On 2-Resolving Hop Dominating Sets in the Join, Corona and Lexicographic Product of Graphs
DOI:
https://doi.org/10.29020/nybg.ejpam.v15i4.4585Keywords:
2-resolving hop dominating set, 2-resolving hop domination number, join, corona, lexicographic productAbstract
Let G be a connected graph. A set S of vertices in G is a 2-resolving hop dominating set of G if S is a 2-resolving set in G and for every vertex x ∈ V (G)\S there exists y ∈ S such that dG(x, y) = 2. The minimum cardinality of a set S is called the 2-resolving hop domination number of G and is denoted by γ2Rh(G). This study aims to combine the concept of hop domination with the 2-resolving sets of graphs. The main results generated in this study include the characterization of 2-resolving hop dominating sets in the join, corona and lexicographic product of two graphs, as well as their corresponding bounds or exact values.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 European Journal of Pure and Applied Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.