EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 15, No. 4, 2022, 1887-1907
ISSN 1307-5543 — ejpam.com
Published by New York Business Global

Classification of four dimensional train algebras of degree
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Abstract. This paper is devoted to the classification of train algebras of degree 2 and exponent
4. This classification is made in dimension at most four and according to the type of the algebra.
We first show that in four dimension, the type of algebra can only be of (2,0,1,1), (2,1,0,1) or
(2,1,1,0).
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1. Introduction

Several nonassociative algebras verifying polynomial identities are used in algebra mod-
eling of population genetics. We can cite among others, Bernstein algebras (cf [2],[6],[8]),
Jordan algebras (see [10],[7]), power-associative train algebras ([5]) train algebras of de-
gree 2 and exponent n ([9],[4]). In [1] the authors defined an algebra satisfying a train
identity of degree 2 and exponent 4 as an algebra A such that for any x in A, we have:
(z*)? = w(z)*z*, where K is an infinite and algebrically closed commutative field of char-
acteristic different from 2 and 3. If such an algebra does not verify a polynomial identity
of degree less than or equal to 7, we say that it is a train algebras of degree 2 and exponent
4. This class of algebras models populations whose genetic potential becomes stable in the
fourth generation. In particular, this class contains Bernstein algebras([3]). In this paper
we are interested in the classification of these algebras in dimension 4; it is made according
to the type of the algebra A; this one cannot be of lower dimension.
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2. Preliminaries

Let K be a commutative field and A a commutative K-algebra, not necessarily asso-
ciative. For any element x of A we define the principal powers of  by: z! = z, 2**! = za*
for any integer k > 1.

We will say that the algebra A is a baric algebra if there exists a non-zero homomor-
phism of algebras w : A — K called the weight function of the algebra A. The weight of
an element x of A is the scalar w(x).

A baric K-algebra (A,w) is a Bernstein algebra if (22)? = w(z)?2? for any x in A.

In the following K is a commutative algebraically closed field of characteristic distinct
from 2 and 3, and A is a commutative nonassociative algebra. A baric algebra (A,w)
satisfies a train identity of degree 2 and exponent 4 if for any x in A, we have:

(a)? = w(z)'z". (1)
An algebra A is called a train algebra of degree 2 and exponent 4 if it satisfies a train
identity of degree 2 and exponent 4 and does not verify a polynomial identity of degree
less than 8.
For an element x of weight 1in A (i.e. w(z) = 1), the identity (1) gives (z*)? = z* and
thus z* is an non zero idempotent of A.
In [1], the authors have established the following two theorems:

Theorem 1. Let A be an algebra satisfying a train identity of degree 2 and exponent 4.
Then A has a Peirce decomposition A = Ke® Ay o @& Ao ® Ax & Ay, where e2=e#0 and
L+ivV7 y —1—|—i\ﬁ}

4 7 4 ’
Theorem 2. Let A= Ke® Ay ® Ao ® A\ & Ax be a Peirce decomposition relative to a

non-zero idempotent e of an algebra satisfying a train identity of degree 2 and exponent 4.
Then:

(i) A5 C Ay Aya;

Ay ={y € ker(w) | ey = ay} for a € {0;1/2;\ = —

(47) A%/g C A @ Ax © Ag;

ZV) A CAl/Q,
V) A1/2A0 C Al/g @ A,\ @ A/\,

V’LZ) A()A C A1/2,

(it
(
(
(vi) AgAx C Ayjo;
(
(viii) AyjpAx C Ay @ Ao © Ax;
(i

ZX Al/gA C A1/2 D Ay D Ay;
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(X) A)\AX C A1/2.

Lemma 1. Let A = Ke ® Aj/p ® Ag ® A\ ® A5 be a Peirce decomposition relative to a
non-zero idempotent e of an algebra satisfying a train identity of degree 2 and exponent 4,
then for all xy /9, xo, xx and x5 respectively in Ay e, Ao, Ay, Ay, the following assertions
are verified:

(1) 2x1/2(e(ex%/2)) + 2e(x1/2(ex%/2)) + xl/z(ex%ﬂ) + 26(63:‘;’/2) + e:zc‘rf/2 + xi’/Q =0;

(i1) 2xyp9(21/2(en? ) + 2x1 a(ext ) + 2ea] ) +af )y + (eex ) +eaf )y +ay)* = 0;
(iii) 2e(xo(exd)) + 2e(exd) — xo(exd) — exd = 0;

(iv) Sexd + (exd)? —dag = 0;

(v) de(exs) + 8exs — (4N + 1)z3 = 0;

(vi) 32ex’ + (1 —32X\)(23)? — 1625 = 0;

(vii) 4e(ex§) + SXG:U% — (X + 1)56% =0;

(viid) 32ex} + (1 —320)(22)? — 1625 = 0.

Proof. 1t suffices to set x = e + axy/3 + Bro + yxA + pax and identify the coefficients
of a’IFut (1 <i+j+k+4£<8), equality 2 = (2)? allowing to obtain respectively (i),
(i), (i1i), (iv), (v), (vi), (vii) and (viii).

Lemma 2. Let A = Ke ® Aj/p & Ag ® A\ ® A5 be a Peirce decomposition relative to a
non-zero idempotent e of an algebra satisfying a train identity of degree 2 and exponent 4.
If Ax = A5 =0 then, for all zg € Ag and x1/9 € Ay)9, we have the following identities:

(1) 26(1:0.%%/2) + 221 j9(w071 /2) — 1’036%/2 =0;
(ii) x? 72 =0;

(ii1) (x3,5)* = 0;

(iv) (ex?)? + 8ex — 4z = 0.

(v) xy/9(exg) — 21975 = 0;

(vi) 26(950(951/2(950531/2)))+26(951/2(331/2333))‘HC%/Q(‘?Q%)—370(331/2(530951/2))—371/2(951/23”%)"‘
A(woxy/2)? = 0;

(vii) 4z /o(21/2(21/9%0))+2e(212(T027 )9))+221 2 (e(2027 1)) F21 /2 (2027 j9) +42T )y (w021 /2) =

)
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(viit) (833(2))(?:”’30961/2)+4$1/2(€$8)+41‘1/2(1130(895(2)))+4€($0(53(2)931/2))4'46(161/25”3)—2$0($1/2$(2))—
2%1/2%0 =0.

Proof. The proof is similar to that of the Lemma 1.

According to Propositions 3.1 and 3.2 of 1], the possible types of A in dimension 4 are:
(27 27 07 0)7 (27 17 0’ 1)’ (27 17 17 0) and (2’ 0’ 17 1)

Theorem 3. Let A = Ke ® Ay ® Ag ® A\ @ Ay be a Peirce decomposition relative to
a non-zero idempotent e of an algebra satisfying a train identity of degree 2 and exponent
4. If A\ = A = 0, then A wverifies a polynomial equation of degree less than eight and
therefore, A is not train of degree 2 and exponent 4.

Proof. The type of A being (2,2,0,0), then Ay = Ay =0, A%/Q C Ay, A3 C Ao ® Ag
and Ay /pAg C Ay/; we can then set Ay /o =< eg >, Ag =< e1,e2 >, 50 A =<, ep,e1,€2 >
such that:

e = e, ey = 360, ce1 = eex = 0, €3 = aper + ez, ere2 = Poey + Bier + Poea,
e} = yoeo +y1€1 + Y262, €5 = poeo + f1e1 + poea, eger = pep, o€z = Yep; According to the

Lemma (2) we have z? o = (27 /2)2 = 0 which allows us to obtain the following relations:

x:{’/Q =0= e} = (aop + ar1y)eg = 0 50 : app + a3y = 0. Moreover, (x%/2)2 =0=
(B0 + a2 o+ 20001 Bo)eo + (ady1 +al uy +2apai B1)er + (a2 +afps +2apar B2)es = 0 so
s ado +atpo + 2000 By = 0; adyi +atpn +2a000 81 = 0; and adye + o s + 201 B2 = 0.

Thus we have the following cases, the products not mentioned in the multiplication
table of A are zero.

1t Case: A%/Q # 0.

We can set e; = e% and therefore ag = 1, «; = 0. Thus, we have py =y =71 =72 =0
and using the others identities of the Lemma 2; ug = B2 = 51 = v = us = 0. Therefore,
the multiplication table of A becomes e? = e, eeg = %eo, e2 = ey, erea = Poeo, €3 = pies.
Let x = e+ aeg + bey + cea an element in A of weight 1. We have (22)? — (22)? = 0, so for
any z in A, (22)® — w(z)?(z?)? = 0.

2"d Case: A%/Q =0.

We have e? = e, eey = %60, ee1 = eeg = 0, ejeg = PBoeg+Pre1+ P26, e% = Yoeo+7y1€1+7Y2€2,
€5 = poeo + p1e1 + pigea, eger = fiey, €pey = Y€o.

Determine the identity verified by A according to its multiplication table. Using the
identities of the Lemma 2 we have vy +72y = 0, pyp+ p2y = 0, y1 (V2 +72581) + B1y2 (71 +
B2) = 0, v2(7f + 7261) + Bava(y + B2) = 0, paB1(B1 + p3) + pa(p1B2 + p3) = 0 and
11 B2(B1 + pi3) + pa(p1 B2 + p3) = 0.

i)y=0and pu #0.

We can set g = 1 and then 71 = p1 = po = 1261 = Y2082 = 0. The multiplication table
of A becomes €2 = e, eeg = %eo, e1ea = Boeo + Bre1 + Paea, €3 = yoeo + Y2e2, €3 = Hoeo,
€epe1 = €p.
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i.1) Suppose 72 # 0. Then 81 = 2 =0, s0 €2 = e, eeg = %eo, erea = Boeo, €3 = Yoeo + €2,
e3 = uoeg, eger = eg and for any z in A, (z3)? = w(z)323.

: 2 1 2 2
i.2) 72 = 0. Then e* = e, eeg = 5e0, e1e2 = Boeo + Pre1 + B2ea, €7 = Yoeo, €5 = Hoeo,
epe1 = ep. Using the identities of the Lemma 2 we have 3 = B3 = 0. Therefore, e = e,
1 2 2 : 212 2,2
eey = 5€0, €12 = Poeo, €] = Yo€o, €5 = Moo, o1 = €. For any z in A, (27)° = w(x) 2.

i) p =0 and vy # 0.
Then v1 =2 = po = 11 = 12 = 0 and € = e, eeg = Seo, e1ea = Poeo + Brer + Boes,
e? = peo, €5 = poeo + pie1, eper = peg, eges = Yeo.
ii.1) py # 0, then B = o = 0,50 €? = e, eeg = %eo, e1ea = Boeo, €3 = Yoeo, €3 = poeo +e1
(we can set u; = 1), ege1 = ueg, egez = vep and for any x in A, (22)? = w(x)?2?%.
i0.2) p1 = 0, then e = e, eeg = 3eg, e1ea = Boeg + Bre1 + Paea, € = Yoeo, €3 = poeo,
epe1 = ueg, egea = yeg. Using the identities of the Lemma 2 we have 8, = B2 = 0.
Therefore, €2 = e, eeg = %eo, eres = Poeg, e% = Y€, 6% = lpeg, €0€1 = [ey, €gey = YEQ.
For any z in A, (22)? = w(z)?2%.

iit) y=pu=20
e’ = e, eeg = 3eg, e1e2 = Boeo+Pre1+Baes, €2 = Yoeo+y1e1+72€2, €3 = poeo+prer+pzes.
iii.1) 41 = 0 and 5 # 0, then 31 = B2 = po = 0, s0 €2 = ¢, eey = %eo, erea = Poeo,
e? = yoeo + €2, €3 = ppeg + pier. The identity (z4)? = w(z)*z? implies that p; = 0 and
for any x in A, we have (23)? = w(x)323.

i11.2) o = 0 and 7 # 0, this case is impossible.

iii.3) 72 = 11 = 0, then € = e, eeg = jep, erea = Poeg + Prer + Paez, €3 = Yoeo,
6% = poeo + p1e1 + poes.

i11.3.1) pup = 0, then puo = 0 and 1 = B2 = 0. Therefore for any x in A, we have
(22)? = w(z)?2?

i11.3.2) p1 # 0, then e = e, eeg = %eo, erea = Boeo + Prer + Baea, €2 = Aoeo,
e3 = poeo + pier + poea. If pg = 0, then 81 = B2 = 0 and for any z in A, we have
(22)% = w(x)?22. If po # 0, then 1By = poB1. For x = ep, the identity (z*)% = 0 implies
that g1 = —po or B = f%. We show that this is impossible.

iii.4) yoy1 # 0, then e? = e, eeg = %eo, e1ea = Boeo+B1re1+Bzea, €3 = Yoeo+y1e1+72e2,
6% = poeo + p1e1 + poes.
191.4.1) po = 0. Then p; = 0 and B8 # 0. without loss of generality. It suffices to make
some basis transformations to prove that we can set 70 = 1 and therefore 51 = y182. We
show this is impossible.

i11.4.2) po # 0. Then py # 0 and 8182 # 0, so u1 82 = p2f1. We show that 51 = —pe
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or f; = —u3 this is impossible.
We conclude that the type of A cannot be (2,2,0,0).

The above result allows us to discard the type (2,2,0,0) in the classification.

3. Classification of algebras of type (2,1,1,0)

In this section we will set x = e + aeg + Fey + Bes an element of weight 1 in A. Also
we will use essentially the assertion of the Lemma 1.

If Type A = (2,1,1,0) then Ay = 0 and Af/Q C Ay ® Ay, A C Ay ® Ay, A3 C Ay,
ArjpAo C Ay @ Ay, ArjpAx C Ayjp @ Ao, AoAx C Ayjp; we can thus set Ay p =< eg >,
Ag =< e; >, Ay =< ey >. The multiplication table of A is given by: e? = e, eeg = %eo,
eer = 0, eex = Aea, €3 = aper + aies, ef = Boeg + Bie1, €3 = e, eper = pipeo + piez,
€oe2 = Yoeo + Y1€1, €162 = eq.

The assertion (i) of the Lemma 1 allows to obtain the equality:

2(agpo — Maiyo)eg = 0 so:

aopo = Aa1v (2)

As for (i7), it leads to:

201+ M(@ry1p0 + aoyomm) + aiBo + aoarp(l+A) + 5 (1 +3N)atyleo + [agfr + (1 +
2\ oyt — 203 uoler + [(2 + 4N a3y + (1 + 4N aqyipn — (14 N)2a2qlea = 0 then:

1
2(1 + A) (@110 + aoyorr) + afBo + aparp(l + ) + §(1 +3\)ady = 0. (3)
@B 4 (14 2\ aop1vy1 — 2080 = 0. (4)
(2 + 4Nty + (1 + 4Ny — (1 + X)2a2y = 0. (5)

The assertion (iii) of the Lemma 1 leads to the equality:
—3(3+ \)Bopres = 0 or:

Bopr = 0. (6)

The assertion (iv) of the Lemma 1 allows to obtain:
(%aoﬁg — Ber + T%alﬂgez = 0 which gives us:

a0y = 1647, (7)

a1Py = 0. (8)

Using the assertion (v) of the lemma 1 we have:
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(2X\ + %)*y’ylel = 0 thus:

1 = 0. (9)

The assertion (vi) of the lemma 1 makes it possible to obtain the equality:
(1 —32)\)apy?e1 + (1 — 32X\)a1ves = 0, so:

agpy = 0. (10)

a1y = 0. (11)

By multiplying (7) by v we obtain 731 = 0 since agy = 0. And by reasoning in the
same way but with p; we obtain p18; = 0; and we get 181 = 0 with «q. Finally the
product of (7) with ug gives po1 = 0. These equalities clearly show that some scalars
cannot be non-zero simultaneously; this is the case of v and 71, B9 and uy for examples
and among many others.

Suppose that f; # 0. Then ay = p1 = 0 and the equalities (3) and (7) implies
that 0 = agﬁg = 16,6’%,Which is absurd. Thus #; = 0. Thus we have fyag = [par =
Bopr = 0, v = yag = yeu = 0, appo = Naryo, (1 + 4N )aryim — (14 X)%ajy = 0,
(14 2X)agyipn — 20500 = 0, 2017110 + 200701 + o1 = 0.

Let us then distinguish the following cases which satisfy these equalities:

3.1. 1% Case : ap# 0 and o; =0 then By =~ = o = Yop1 = i1 = 0.

i) p1 # 0, then 49 = 71 = 0 and €% = ¢, eeg = %eo, eer = 0, eea = Aea, €2 = ey, e =0,
e% =0, ege; = eg, egea = 0, erea = peg. This case is impossible because A not satisfy
identity (z*)? — w(z)*2* = 0.

i) u1 = p =y =0, then e =e, eep = %eo, ee; = 0, ees = Aeg, e% = ey, e% =0, e% =0,
eoer = 0, egez = Yoeo, e1e2 = 0. A verifies the identity z(22)? — 4 w(x)x* + (42 +
2) — Dw(z)%23 4+ (2) — 4X?)w(x)32? = 0.

iii) py = p=0,v, #0thene? =e, eeqg = %eo, ee; = 0, eea = Aeg, 6(2) =e1,e2=0,¢e2=0,
eoer = 0, egea = o€ + e1, ereg = 0. A verifies the identity x(22)? — 4 w(z)z* +
(422 42X\ — Dw(x)%2® + (2A — D) w(x)322 = 0.

iv) u1 =0, y1yop # 0 then 2 =e, eey = %60, ee;1 = 0, eeg = Aeo, 6(2) =ey, e% =0, e% =0,
eoer = 0, egea = Yoeo + Y1e1, e1e2 = eg. A verifies the identity z(22)? — 4 w(z)z* +
(402 +2) — Dw(x)?2® 4+ (2X — AA?)w(z)32? = 0.

3.2. 2 Case : apa; # 0, then By = 1 = v = o = 0 = pt171 = 0.

The multiplication table of A becomes: €2 = e, eeg = %eo, ee; = 0, eea = eg,

p p p
€5 = aper +ageg, ef =0, e5 =0, ege; = pyes, eges = y1e1,e1e2 = 0.
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i) p1 = 0. The multiplication table for A is given as follows : €2 = e, eeg = %eo, eel =

0, ees = Aeo, e% = e1 + eo, e% =0, e% = 0, ege; = 0, egea = mer,e1ea = 0.
Where e; is replaced by o ler and ey by al_leg. A verifies polynomial identity
(22)? — w(z)z(2?)? — w(z)?(2?)? + w(z)?z3 = 0.

1) p1 # 0, then 7 = 0. In this case, the multiplication table for A is given as follows :
e =e, eep = %eo, eer = 0, eea = eog, 6(2) = e1 + ea, e% =0, e% =0, ege; = pie2,
epez = 0,e1e9 = 0, where e; is replaced by aalel and eg by 041_162. We prove that A
checks the polynomial identity z(z%)? — \w(z)(2?)? — w(x)?23 + \w(z)3z? = 0.

3.3. 3% Case : oy = a; = 0 then Byu; =y = 0.

i) Poy # 0 and py # 0, then v, = 0.
ez = e, ey = % =0 = )\ 2 =0, e2 = 2 = =
= e, eeg = €0, ee; = 0, eea = Aeg, e = 0, ef = Boeg, €5 = veo, epe1 =
[oeo, €02 = Yo€o, e1e2 = peg. Then algebra A verifies polynomial identity (22)? —
w(z)?z? = 0.

ii) Bo # 0 and v = 0, then u; = 0. €2 = e, ey = %60, ee; = 0, ees = Aeog, 6(2) =0,
e% = Boeo, e% = 0, eger = poeg, €2 = Yoeo + Y1€1, e1ea = peg. This case is
impossible because A not satisfy identity (z4)? — w(x)i2? = 0.

iii) Bo = v = 0, then €? = e, eeg = %eo, ee; = 0, eea = Meg, 6(2) = 0, e% = 0, e% = 0,
epe1r = poeo + p1e2, epea = Yoeo + Y1€1, erea = peg. If pp = 0, the algebra A veri-
fies the identity (22 — 2 w(z))3(2? — 2 w(2))? — (1 — 2\)w(2)?((2? — 22w (7))?)? —

2 3
2227 ()4 (22 — 22w())® + T2 0(2)5 (22 — 20w(x))? = 0.

Suppose now, p; # 0. Then 43 = 0 and we can set p; = 1 and the multiplication
table of A is one of:

i4i.1) e =e, eey = %eo, ee; = 0, ees = ey, e% = 0, e% = 0, e% = 0, ege; = eg,

€pey = €p, €1€2 = 0.

iii.2) e? = e, eeq = %eo, ee1 =0, eea = Nea, €2 =0, €3 =0, €3 = 0, eper = poeo + €2,
€p€2 = €p, €1€2 = 0.

111.3) e =e, eey = %60, ee; = 0, ees = ey, 6(2) = 0, e% = 0, e% = 0, ege; = eg,
€pc2 = €p, €1€2 = lEQ.

iii.4) e =e, ey = %eo, ee; =0, ees = e, e% =0, e% =0, e% =0, ege; = poeg + ez,
€pc2 = €, €1€2 = UEQ.
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111.5) e2 = e, eepg = %60, ee; = 0, eea = Meg, e% =0, e% =0, e% =0, ege; =
Hoeo + €2, egea = 0, ejea = peg. Then the algebra A verifies polynomial identity
(2%)3 = (1 + Nw(x)?(2?)? + Mw(z)*2? = 0.

i) Bo=0,7#0,theny =0. e =e, eeg = %60, eer = 0, eea = Aeg, 6(2) =0,¢e2 =0,
2
€5 = yep, epe1 = Ho€o + [L1€2, epe2 = Yo€o, €1€2 = [Lep.

If 41 = 0, then the algebra A verifies polynomial identity 4\2(x3)? 4 4 \w(x)?z322% +
w()?(2?)? + 2w(z)323 — (2 + Dw(x)*2? = 0. If g3 # 0, then this is impossible
because A not satisfy identity (z*)? — w(z)*z* = 0.

3.4. 4" case : ap =0 and a; # 0 then Sy = v =y = V10 = Y141 = 0.

2 1 2 2 2 _ _
e = e, eeg = 5€0, ee1 = 0, eea = Aeg, e = agez, e = 0, e5 = 0, eger = popeo + p1e2,

€pe2 = 7Y1€1, €1€2 = UEq.

i) g =7 =r0=p1=po=0andy #0
e = e, ey = %eo, ee; = 0, eeg = ey, eg = oe, e% = 0, e% = 0, ege; = 0,
eges = 7y1e1, eres = peg. We can suppose i = 1 = 1. If u = 0, the algebra A
verifies polynomial identity (22)? — 2w(z)z3 4+ w(z)?2? = 0. If p # 0, it is impossible
because A not satisfy identity (z*)? — w(z)*z* = 0.

ii) ag ="y ="0 =71 = po = p1 = 0.
e =e, eeq = %eo, ee; =0, eeg = Aeg, eg = qje2, e% =0, e% =0, ege; =0, egea = 0,
e1ea = peg. If p = 0, the algebra A verifies polynomial identity (x2)3 —w(z)?(2?)? =
0. If u # 0, we can set a3 = p = 1 and the algebra A verifies polynomial identity
(22)3 — (1 4+ Nw(2)?(22)? + Mw(x)t2? = 0.

i) ap =y =7 =" =1 =0, po # 0.

e = e, eeg = %eo, eer = 0, eea = Aeo, e% = «aieéa, e% = 0, e% = 0, ege1 =
Hoeo, egea = 0, erea = peg. If p = 0, the algebra A verifies polynomial identity
(22)3 — (1 + Nw(2)?(2?)? + Mw(x)*2? = 0If p #0, we can set o = =1 and A

verifies the same identity.

) ag=7=" =7 = po =0, 1 #0.
e = e, eeg = %eo, eer = 0, eea = Aeo, eg = ies, e% = 0, e% = 0, ege; =
piea, epea = 0, etea = peg. If p = 0, the algebra A verifies polynomial identity
(22)3 —w(x)?(z%)? = 0. If u # 0, we can set a1 = = 1 and the algebra A verifies
polynomial identity (22)% — (1 4+ Mw(x)?(2?)? + Mw(x)*2? = 0.

v) ag=7v="7 =7 =0, pop1 # 0.
e = e, ey = %eo, eer = 0, eeg = Aeo, 6(2] = qiea, e% = 0, e% = 0, ege; =
Hoeo + p1es, epea = 0, eres = peg. We can set g = g = 1. If p = 0, the algebra A
verifies polynomial identity (22)3 — w(z)?(22)2 = 0. If u # 0, the algebra A verifies
polynomial identity (z%)3 — (1 4+ N)w(z)?(2?)? + Aw(z)?2? = 0.
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Thus we have the following theorem:

Theorem 4. Let A be a train algebra of degree 2 and exponent 4. If the type of A is
(2,1,1,0) then we have the algebras whose multiplication tables are given as follows, the
products not mentioned are zero. If one or both parameters a and B appear in the multi-
plication table, the algebra will be denoted A(a) or A, ).

1°) e =e, eep = sep, eey = \ea, €pel = €3, €pey = €.

2

2°) e® =e, eep = €0, €2 = Aea, epe] = Qe + €2, €pe = €.

_ N~ N

3°) e =e, eey = 5€0, €62 = Aeg, eper = €3, epez = €p, e1e2 = aeg. For a and o in K*,
A(a) and A(a') are isomorph if and only if it exist k € K* such that o/ = k*a, so
oot e (K*)2

4°) €2 = e, eeg = %eo, ees = \eg egel = ey + ea, eges = eg, e1es = Beg. For a, o, 3,
B in K*, A(a, B) and A(/, ') are isomorph if and only if it exist k € K* such that
B = k28, so B8 € (K*)2.

4. Classification of algebras of type (2,0,1,1)

The type of A being (2,0,1,1) then Ag = 0 and we have : A%/Q C A\ D Ay, A%\ C Ay,
A% C A1/27 Al/QA)\ C A1/2 D Ax, AI/QAX C A1/2 %) 14/\7 AAAX C Al/Z' We can set:

Ay =< eg >, Ay =< e1 >, Ay =< ez >, such that e =e, eey = %eo, ee1 = Meq,
eea = ey, € = aper + aqea, €] = e, €3 = peg, erez = peg, eger = Boeo + Prez,
€oe2 = Yo€o + Y1€1.

According the type, we use here identities of Lemma (1) B

The assertion (i) leads to equality: (apBo(1+ A) + a170(1 + A))ep = 0 so:

aoﬂo(l + )\) + 04170(1 —I-X) =0. (12)

The assertion (i7) leads to equality: [aopB170 + 18071 + %('yof)(l +3X) + daparp +
ey (1+3X))]eq + (4o Bor+2a Bo + 200 B171 A+ ar o er + (dafyo A+ 20370 + 2a1 iy A+
o fp)ez =0

or:
@oB170 + 180y + é(VOlg(l +3X) + dagarp + pai(1+3X)) = 0. (13)
404350)\ + 205(2)&) + 2ap 8171 A + a1y = 0. (14)
40340\ + 20370 + 201 B111 A + g B = 0. (15)

The assertion (v) leads to: 2(1 — \)yB1e2 = 0 so:
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Y61 = 0. (16)
The assertion (vi) leads to: (1 — 32X\)agy?e1 + (1 — 32X\)aya1y2es = 0, so:

apy = 0. (17)

a1y = 0. (18)

The assertion (vii) leads to: 2(1 — A)uyrer = 0 thus:

py1 = 0. (19)
Finally the assertion (vii) allows to obtain (1 — 32\)agu?e; + (1 — 32X)aq ez = 0 so:

app = 0. (20)

arp = 0. (21)

Let us distinguish the following cases satisfying the preceding equalities:

4.1. 1% Case: ap# 0 and o; =0

Then v = p = By = Bim1 = 170 = 0 and the multiplication table of A is: e’ =e,

1 _ _ 9 _ _ _
eep = €0, €1 = ey, eex = Aez, € = qpel, €1e2 = peg, el = B1e2, epez = Ypeo + Y1€1.
i) f1 #0y1 =% =0, p#0.

e = e, ey = %60, ee; = ey, ees = Nea, e% = e1, ejeg = peg where e is re-

placed by oy le; and es is replaced by ag ! By leg. A verifies the polynomial identity :
(22 =2 w(z)2)3 — (A =2))w()? (22 — 22 w(7)z) 2 + (A +2X —2)w(z) (22 —2)w(z)) = 0.

ii) 1 #0m=v%=p=0

e =e, eep = %eo, ee; = \ep, ees = ey , e% = eq, e1es = 0 and epge; = e, where e
is replaced by aalel and es by aalﬁfleg. A verifies the identity (z2)? — 2w(z)z3 +
w(r)?2? = 0.

iit) f1 =10
e = e, eeg = %eo, ee; = Aep, eea = \ea, eg = e; and ejes = peg, ege; = 0,
epea = Yo€o + Y1€1, where e is replaced by aalel. A verifies the identity (1:2)2 —

2w(x)z3 + w(x)?x? = 0.
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4.2. 2 Case: ap#0 and a; #0, then 0 =v=p = = Bim.-

i) Bo = B1 =10 =1 = 0. The multiplication table of A is : e =e, eep = %eo, ee; = ey,
ees = Aeo, eg = e1 + eg. Where e; is replaced by 040_161 et ey par al_leg. A verifies
the polynomial identity: 2% — Jw(z)z® — fw(z)3z = 0.

ii) Bo = =y = 0 and B; # 0. The multiplication table of A is : e? = e, eey = %eo,
eer = ey, ees = \eg, 6(2) = e1 + e, ege; = eo. Where e; is replaced by aalel and eg
by ozl_leg. A verifies the polynomial identity: z* — %w(a})x?’ — %w(az)% =0

iii) Bo =0 = 1 = 0 and 71 # 0. The multiplication table of A is : €2 = e, eey = %eo,
ee] = \ej, eex = e, 6(2) = e1 + e, eges = e1. Where ey is replaced by 056161 and es
by a7 'es, so A verifies the polynomial identity : (22 — 2 w(z)x)? — (14 Nw(x)? (2% —
20w (z)z)? + Iw(z)* (22 — 2 w(z)) = 0.

4.3. 3" Case: ag =0 and «a; # 0.

Then pp = v = v = B1m1 = Boy1 = 0, so the multiplication table of A is: e = e,

_1 _ _ 2 _ 2 _ 2 _ _ _
eeg = €0, €€1 = Aey, eez = Aeg, ej = aieg, ef = 0, e5 = 0, ejea = peg, eper = Poeo + Prez,
epez = y1e1. We distinguish the algebras whose multiplication tables are:

i) v1 # 0, then By = B1 = 0 and €2 = e, eey = %60, eel = Mep, ees = \ea, e% = a1e3,
e% =0, e% =0, ejea = peg, eger = 0, egea = 1161. Wecanset o =y =1. If p=0,
A verifies the polynomial identity (22)? — 2w(x)2® + w(x)?2? =0

i) v1 = B1 = Pop = 0, then e =e, ey = %60, ee;] = \ej, ees = \ea, 68 = ajea, e% =0,
e% = 0, ejes = peg, eger = 0, egea = 0. We can set a3 = 1 and A verifies the
polynomial identity : (22 — 2 w(x)x)® — (A — 2\)w(x)?(2? — 2Xw(x)x)? + (A + 2\ —
2)w(z)*(z? — 2Xw(z)) = 0.

iit) 71 =20, B15p # 0, e =e, ey = %eo, eel = leq, ees = ey, 6(2) = qie9, e% =0, e% =0,
e1es = peg, ege1 = Poeg + Piea, egea = 0. We can set oy = 1 and A verifies the
polynomial identity: (22 — 2 \w(z)z)? — (A — 2\)w(z)?(2? — 2 w(z)z)? + (X + 2)\ —
2)w(z)*(2? — 2)w(z)) = 0.

i) v1 = B1 =0, Bo # 0,2 =e, eeyg = %eo, eel = e, ees = e, e% = ajez, €2 = 0,
e% =0, e1es = peg, ege1 = Boeo, egez = 0. We can set a; = By = 1 and A verifies the
polynomial identity: (22 — 2 w(z)z)? — (A — 2\)w(z)?(2? — 2 w(z)z)? + (X + 2)\ —
2)w(z)*(z? — 2Xw(z)) = 0.

V) 1 =80 =0, 1 #0, e =c¢e, eeg = %eo, eer = Aey, eea = ez, €2 = ajeq, €3 = 0,
e% =0, e1es = peq, ege1 = Prea, epea = 0.We can set o = f1 = 1 and A verifies the
polynomial identity: (22 — 2Xw(z)z)? — (A — 2M)w(x)?(2? — 2 w(z)z)? + (A + 2\ —
2)w(z)(2? — 2)w(x)) = 0.
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4.4. 4" case: ag=a; =0

i) g = a1 = 71 = Y = B1 = 0. Then the multiplication table of A is: e = e,

eeg = Seq, ee1 = Aer, eez = ez, € = 0, €3 = veq, €3 = peo, eoer = Poco, €oea = 0,
e1es = peg. The classification of algebras in this case amounts to the classification
of the quadratic form ¢ of polar forms ¢ defined from A/, & Ay ® Ay to K by :
p(eo,e0) = qleo) = 0, pler,e1) = qler) = 7, plez,e2) = q(e2) = u, p(eo,e1) = Po,
©(ep,e2) =0, @(er,ea) = p . The matrix of ¢ in the basis (e, e1, e2) is given by:

0 By 0
M=/ By v p |, sodet(M)=—ppu.
0 p p

If g is degenerate, then det(M) = 0, so ufy = 0. Suppose [y # 0, then p = 0 and we
have the cases:

i.1) ¥ = p = 0. The multiplication table of A is given by : e = e, eeg = %eo,
eel = M\ei, eea = ey, eger = eg. Where e is replaced by Bo_lel.A verifies the
polynomial identity : (22 — 2 w(z)x)3 — (A — 2\ w(x)?(2? — 2 w(x)x)? + (A +
2\ — 2)w(z)* (2% — 2 w(z)) = 0.

i.2) v =0 and p # 0. The multiplication table of A is given by : €2 = e, eeg = %eo,
ee1 = e, ees = Xea, epel = €g, e1ea = eg. Where e is replaced by ﬁalel
et es par Bop les.A verifies the polynomial identity: (22 — 2 \w(z)z)3 — (X —
2\)w(r)?(2? — 22 w(z)z)? + (A + 2) — 2)w(x)* (22 — 2 w(x)) = 0.

i.3) p =0 and v # 0. The multiplication table of A is given by : €2 = e, eeg = %eo,
eel = \eq, ees = \eg, epe; = eg and e% = eg. Where e is replaced byﬂo_lel
et eg par 3y leg. A verifies the polynomial identity: (22 — 2 w(z)z)3 — (A —
20 )w ()% (22 — 22w (@)z)? + (A + 2X — 2)w(z)*(2? — 22 w(z)) = 0.

i.4) p# 0 and 7 # 0. The multiplication table of A is given by: 2 = e, eeg = %eo,
eel = ey, eea = \ea, epel = €g, e% = e et ejea = peg, where e; is replaced by
60_161 and eg by B3y teg. A verifies the polynomial identity: (2% —2\w(z)z) —
A =20 )w(2)?(2? — 22w (z)z)? + (N + 2) — 2)w(x)4(z? — 2 w(7)) = 0.

Suppose By = 0, then e? = e, eey = %60, ee1 = Aep, eea = Mea, €3 = 0, 3 = e,
2 _ _ _ _
e5 = peg, eper = 0, egea = 0, ejea = peg.

i.5) p = 0. The multiplication table of A is given by : e? = e, eey = %eo, ee1 = leq,
eea = Neg, €2 =0, e = vep, €3 = 0, eger = 0, egea = 0, e1ea = peg. A verifies
the polynomial identity : (22 — 2 w(z)z)® — (A — 2\)w(2)?(2? — 2 w(z)z)? +
(A 42X — 2)w(z)* (2% — 2 w(z)) = 0.

i.6) pyp # 0. We can set p = v = 1 and the multiplication table of A is given by:
e =e, eey = %eo, ee; = \ej, eea = \ea, 6(2) =0, e% = ey, e% = ueg, eger = 0,
€pey = 0, €1€2 = €g.
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i.7) p#0, p=~=0. We can set uy = 1. The multiplication table of A is given
by: €2 = e, eeg = %eo, ee1 = Aep, ees = Mea, e% =0, e% =0, e% = eg, ege1 = 0,
epes = 0, eyea = 0. A verifies the polynomial identity:

(2222w (z)z)3— (A =2 ) w(z)?(2? -2 w(z)2) %+ (A 22— 2)w(z)* (22 —2Xw(x)) =

0.
i.8) uy # 0, p =0. We can set v = 1. The multiplication table of A is given by:
e =e, eey = %eo, ee1 = Aep, ees = Aeog, e% =0, e% = ep, e% = ueg, eger = 0,

eoea = 0, etez = 0. A verifies the polynomial identity: (23)? + 2w(z)?2* —

2w(x)323 + w(r)i2? — 2w(x)’r = 0.

i.9) pp # 0, v =0. We can set p = p = 1. The multiplication table of A is given by
ce? =e, eey = %eo, eel = \eq, ees = \ea, 6(2) =0, e% =0, 6%7: eg, ege1 = 0,
epe2 = 0, e1ez = eg. A verifies the polynomial identity: (22 — 22 w(z)x)3 — (A —
20 )w(z)?(2? — 22w (2)2)? + (A + 2X — 2)w(2)* (2% — 2dw(x)) = 0.

If g is regular then det(M) # 0 therefore SByu # 0 and we have:

i.10) v = p = 0. The table of A is: € = ¢, eey = %eo, eel = e, ees = Nea,
epe1 = eq, e% = eg. Where e; is replaced by Bo_lel and ey by u‘leo. A verifies
the polynomial identity: (23)2 + 2w(z)?z* — 2w(z)323 4+ w(x)*2? — 2w(x)%2 = 0.

i.11) v =0 and p # 0. The table of A is: €2 = e, eeg = %eo, eel = \eq, ees = \ea,
epel = eq, e1e3 = pey, e% = ey, where e; is replaced by 60_161 and eg by ,u_leo.
A verifies the polynomial identity : (2%)? + 2w(z)?2* — 2w(z)3z3 4 w(x)*2? —
2w(z)%z = 0.

i.12) p =0 and v # 0. The table of A is: €2 = e, eeg = %60, ee; = \eq, eey = \ea,
eoe1 = eg, €5 = peg, €3 = ey, where e; is replaced by ﬁo_lel and ey by p'eq.
A verifies the polynomial identity: (2°)? + 2w(x)%z? — 2w(z)32® + w(x)t2? —
2w(z)%z = 0.

i.13)f # 0 and v # 0. The table of A is: €2 = e, eey = %eo, ee1 = Aep, eeg =
Aey, egel = €, e1e2 = €y, e% = ey, e% = peg, where e; is replaced by 50_161
and ey by Bop ez and eg by ﬁgv_leg. A verifies the polynomial identity:

(23)2 + 2w(z)?2* — 2w(x)323 4+ w(z)*2? — 2w(x)’x = 0.

ii) ap = a1 = y1 = B = 0, 70 # 0. Then the multiplication table of A is: e? = e,
eeqg = %eo, ee; = Aey, ees = Aeg, e% = 0, €2 = 7eq, €2 = peg, eger = Poeo,
€p€2 = Yo€p, €1€2 = pPEQ. We can set Yo = 1.

ii.1) Suppose B9 # 0, then we can set Sy = 1 and e = e, eey = %60, ee1 = ey,
ees = Aeg, eg =0, €2 = veg, €3 = peg, €pe1 = €g, €oea = €q, €162 = peg. A verifies
the polynomial identity: (z%)2 + 2w(z)%z? — 2w(z)32® + w(z)*2? — 2w(z)%2 = 0.

Suppose [y = 0, then detM = —~.
Let g be the quadratic of polar forms ¢ defined from Ay, © A\ ® A5 to K by:
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¢(eo. e0) = qleo) = 0, p(er,e1) = gqler) = 7, p(e2,e2) = qle2) = p, p(eg,€1) = 0,
(e, e2) =1, p(e1,e2) = p. The matrix of g in the basis (eg, €1, e2) is given by:

M:

= o O

0 1
v p |,sodetM = —
pp

ii.2) If detM = 0, v = 0 and € = ¢, eep = %eo, ee1 = ey, eea = \ea, 6(2) =0,
e? =0, €3 = peo, eper = 0, egez = eg, e1ea = peg. A verifies the polynomial identity:
(23)? + 2w(z)?2? — 2w(z)323 + w(z)tz? — 2w(z)’z = 0.

i1.3) If detM # 0, we can set v = 1 and e =e, eeg = %60, ee] = \ej, ees = \ea,
6(2) =0, 2 = ey, €3 = peg, eper = 0, egea = €g, e1ea = peg.A verifies the polynomial
identity: (23)% + 2w(z)22? — 2w(z)323 + w(z)*2? — 2w(x)2 = 0.

i) ag =ap=01 =y =p=0and 7& 0. We can set 71 = 1. The table of A is: €% = e,
eeg = 160, eep = )\61, eey = )\eg, 60 0, el Yeo, 62 0, etea = peg, eger = Poeo,
€p€ty = €1.

iii.1) Suppose Bo ;é 0, then we can set By = 1 and e? = e, eeg = eo, ee1 = ey,

eey = /\62, 60 =0, 61 Yeo, 62 =0, e1ea = peg, eger = eg, egea = €1.

Suppose By = 0, then detM = —
Let ¢ be the quadratic of polar forms ¢ defined from A,/ & A\ ® Ax to K by :

¢(eo,e0) = qleo) = 0, pler,e1) = qler) = 7, p(ez,ea) = qle2) = 0, p(ep,e1) = 0,

(e, e2) =1, p(e1,e2) = p . The matrix of ¢ in the basis (eg, €1, €2) is given by:
0 0 1

M=| 0~ p |,sodetM = —~.
1 p O

iii.2) If detM = 0, v = 0 and €? = e, eeg = %60, eer = Aet, eex = Aea, €f = 0,
e? = Ole% =0, erez = peg, eger = 0, epez = e1. A verifies the polynomial identity:
(22 =2 w(z)7)3 — (A =2))w(2)? (22 — 22 w(7)z) % + (A +2X —2)w(z) (22 — 2)w(z)) = 0.

ii1.3) If detM # 0, v # 0. We can set v = 1 and €% = e, ey = %eo, eer = ey,
ees = Nea, 6(2) =0, e% = ey, e% =0, e1es = peq, eger = 0, eges = e1. A verifies the
polynomial identity: (22 — 2 w(z)z)? — (A — 20)w(z)?(2? — 2 w(z)z)? + (A + 2)\ —
2)w(z)*(z? — 2 w(z)) = 0.

w) a1 =ap =01 =p=0and vy # 0. The table of A is : e2 =e, eey = 160, eer = \eq,
ees = Nea, 60 = 0 6% = "yeo, 6% =0, ere2 = peg, eger = Boeo, eoe2 = Yoeo + Y1€1.
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iv.1) Bop = v = 0, then A verifies the polynomial identity: (22 — 2 w(z)z)® — (N —
)()( — 22 w(z)2)? + (A 42X = 2)w (@) (2 — 2Xw(z)) = 0.

iv.2) Bo =0, py # 0, then we can set v =1 = 1 and €? = e, eep = %eo, ee1 = Aeq,
BY 2 2 2 _ _
ees = Xeg, e = 0, ef = eg, e5 = 0, erea = peg, ege1 = 0, egea = Yoep + e1.

iv.3) Bo = p =0, v # 0, then we can set v = 73 = 1 and €? = e, ey = %eo,
eel = Aey, eeg = Aea, 6(2) =0, e% = ey, e% =0, ereg =0, ege; = 0, egea = ygeg + €1.

iv.4) Bop # 0 = 0 then We canset By =71 = 1 and €2 = e, eey = eg, ee1 = Aeq,
eey = )\62, eo =0, 61 =0, 62 =0, e1eg = peg, ege1 = €, €ge2 = Yo€o + eq.

iv.5) Bo # 0, p =y = 0, then we can set Sy = 71 = 1 and €? = e, eeg = %eo,
ee1 = Aey, ees = Aeg, e% =0, e% =0, e% =0, ejeg =0, eger = eg, egez = Yopeg + €1.

iv.6) Boy 75 0, then we can set Bg = v = 1 and € = e, eey = %eo, eer = Aeq,
ees = \ea, 60 =0, el = ey, 62 =0, e1ea = peg, ege1r = eg, egea = Yoeo + €1-

v) al—ao—’yl—’yo—'y—Oandﬁl#O The table of A is: €% = e, 660:160,

ee1 = Xe1, eea = Neg, €3 = 0, €7 = 0, €3 = peo, e1ea = peg, eper = Boeo + Prea,
€pey = 0.

v.1) g = 0, A verifies the polynomial identity: (22 — 2\w(z)z)? — (A — 2\)w(z)? (22 —
20w (z)z)? + (A 42X — 2)w(z)* (2% — 2 w(z)) = 0.

v.2) p= 5()*0 M#O thenwecanset,u B1=1ande? =e, eeofleo,eelz)\el,
eey = )\62, 60 =0, 61 =0, 62 = eg, e1e2 = 0, ege; = eq, egea = 0.

v.3) p=0, ﬁo,u;éO thenwecanbetu fr=1and e? =e, eey = 260, ee; = Aeq,
eey = /\62, 60 =0, el =0, 62 = ep, e1ea = 0, eger = Poeg + ea, egea = 0.

v.4) Bo =0, pi # 0, then we can set = B = 1 and €? = e, eeg = %eo, ee1 = ey,
BY 2 2 2
eeg — )\62, €y = O, €1 = 0, €5 = €0, €1€2 = pPE€p, €p€1 = €2, €0€2 = 0.

v5) Bopp 75 0, then we can set u = PB1 =1 and e® = e, eeg = %60, ee1 = ey,
ees = e, 60 0, el =0, 62 eg, e1e2 = peg, eper = Poeg + €2, egea = 0.

Vi) o =g =771 =7 = O and 7061 #£ 0. The table of A is: e? = e, eey = %eo, eer = \eq,
ees = Aeg, €} = 0 el =0, 5 = peg, erez = peq, eger = Poeg + Prea, egez = Yoeo.
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vi.l) Bo #0, p=p = 0. We can set 79 = 81 = 1 and he table of A is : €2 = e,
eey = %eo, eer = Aeq, eeg = Aea, e% =0, e% =0, e% =0, etes = 0, ege; = Boeg + ea,
€pey = €.

vi.2) Bo # 0, p=0, p# 0. We can set u =9 = 31 = 1. The table of A is: e? =e,
eey = %eo, ee; = Aep, ees = Aea, eg =0, e% =0, e% =eg, e1ea = 0, ege; = Boeg + ea,
€pey = €.

vi.3) pBo # 0, p = 0. We can set 1 = p = 79 = 1. The table of A is: e? =e,
eey = %eo, ee; = Aep, ees = Aea, eg =0, e% =0, e% =0, ejes = €eg, ege1 = Poeg + ea,
€pey = €.

vi.4) Bopp # 0. We can set 70 = p = =1 and he table of A is: e’ =e, eey = %eo,
eer = Aei, ees = Aeg, eg =0, e% =0, e% = e, €162 = €0, ege1 = Poeo + Prea,
€p€2 = €.

vi.5) Bo = 0. The table of A is: €2 = e, eeg = %eo, ee1 = \eq, ees = \ea, 6(2) =0,
2 2
ef =0, e3 = peo, erea = peg, eger = Biez, epea = Yoeo.

Let g be the quadratic of polar forms ¢ defined from A;/, © A\ © Ay to K by :

p(eo,e0) = q(eo) = 0, p(er,e1) = qle1) = 0, p(ez, e2) = qle2) = p, p(eo, e1) = fu,
©v(ep, e2) = 71, p(e1,e2) = p . The matrix of ¢ in the basis (eq, €1, e2) is given by:

0 B1 7
M=\ B 0 p |,s0detM = p1(2v0p — B1p).
N P

vi.6) p = u = 0, then we can set 31 = v = 1 and €2 = e, eey = %eo, ee; = Aeq,
ees = ey, 6(2) =0, e% =0, e% =0, etea =0, ege; = ez, eges = €g.

vi.7) p = 0, p # 0, then we can set 31 = 70 = u = 1 and €? = e, eey = %eo,
ee; = Aey, ees = Aea, eg =0, e% =0, e% = eg, e1ea = 0, ege; = ea, egea = eg.

vi.8) p # 0, u = 0, then we can set B1 = 79 = 1 and €? = e, eeg = %eo, eer = Aeq,
_ 2 _ 2 _ 2 _ _ _ _
eex = Aea, €5 =0, e] =0, e5 = 0, ejea = peg, ege1 = e2, egea = €g.

vi.9) pu # 0, then we can set 81 = 70 = p = 1, €2 = e, eeg = %eo, ee1 = Aeqy,
BY 2 2 2
eex = Aeg, e = 0, e] = 0, e5 = eg, e1e2 = peg, ege1 = €2, epea = €q.

vit) ag =ag =7 =p =~ =0and y #0, B1 #0. The table of A is: 6226, 660:%60,
eer = Xey, eea = Aea, €3 = 0, €2 = 0, e3 = 0, ejea = peg, eper = Boeo + Biea,
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€o€2 = 71€1.

vii.1) o = p = 0, we can set 81 = v; = 1, the table of A is: e = ¢, eeg = 5€0,
ee1 = Aey, ees = Aeg, e% =0, e% =0, e% =0, ejea =0, ege; = e9, eges = €.

vii.2) fo = 0, p # 0, we can set 81 = 1. The table of A is: e = e, eey = %eo,

_ _ 2 _ 2 _ 2 _ _ _ _
eer = Aey, eea = Aeg, ef =0, ef =0, e5 =0, erea = peg, ege; = ez, egea = e1.

vii.3) By # 0, p = 0. We can set 71 and the table of A is: e =e, eeg = %eo,
ee1 = ey, ees = ey, eg =0, e% =0, e% =0, e1ea =0, eger = Boeg + Srea, eges = e7.

vii.4) Bop # 0. The table of A is: €2 = e, eeg = %60, eel = Mei, ees = ey, 6(2) =0,
e% =0, eg =0, ejes = peg, eger = Boeg + Biea, egea = y1e1. This case is impossible
because A not verifies the identity (z*)? — w(z)%2z? = 0.

viii) o = g = p =7 io and voy1 # 0, 81 # 0. The table of A is: e =e, eey = %eo,
ee; = Xep, eex = Aey, e = 0, e = 0, €5 = 0, erez = peo, eper = Poeo + Piea,
epe2 = v1€1 + Yoeo-

viii.1) Py = p = 0, without loss of generality. It suffices to make some basis trans-
formations to prove that 81 = 1 and the table of A is: €2 = e, eeg = %eo, ee1 = \eq,
ees = ey, 6(2) =0, e% =0, e% =0, ejeg =0, ege; = ea, egea = Y161 + Yo€o-

v1i1.2) Bp = 0, p # 0, without loss of generality. It suffices to make some basis trans-
formations to prove that 81 = 1 and the table of A is: €2 = e, eeg = %60, eer = Aep,
ees = ey, eg =0, e% =0, e% =0, e1ea = peg, ege1 = ea, egea = Yy1e1+Ypeo. This case

is impossible because A not verifies the identity (z*)? —w(x)*2* = 0. (for z = eg+e2)

v1i1.3) Bo # 0, p = 0, without loss of generality. It suffices to make some basis trans-
formations to prove that 8; = 1 and the table of A is: e? = e, eeg = %eo, eer = Aep,
eeyg = Xeg, 6(2) =0, e% =0, e% =0, etea = 0, ege1 = Poey + €2, egea = y1€1 + Yoeo-
This case is impossible because A not verifies the identity (z4)? — w(z)%z* = 0.

viit.4) Bop # 0, without loss of generality. It suffices to make some basis transfor-
mations to prove that p = 1 and the table of A is: e =e, ey = %60, eer = Aeq,
eea = Neg, €3 =0, 7 =0, €3 =0, e1ea = eq, ege1 = Boeo + Bre2, epe2 = y1e1 + Yoeo.
This case is impossible because A not verifies the identity (z%)? — w(z)%z* = 0.

Theorem 5. Let A be a train algebra of degree 2 and exponent 4. If the type of A is
(2,0,1,1), then we have algebras whose multiplication tables are given as follows, the un-
mentioned products being zero, the algebra is denoted A(a) or A(a, ) if a and 8 are the
parameters which appear in the multiplication table:
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15)
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e2=e, eeq = %60, ee; = \ej,eep = ey, 6(2) = eg, €169 = e, epea = e1. for a and o/ in

K*, A(a) and A(d) are isomorph if and only if it evist k € K* such that o = k*a,
soo’a”t € (K*)2.

e” =e€, eey = %60, eel = )\61, €eg = Xeg, 6% = €p, 6% = (ep, €1€2 = €(, fO’I’ a and o in
K*, A(a) and A(a') are isomorph if and only if o/ = «.

e? = e, eeg = gep, ee1 = Aey, eez = Aeg, €5 = aeg, erea = Peg, eoer = €g, eger = e1;
fora, o, B and B' in K*, A(B) and A(B') are isomorph if and only if it exist k € K*
such that B/ = k%, so B/~ € (K*)2.

e” =€, eeyg = %60, ee; = /\61, eey = X@Q, 6% = €p, €12 = (X€p, €epey = Beo +e1. fOT «
and o/ in K*, A(a) and A(a/) are isomorph if and only if it exist k € K* such that
o =k2*a, so d/at € (K*)2.

e” =e, eey = %60, ee] = )\61, €ey = Xeg, 6% = eg, €pe1 = €y + €3.

e” = e, eeyg = %60, ee;r = )\61, €ty — XQQ, 6% = €0, €12 = e, €pe1 = €2. For a
and o/ in K*, A(a) and A() are isomorph if and only if it exist k € K* such that
o =k%a, so o’a”l € (K*)2.

e“=e, eeg = %60, ee; = Ney, ees = e, e% = ep, e1e3 = aeg, ege; = Peg + ea. for a
and o in K*, A(a) and A(d') are isomorph if and only if it exist k € K* such that
o =k%a, so o’a”l € (K*)2.

2 1 Y
e“ =e, eep = €0, e€1 = Aeq, eex = Aeg, epel = qeg + €2, epe = €q.
e =e, eeyg = %eo, eel = \ep, eey = ey, e% = €y, €ege1 = aeg + es, eges = ey. For a
and o in K*, A(«) and A(d') are isomorph if and only if o' = «.

62 = e, eey = %60, eer = )\61, eeg = Xeg, €1€2 = €p, €pe1 — Qe + €92, €pey = €. For

a and o in K*, A(a) and A(d') are isomorph if and only if &' = a or o/ = —a.
L _

e = e, ey = 5€0, €1 = Aey, eez = Aeg, e% = ey, e162 = €y, ege1 = aey + feg,
epea = eg. For o, o, B and B' in K*, A(B) and A(B') are isomorph if and only if it
exist k € K* such that ' = k*83, so B/~ € (K*)2.

62 =€, eey = %60, eel = )\61, €€y = Xez, €p€e1 = €2, €pe2 = €9.

2 _ _ 1 _ 3 2 _ _ _

e” =e, eep = €0, €€1 = Aey, eex = \eg, €5 = e€g, €€l = €2, €pey = €.

e =e, eey = %eo, eel = Xei, eex = M\ea, e1ex = aeg, o€l = €3, o€y = €y. For «
and o/ in K*, A(a) and A(a/) are isomorph if and only if it exist k € K* such that
o =k2a, so od/at € (K*)2.

2 _ _ 1 _ iy 2 _ _ _ _
e =e, eep = €0, €€1 = Aep, €ea = \eg, €5 = €, €162 = Qep, €pe] = €2, €oe2 = €.

For a and o/ in K*, A(«) and A(d') are isomorph if and only if o/ = «.
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16) e =e, eeyg = %60, ee] = \ep, eea = \ea, €pe] = €3, €9es = €].

17) e =e, eey = %eo, eel = Aei, eey = \ea, e1ea = aeg, €pel = €3, o€y = e1. For a
and o/ in K*, A(a) and A(a/) are isomorph if and only if it exist k € K* such that
o =ka, so o/a”l € (K*)2.

18) e =e, eey = %eo, ee1 = Nei, ees = \ea, egel = aeg + Bea, eges = e1. For o, o, B
and ' in K*, A(B) and A(B') are isomorph if and only if it exist k € K* such that
B = k28, so BA1 € (K*)2.

19) €2 = e, ey = %eo, eel = \ep, eey = ey, ege] = ea, egea = aegy + Ber. For o, o, B
and " in K*, A(B) and A(B') are isomorph if and only if it exist k € K* such that
B/ — k25, S0 B/ﬁfl c (K*)2.

5. Classification of algebras of type (2,1,0,1)

The type of A being (2,1,0,1) then Ay = 0 and we have : A%/Q C Ay @ Ay, A C
A1/2 P Ap, A% C A1/2, Al/QAo C Ay @ AX’ AI/QAX C A1/2 @ Ao, AOAX C A1/2. In this
way, it is possible to set

Ajjp =< €9 >, Ag =< e1 >, Ay < ez > and the multiplication table of A is :
e = e, eep = 1eg, eer = 0, eex = Xea; €3 = aper + aren, € = Boeg + Bier, €3 = veo,
€oe1 = Ho€o + p1€2, €02 = Yo€o t+ Y1€1, €162 = [i€p.

The reasoning is similar to that of the type (2,1,1,0). This allows us to obtain the
algebras given in the proposition below.

Theorem 6. Let A be a train algebra of degree 2 and exponent 4. If the type of A is
(2,1,0,1) then we have the algebras whose multiplication table are given as follows, the
products not mentioned being zero. If one or both parameters o and [ appear in the
multiplication table, the algebra will be denoted A(a) or A(a, 3).

10) e” = e, eeyg —= %60, €ey = 5\62, €pe1 = €2, €pe2 = €.
2°) e =e, eep = %eo, ees = Aeg, egel = aeg + €2, eges = €.
3°) e =e, eep = %eo, ees = Neg, egel = ea, egea = eq, e1ea = aey. For o and o/ in K*,

A(a) and A(a') are isomorph if and only if it exist k € K* such that o/ = k*a, so
ot e (K*)2

4°) €2 = e, ey = %eo, ees = ey epel = aey + ea, epes = ey, e1ea = fey. For a, o/, B,
B in K*, A(a, B) and A(/, B) are isomorph if and only if it exist k € K* such that
B =k%B, so B/t € (K*)2.
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