuity [19] and perfect
continuity [18]. In 2005, Nasef [17] defined a new class of functions called contra-γ-
continuous functions which lies between classes of contra-semicontinuous functions and
contra-β-continuous functions. The first initiation of the concept of contra-continuous
multifunctions has been done by Ekici et al. [12]. In 2009, Ekici et al. [13] introduced
and studied a new generalization of contra-continuous multifunctions called almost contra-
continuous multifunctions. In 2010, Ekici et al. [14] introduced and studied two new con-
cepts namely contra-precontinuous multifunctions and almost contra-precontinuous multi-
functions which are containing the class of contra-continuous multifunctions and contained
in the class of weakly precontinuous multifunctions. In 2018, Boonpok et al. [6] introduced
and studied the notions of upper and lower almost (τ1, τ2)-precontinuous multifunctions.
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Abd El-Monsef et al. [15] introduced a weak form of open sets called β-open sets. The
notion of β-open sets is equivalent to that of semi-preopen sets [1]. Noiri and Hatir [20]
introduced the concept of Λsp-sets in terms of the concept of β-open sets and investigated
the notion of Λsp-closed sets by using Λsp-sets. In [3], the author introduced the concepts
of (Λ, sp)-open sets and (Λ, sp)-closed sets which are defined by utilizing the notions of
Λsp-sets and β-closed sets. The concept of (Λ, sp)-continuous multifunctions was intro-
duced and investigated in [3]. The purpose of the present paper is to introduce the notions
of upper and lower almost contra-(Λ, sp)-continuous multifunctions. In particular, several
characterizations of upper and lower almost contra-(Λ, sp)-continuous multifunctions are
discussed.

2. Preliminaries

Let A be a subset of a topological space (X, τ). The closure of A and the interior
of A are denoted by Cl(A) and Int(A), respectively. A subset A of a topological space
(X, τ) is said to be β-open [15] if A ⊆ Cl(Int(Cl(A))). The complement of a β-open set is
called β-closed. The family of all β-open sets of a topological space (X, τ) is denoted by
β(X, τ). A subset Λsp(A) [20] is defined as follows: Λsp(A) = ∩{U | A ⊆ U,U ∈ β(X, τ)}.
A subset A of a topological space (X, τ) is called a Λsp-set [20] if A = Λsp(A). A subset A
of a topological space (X, τ) is called (Λ, sp)-closed [3] if A = T ∩C, where T is a Λsp-set
and C is a β-closed set. The complement of a (Λ, sp)-closed set is called (Λ, sp)-open.
Let A be a subset of a topological space (X, τ). A point x ∈ X is called a (Λ, sp)-cluster
point [3] of A if A ∩ U ̸= ∅ for every (Λ, sp)-open set U of X containing x. The set of all
(Λ, sp)-cluster points of A is called the (Λ, sp)-closure [3] of A and is denoted by A(Λ,sp).
The union of all (Λ, sp)-open sets contained in A is called the (Λ, sp)-interior [3] of A and
is denoted by A(Λ,sp).

Lemma 1. [3] Let A and B be subsets of a topological space (X, τ). For the (Λ, sp)-closure,
the following properties hold:

(1) A ⊆ A(Λ,sp) and [A(Λ,sp)](Λ,sp) = A(Λ,sp).

(2) If A ⊆ B, then A(Λ,sp) ⊆ B(Λ,sp).

(3) A(Λ,sp) is (Λ, sp)-closed.

(4) A is (Λ, sp)-closed if and only if A = A(Λ,sp).

Lemma 2. [3] Let A and B be subsets of a topological space (X, τ). For the (Λ, sp)-
interior, the following properties hold:

(1) A(Λ,sp) ⊆ A and [A(Λ,sp)](Λ,sp) = A(Λ,sp).

(2) If A ⊆ B, then A(Λ,sp) ⊆ B(Λ,sp).

(3) A(Λ,sp) is (Λ, sp)-open.
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(4) A is (Λ, sp)-open if and only if A(Λ,sp) = A.

(5) [X −A](Λ,sp) = X −A(Λ,sp).

(6) [X −A](Λ,sp) = X −A(Λ,sp).

A subset A of a topological space (X, τ) is said to be s(Λ, sp)-open (resp. p(Λ, sp)-open,
β(Λ, sp)-open, α(Λ, sp)-open, r(Λ, sp)-open) if A ⊆ [A(Λ,sp)]

(Λ,sp) (resp. A ⊆ [A(Λ,sp)](Λ,sp),

A ⊆ [[A(Λ,sp)](Λ,sp)]
(Λ,sp), A ⊆ [[A(Λ,sp)]

(Λ,sp)](Λ,sp), A = [A(Λ,sp)](Λ,sp)) [3]. The family of
all s(Λ, sp)-open (resp. p(Λ, sp)-open, β(Λ, sp)-open, α(Λ, sp)-open, r(Λ, sp)-open) sets in
a topological space (X, τ) is denoted by sΛspO(X, τ) (resp. pΛspO(X, τ), βΛspO(X, τ),
αΛspO(X, τ), rΛspO(X, τ)). The complement of a s(Λ, sp)-open (resp. p(Λ, sp)-open,
β(Λ, sp)-open, α(Λ, sp)-open, r(Λ, sp)-open) set is said to be s(Λ, sp)-closed (resp. p(Λ, sp)-
closed, β(Λ, sp)-closed, α(Λ, sp)-closed, r(Λ, sp)-closed). The family of all s(Λ, sp)-closed
(resp. p(Λ, sp)-closed, β(Λ, sp)-closed, α(Λ, sp)-closed, r(Λ, sp)-closed) sets in a topologi-
cal space (X, τ) is denoted by sΛspC(X, τ) (resp. pΛspC(X, τ), βΛspC(X, τ), αΛspC(X, τ),
rΛspC(X, τ)). Let A be a subset of a topological space (X, τ). The intersection of
all s(Λ, sp)-closed (resp. p(Λ, sp)-closed, α(Λ, sp)-closed) sets containing A is called the
s(Λ, sp)-closure [23] (resp. p(Λ, sp)-closure, α(Λ, sp)-closure [5, 22]) of A and is denoted
by As(Λ,sp) (resp. Ap(Λ,sp), Aα(Λ,sp)).

Throughout this paper, the spaces (X, τ) and (Y, σ) (or simply X and Y ) always mean
topological spaces and F : X → Y (resp. f : X → Y ) presents a multivalued (resp.
single valued) function. For a multifunction F : X → Y , following [2] we shall denote
the upper and lower inverse of a set B of Y by F+(B) and F−(B), respectively, that is,
F+(B) = {x ∈ X | F (x) ⊆ B} and F−(B) = {x ∈ X | F (x) ∩ B ̸= ∅}. In particular,
F−(y) = {x ∈ X | y ∈ F (x)} for each point y ∈ Y . For each A ⊆ X, F (A) = ∪x∈AF (x).
Moreover, F : X → Y is called upper semi-continuous (resp. lower semi-continuous) if
F+(V ) (resp. F−(V )) is open in X for every open set V of Y [21].

3. On upper and lower almost contra-(Λ, sp)-continuous multifunctions

We begin this section by introducing the concepts of upper and lower almost contra-
(Λ, sp)-continuous multifunctions.

Definition 1. A multifunction F : (X, τ) → (Y, σ) is said to be:

(i) lower almost contra-(Λ, sp)-continuous at x ∈ X if, for each r(Λ, sp)-closed set K
of Y with x ∈ F−(K), there exists a (Λ, sp)-open set U of X containing x such that
U ⊆ F−(K);

(ii) upper almost contra-(Λ, sp)-continuous at x ∈ X if, for each r(Λ, sp)-closed set K
of Y with x ∈ F+(K), there exists a (Λ, sp)-open set U of X containing x such that
U ⊆ F+(K);

(iii) lower (upper) almost contra-(Λ, sp)-continuous if F has this property at each point
of X.
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Theorem 1. For a multifunction F : (X, τ) → (Y, σ), the following properties are equiv-
alent:

(1) F is upper almost contra-(Λ, sp)-continuous;

(2) F+(K) is (Λ, sp)-open in X for every r(Λ, sp)-closed set K of Y ;

(3) F−(V ) is (Λ, sp)-closed in X for every r(Λ, sp)-open set V of Y ;

(4) F−([V (Λ,sp)](Λ,sp)) is (Λ, sp)-closed in X for every (Λ, sp)-open set V of Y ;

(5) F+([K(Λ,sp)]
(Λ,sp)) is (Λ, sp)-open in X for every (Λ, sp)-closed set K of Y ;

(6) for each x ∈ X and for each s(Λ, sp)-open set V of Y with F (x) ⊆ V , there exists a
(Λ, sp)-open set U of X containing x such that F (U) ⊆ V (Λ,sp);

(7) F+(V ) ⊆ [F+(V (Λ,sp))](Λ,sp) for every s(Λ, sp)-open set V of Y .

Proof. (1) ⇒ (2): Let K be any r(Λ, sp)-closed set of Y and x ∈ F+(K). Since F is
upper almost contra (Λ, sp)-continuous, there exists a (Λ, sp)-open set U of X containing
x such that U ⊆ F+(K). Thus, F+(K) is (Λ, sp)-open in X.

(2) ⇒ (1): The proof is obvious.
(2) ⇔ (3): It follows from the fact that F+(Y −K) = X − F−(K) for every subset K

of Y .
(3) ⇔ (4): Let V be any (Λ, sp)-open set of Y . Then [V (Λ,sp)](Λ,sp) is r(Λ, sp)-open in

Y and by (3), F−([V (Λ,sp)](Λ,sp)) is (Λ, sp)-closed in X. The converse is obvious.
(4) ⇔ (5): It follows from the fact that F+(Y −K) = X − F−(K) for every subset K

of Y .
(5) ⇔ (2): It similar to that (3) ⇔ (4).
(6) ⇒ (7): Let V be any s(Λ, sp)-open set of Y and x ∈ F+(V ). Then F (x) ⊆ V .

By (6), there exists a (Λ, sp)-open set U of X containing x such that F (U) ⊆ V (Λ,sp).
Thus, x ∈ U ⊆ F+(V (Λ,sp)) and hence x ∈ [F+(V (Λ,sp))](Λ,sp). This shows that F+(V ) ⊆
[F+(V (Λ,sp))](Λ,sp).

(7) ⇒ (2): Let K be any r(Λ, sp)-closed set of Y . Then K is s(Λ, sp)-open in Y . By
(7), we have F+(K) ⊆ [F+(K)](Λ,sp) and hence F+(K) is (Λ, sp)-open in X.

(2) ⇒ (6): Let x ∈ X and V be any s(Λ, sp)-open set of Y with F (x) ⊆ V . Since
V (Λ,sp) is r(Λ, sp)-closed and by (2), F+(V (Λ,sp)) is (Λ, sp)-open in X. Then, there exists
a (Λ, sp)-open set U of X containing x such that U ⊆ F+(V (Λ,sp)). Thus, F (U) ⊆ V (Λ,sp).

Theorem 2. For a multifunction F : (X, τ) → (Y, σ), the following properties are equiv-
alent:

(1) F is lower almost contra-(Λ, sp)-continuous;

(2) F−(K) is (Λ, sp)-open in X for every r(Λ, sp)-closed set K of Y ;

(3) F+(V ) is (Λ, sp)-closed in X for every r(Λ, sp)-open set V of Y ;
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(4) F+([V (Λ,sp)](Λ,sp)) is (Λ, sp)-closed in X for every (Λ, sp)-open set V of Y ;

(5) F−([K(Λ,sp)]
(Λ,sp)) is (Λ, sp)-open in X for every (Λ, sp)-closed set K of Y ;

(6) for each x ∈ X and for each s(Λ, sp)-open set V of Y with F (x)∩V ̸= ∅, there exists
a (Λ, sp)-open set U of X containing x such that F (z)∩ V (Λ,sp) ̸= ∅ for each z ∈ U ;

(7) F−(V ) ⊆ [F−(V (Λ,sp))](Λ,sp) for every s(Λ, sp)-open set V of Y .

Proof. The proof is similar to that of Theorem 1.

Definition 2. A function f : (X, τ) → (Y, σ) is called almost contra-(Λ, sp)-continuous
if, for each x ∈ X and each r(Λ, sp)-closed set K of Y containing f(x), there exists a
(Λ, sp)-open set U of X containing x such that f(U) ⊆ K.

Corollary 1. For a function f : (X, τ) → (Y, σ), the following properties are equivalent:

(1) f is almost contra-(Λ, sp)-continuous;

(2) f−1(K) is (Λ, sp)-open in X for every r(Λ, sp)-closed set K of Y ;

(3) f−1(V ) is (Λ, sp)-closed in X for every r(Λ, sp)-open set V of Y ;

(4) f−1([V (Λ,sp)](Λ,sp)) is (Λ, sp)-closed in X for every (Λ, sp)-open set V of Y ;

(5) f−1([K(Λ,sp)]
(Λ,sp)) is (Λ, sp)-open in X for every (Λ, sp)-closed set K of Y ;

(6) for each x ∈ X and for each s(Λ, sp)-open set V of Y containing f(x), there exists
a (Λ, sp)-open set U of X containing x such that f(U) ⊆ V (Λ,sp);

(7) f−1(V ) ⊆ [f−1(V (Λ,sp))](Λ,sp) for every s(Λ, sp)-open set V of Y .

Lemma 3. [4] Let V be a subset of a topological space (X, τ). If V ∈ βΛspO(X, τ), then
V (Λ,sp) ∈ rΛspC(X, τ).

Theorem 3. For a multifunction F : (X, τ) → (Y, σ), the following properties are equiv-
alent:

(1) F is upper almost contra-(Λ, sp)-continuous;

(2) F+(V (Λ,sp)) is (Λ, sp)-open in X for every β(Λ, sp)-open set V of Y ;

(3) F+(V (Λ,sp)) is (Λ, sp)-open in X for every s(Λ, sp)-open set V of Y ;

(4) F−([V (Λ,sp)](Λ,sp)) is (Λ, sp)-closed in X for every p(Λ, sp)-open set V of Y .
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Proof. (1) ⇒ (2): Let V be any β(Λ, sp)-open set of Y . By Lemma 3, V (Λ,sp) is
r(Λ, sp)-closed and by Theorem 1, F+(V (Λ,sp)) is (Λ, sp)-open in X.

(2) ⇒ (3): The proof is obvious.
(3) ⇒ (4): Let V be any p(Λ, sp)-open set of Y . Then Y − [V (Λ,sp)](Λ,sp) is r(Λ, sp)-

closed and s(Λ, sp)-open. By (3), we have

X − F−([V (Λ,sp)](Λ,sp)) = F+(Y − [V (Λ,sp)](Λ,sp))

= F+([Y − [V (Λ,sp)](Λ,sp)]
(Λ,sp))

is (Λ, sp)-open and hence F−([V (Λ,sp)](Λ,sp)) is (Λ, sp)-closed in X.
(4) ⇒ (1): Let V be any r(Λ, sp)-open set of Y . Then V is p(Λ, sp)-open in Y and by

(4), F−(V ) = F−([V (Λ,sp)](Λ,sp)) is (Λ, sp)-closed in X. Thus, by Theorem 1, F is upper
almost contra-(Λ, sp)-continuous.

Theorem 4. For a multifunction F : (X, τ) → (Y, σ), the following properties are equiv-
alent:

(1) F is lower almost contra-(Λ, sp)-continuous;

(2) F−(V (Λ,sp)) is (Λ, sp)-open in X for every β(Λ, sp)-open set V of Y ;

(3) F−(V (Λ,sp)) is (Λ, sp)-open in X for every s(Λ, sp)-open set V of Y ;

(4) F+([V (Λ,sp)](Λ,sp)) is (Λ, sp)-closed in X for every p(Λ, sp)-open set V of Y .

Proof. The proof is similar to that of Theorem 3.

Corollary 2. For a function f : (X, τ) → (Y, σ), the following properties are equivalent:

(1) f is almost contra-(Λ, sp)-continuous;

(2) f−1(V (Λ,sp)) is (Λ, sp)-open in X for every β(Λ, sp)-open set V of Y ;

(3) f−1(V (Λ,sp)) is (Λ, sp)-open in X for every s(Λ, sp)-open set V of Y ;

(4) f−1([V (Λ,sp)](Λ,sp)) is (Λ, sp)-closed in X for every p(Λ, sp)-open set V of Y .

Lemma 4. For a subset A of a topological space (X, τ), the following properties hold:

(1) Aα(Λ,sp) = A ∪ [[A(Λ,sp)](Λ,sp)]
(Λ,sp) [5, 22].

(2) As(Λ,sp) = A ∪ [A(Λ,sp)](Λ,sp) [23].

(3) Ap(Λ,sp) = A ∪ [A(Λ,sp)]
(Λ,sp).

Lemma 5. For a subset V of a topological space (X, τ), the following properties hold:

(1) V α(Λ,sp) = V (Λ,sp) for every V ∈ βΛspO(X, τ).
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(2) V p(Λ,sp) = V (Λ,sp) for every V ∈ sΛspO(X, τ).

(3) V s(Λ,sp) = V (Λ,sp) for every V ∈ pΛspO(X, τ).

Theorem 5. For a multifunction F : (X, τ) → (Y, σ), the following properties are equiv-
alent:

(1) F is upper almost contra-(Λ, sp)-continuous;

(2) F+(V α(Λ,sp)) is (Λ, sp)-open in X for every β(Λ, sp)-open set V of Y ;

(3) F+(V p(Λ,sp)) is (Λ, sp)-open in X for every s(Λ, sp)-open set V of Y ;

(4) F−([V s(Λ,sp)](Λ,sp)) is (Λ, sp)-closed in X for every p(Λ, sp)-open set V of Y .

Proof. This is an immediate consequence of Theorem 3 and Lemma 5.

Theorem 6. For a multifunction F : (X, τ) → (Y, σ), the following properties are equiv-
alent:

(1) F is lower almost contra-(Λ, sp)-continuous;

(2) F−(V α(Λ,sp)) is (Λ, sp)-open in X for every β(Λ, sp)-open set V of Y ;

(3) F−(V p(Λ,sp)) is (Λ, sp)-open in X for every s(Λ, sp)-open set V of Y ;

(4) F+([V s(Λ,sp)](Λ,sp)) is (Λ, sp)-closed in X for every p(Λ, sp)-open set V of Y .

Proof. This is an immediate consequence of Theorem 4 and Lemma 5.

Corollary 3. For a function f : (X, τ) → (Y, σ), the following properties are equivalent:

(1) f is almost contra-(Λ, sp)-continuous;

(2) f−1(V α(Λ,sp)) is (Λ, sp)-open in X for every β(Λ, sp)-open set V of Y ;

(3) f−1(V p(Λ,sp)) is (Λ, sp)-open in X for every s(Λ, sp)-open set V of Y ;

(4) f−1([V s(Λ,sp)](Λ,sp)) is (Λ, sp)-closed in X for every p(Λ, sp)-open set V of Y .

Theorem 7. For a multifunction F : (X, τ) → (Y, σ), the following properties are equiv-
alent:

(1) F is upper almost contra-(Λ, sp)-continuous;

(2) [F−(V )](Λ,sp) ⊆ F−([V (Λ,sp)](Λ,sp)) for every (Λ, sp)-open set V of Y ;

(3) [F−(V )](Λ,sp) ⊆ F−(V s(Λ,sp)) for every (Λ, sp)-open set V of Y .
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Proof. (1) ⇒ (2): Let V be any (Λ, sp)-open set of Y . Then [V (Λ,sp)](Λ,sp) is

r(Λ, sp)-open in Y . By Theorem 1, F−([V (Λ,sp)](Λ,sp)) is (Λ, sp)-closed in X. Since V ⊆
[V (Λ,sp)](Λ,sp), F

−(V ) ⊆ F−([V (Λ,sp)](Λ,sp)) and hence [F−(V )](Λ,sp) ⊆ F−([V (Λ,sp)](Λ,sp)).
(2) ⇒ (1): Let V be any r(Λ, sp)-open set of Y . Then V is (Λ, sp)-open in Y . By (2),

we have [F−(V )](Λ,sp) ⊆ F−([V (Λ,sp)](Λ,sp)) = F−(V ) and hence F−(V ) is (Λ, sp)-closed
in X. Thus, by Theorem 1, F is upper almost contra-(Λ, sp)-continuous.

(2) ⇔ (3): It follows from Lemma 4.

Theorem 8. For a multifunction F : (X, τ) → (Y, σ), the following properties are equiv-
alent:

(1) F is lower almost contra-(Λ, sp)-continuous;

(2) [F+(V )](Λ,sp) ⊆ F+([V (Λ,sp)](Λ,sp)) for every (Λ, sp)-open set V of Y ;

(3) [F+(V )](Λ,sp) ⊆ F+(V s(Λ,sp)) for every (Λ, sp)-open set V of Y .

Proof. The proof is similar to that of Theorem 7.

Corollary 4. For a function f : (X, τ) → (Y, σ), the following properties are equivalent:

(1) f is almost contra-(Λ, sp)-continuous;

(2) [f−1(V )](Λ,sp) ⊆ f−1([V (Λ,sp)](Λ,sp)) for every (Λ, sp)-open set V of Y ;

(3) [f−1(V )](Λ,sp) ⊆ f−1(V s(Λ,sp)) for every (Λ, sp)-open set V of Y .

Let A be a subset of a topological space (X, τ). A point x ∈ X is said to be in the
θs(Λ, sp)-closure of A, denoted by Aθs(Λ,sp), if A ∩ U (Λ,sp) ̸= ∅ for each s(Λ, sp)-open set
U of X containing x. A subset A of a topological space (X, τ) is called θs(Λ, sp)-closed if
A = Aθs(Λ,sp). The complement of a θs(Λ, sp)-closed set is called θs(Λ, sp)-open.

Theorem 9. For a multifunction F : (X, τ) → (Y, σ), the following properties are equiv-
alent:

(1) F is lower almost contra-(Λ, sp)-continuous;

(2) F−(V ) is (Λ, sp)-open in X for every θs(Λ, sp)-open set V of Y ;

(3) F+(K) is (Λ, sp)-closed in X for every θs(Λ, sp)-closed set K of Y ;

(4) [F+([B(Λ,sp)](Λ,sp))]
(Λ,sp) ⊆ F+(Bs(Λ,sp)) for every subset B of Y ;

(5) [F+(B)](Λ,sp) ⊆ F+(Bθs(Λ,sp)) for every subset B of Y ;

(6) F (A(Λ,sp)) ⊆ [F (A)]θs(Λ,sp) for every subset A of X.
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Proof. (1) ⇒ (2): Let V be any θs(Λ, sp)-open set of Y . There exists a family of
r(Λ, sp)-closed sets {Kγ | γ ∈ Γ} such that V = ∪{Kγ | γ ∈ Γ}. It follows from Theorem
2 that F−(V ) = ∪{F−(Kγ) | γ ∈ Γ} is (Λ, sp)-open in X.

(2) ⇒ (3): The proof is obvious.
(3) ⇒ (4): Let B be any subset of Y . Then [B(Λ,sp)](Λ,sp) is r(Λ, sp)-open and hence

[B(Λ,sp)](Λ,sp) is θs(Λ, sp)-open in Y . By (3), F+([B(Λ,sp)](Λ,sp)) is (Λ, sp)-closed in X.

Thus, [F+([B(Λ,sp)](Λ,sp))]
(Λ,sp) = F+([B(Λ,sp)](Λ,sp)) ⊆ F+(Bs(Λ,sp)).

(4) ⇒ (5): Let B be any subset of Y . For any r(Λ, sp)-open set V with B ⊆ V , we
have [F+(B)](Λ,sp) ⊆ [F+(V )](Λ,sp) = [F+([V (Λ,sp)](Λ,sp))]

(Λ,sp) ⊆ F+(V s(Λ,sp)) = F+(V ).

Thus, [F+(B)](Λ,sp) ⊆ F+(∩{V ∈ rΛspO(X, τ) | B ⊆ V }) = F+(Bθs(Λ,sp)).
(5) ⇒ (1): Let V be any s(Λ, sp)-open set of Y . By (5),

X − [F−(V (Λ,sp))](Λ,sp) = [F+(Y − V (Λ,sp))](Λ,sp)

⊆ F+([Y − V (Λ,sp)]θs(Λ,sp))

= F+(Y − V (Λ,sp))

= X − F−(V (Λ,sp))

and hence F−(V ) ⊆ F−(V (Λ,sp)) ⊆ [F−(V (Λ,sp))](Λ,sp). By Theorem 2, F is lower almost
contra-(Λ, sp)-continuous.

(5) ⇒ (6): Let A be any subset of X and B = F (A). Then A ⊆ F+(B) and by
(5), A(Λ,sp) ⊆ [F+(B)](Λ,sp) ⊆ F+(Bθs(Λ,sp)). Thus, F (A(Λ,sp)) ⊆ F (F+(Bθs(Λ,sp))) ⊆
Bθs(Λ,sp) = [F (A)]θs(Λ,sp).

(6) ⇒ (5): Let B be any subset of Y . By (6), we have

F ([F+(B)](Λ,sp)) ⊆ [F (F+(B))]θs(Λ,sp) ⊆ Bθs(Λ,sp)

and hence [F+(B)](Λ,sp) ⊆ F+(Bθs(Λ,sp)).

Corollary 5. For a function f : (X, τ) → (Y, σ), the following properties are equivalent:

(1) f is almost contra-(Λ, sp)-continuous;

(2) f−1(V ) is (Λ, sp)-open in X for every θs(Λ, sp)-open set V of Y ;

(3) f−1(K) is (Λ, sp)-closed in X for every θs(Λ, sp)-closed set K of Y ;

(4) [f−1([B(Λ,sp)](Λ,sp))]
(Λ,sp) ⊆ f−1(Bs(Λ,sp)) for every subset B of Y ;

(5) [f−1(B)](Λ,sp) ⊆ f−1(Bθs(Λ,sp)) for every subset B of Y ;

(6) f(A(Λ,sp)) ⊆ [f(A)]θs(Λ,sp) for every subset A of X.

Definition 3. A multifunction F : (X, τ) → (Y, σ) is said to be upper strongly s(Λ, sp)-
continuous if, for each x ∈ X and each s(Λ, sp)-open set V of Y such that F (x) ⊆ V ,
there exists a (Λ, sp)-open set U of X containing x such that F (U) ⊆ V .
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Theorem 10. For a multifunction F : (X, τ) → (Y, σ), the following properties are
equivalent:

(1) F is upper strongly s(Λ, sp)-continuous;

(2) F+(V ) is (Λ, sp)-open in X for every s(Λ, sp)-open set V of Y ;

(3) F−(K) is (Λ, sp)-closed in X for every s(Λ, sp)-closed set K of Y ;

(4) [F−(B)](Λ,sp) ⊆ F−(Bs(Λ,sp)) for every subset B of Y ;

(5) F+(Bs(Λ,sp)) ⊆ [F+(B)](Λ,sp) for every subset B of Y .

Proof. (1) ⇒ (2): Let V be any s(Λ, sp)-open set of Y and x ∈ F+(V ). Then
F (x) ⊆ V . Since F is upper strongly s(Λ, sp)-continuous, there exists a (Λ, sp)-open set U
of X containing x such that U ⊆ F+(V ). Thus, F+(V ) ⊆ [F+(V )](Λ,sp) and hence F+(V )
is (Λ, sp)-open in X.

(2) ⇒ (3): The proof is obvious.
(3) ⇒ (4): Let B be any subset of Y . Then Bs(Λ,sp) is s(Λ, sp)-closed and by

(3), F−(Bs(Λ,sp)) is (Λ, sp)-closed in X. Thus, [F−(B)](Λ,sp) ⊆ [F−(Bs(Λ,sp))](Λ,sp) =
F−(Bs(Λ,sp)).

(4) ⇒ (5): Let B be any subset of Y . By (4), X− [F+(B)](Λ,sp) = [X−F+(B)](Λ,sp) =

[F−(Y −B)](Λ,sp) ⊆ F−([Y −B]s(Λ,sp)) = F−(Y −Bs(Λ,sp)) = X−F+(Bs(Λ,sp)). Therefore,
F+(Bs(Λ,sp)) ⊆ [F+(B)](Λ,sp).

(5) ⇒ (1): Let x ∈ X and V be any s(Λ, sp)-open set of Y such that F (x) ⊆ V . By (5),
we have F+(V ) ⊆ [F+(V )](Λ,sp) and hence F+(V ) is (Λ, sp)-open in X. Put U = F+(V ),
then U is a (Λ, sp)-open set of X containing x such that F (U) ⊆ V . This shows that F is
upper strongly s(Λ, sp)-continuous.

Definition 4. A multifunction F : (X, τ) → (Y, σ) is said to be lower strongly s(Λ, sp)-
continuous if, for each x ∈ X and each s(Λ, sp)-open set V of Y such that F (x) ∩ V ̸= ∅,
there exists a (Λ, sp)-open set U of X containing x such that F (z)∩V ̸= ∅ for each z ∈ U .

Theorem 11. For a multifunction F : (X, τ) → (Y, σ), the following properties are
equivalent:

(1) F is lower strongly s(Λ, sp)-continuous;

(2) F−(V ) is (Λ, sp)-open in X for every s(Λ, sp)-open set V of Y ;

(3) F+(K) is (Λ, sp)-closed in X for every s(Λ, sp)-closed set K of Y ;

(4) [F+(B)](Λ,sp) ⊆ F+(Bs(Λ,sp)) for every subset B of Y ;

(5) F−(Bs(Λ,sp)) ⊆ [F−(B)](Λ,sp) for every subset B of Y .

Proof. The proof is similar to that of Theorem 10.
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Definition 5. A topological space (X, τ) is called strongly s(Λ, sp)-regular if, for each
s(Λ, sp)-closed set K and each x ∈ X −K, there exists a r(Λ, sp)-closed set F containing
x such that F ∩K = ∅.

Lemma 6. For a topological space (X, τ), the following properties are equivalent:

(1) (X, τ) is strongly s(Λ, sp)-regular;

(2) for each s(Λ, sp)-open set W of X and each x ∈ W , there exists a s(Λ, sp)-open set
V such that x ∈ V ⊆ V (Λ,sp) ⊆ W ;

(3) for each s(Λ, sp)-open set W of X and each x ∈ W , there exists a r(Λ, sp)-closed set
F such that x ∈ F ⊆ W ;

(4) As(Λ,sp) = Aθs(Λ,sp) for every subset A of X;

(5) every s(Λ, sp)-open set of X is θs(Λ, sp)-open.

Theorem 12. Let (Y, σ) be a strongly s(Λ, sp)-regular space. For a multifunction F :
(X, τ) → (Y, σ), the following properties are equivalent:

(1) F is lower strongly s(Λ, sp)-continuous;

(2) F+(Bθs(Λ,sp)) is (Λ, sp)-closed in X for every subset B of Y ;

(3) F is lower almost contra-(Λ, sp)-continuous.

Proof. (1) ⇒ (2): Let B be any subset of Y . By Lemma 6, Bθs(Λ,sp) is s(Λ, sp)-closed
and by Theorem 11, F+(Bθs(Λ,sp)) is (Λ, sp)-closed.

(2) ⇒ (3): Let B be any subset of Y . By (2), we have

[F+(B)](Λ,sp) ⊆ [F+(Bθs(Λ,sp))](Λ,sp) = F+(Bθs(Λ,sp))

and by Theorem 9, F is lower almost contra-(Λ, sp)-continuous.
(3) ⇒ (1): Let V be any s(Λ, sp)-open set of Y . Since (Y, σ) is strongly s(Λ, sp)-

regular, by Lemma 6, V is θs(Λ, sp)-open. By Theorem 9, F−(V ) is (Λ, sp)-open in X.
Thus, by Theorem 11, F is lower strongly s(Λ, sp)-continuous.

Theorem 13. If F : (X, τ) → (Y, σ) is an upper strongly s(Λ, sp)-continuous multifunc-
tion and G : (Y, σ) → (Z, η) is an upper almost contra-(Λ, sp)-continuous multifunction,
then G ◦ F : (X, τ) → (Z, η) is upper almost contra-(Λ, sp)-continuous.

Proof. Let K be any r(Λ, sp)-closed set of Z. We have (G ◦ F )+(K) = F−(G+(K)).
Since G is lower almost contra-(Λ, sp)-continuous, by Theorem 1, G+(K) is (Λ, sp)-open
in X and hence G+(K) is s(Λ, sp)-open. Since F is lower strongly s(Λ, sp)-continuous,
by Theorem 10, F+(G+(K)) is (Λ, sp)-open. Thus, G ◦ F is upper almost contra-(Λ, sp)-
continuous.
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Theorem 14. If F : (X, τ) → (Y, σ) is a lower strongly s(Λ, sp)-continuous multifunction
and G : (Y, σ) → (Z, η) is a lower almost contra-(Λ, sp)-continuous multifunction, then
G ◦ F : (X, τ) → (Z, η) is lower almost contra-(Λ, sp)-continuous.

Proof. The proof is similar to that of Theorem 13.
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