EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 15, No. 4, 2022, 1966-1981
ISSN 1307-5543 - ejpam.com
Published by New York Business Global

Outer-connected Hop Dominating Sets in Graphs

Chrisley Jade C. Saromines ${ }^{1, *}$, Sergio R. Canoy, Jr. ${ }^{1}$
${ }^{1}$ Department of Mathematics and Statistics, College of Science and Mathematics, Center for Graph Theory, Algebra and Analysis-PRISM, MSU-Iligan Institute of Technology, 9200 Iligan City, Philippines

Abstract

Let G be an undirected graph with vertex and edge sets $V(G)$ and $E(G)$, respectively. A hop dominating set $S \subseteq V(G)$ is called an outer-connected hop dominating set if $S=V(G)$ or the subgraph $\langle V(G) \backslash S\rangle$ induced by $V(G) \backslash S$ is connected. The minimum size of an outer-connected hop dominating set is the outer-connected hop domination number $\widetilde{\gamma_{c h}}(G)$. A dominating set of size $\widetilde{\gamma_{c h}}(G)$ of G is called a $\widetilde{\gamma_{c h}}$-set. In this paper, we investigate the concept and study it for graphs resulting from some binary operations. Specifically, we characterize the outer-connected hop dominating sets in the join, corona and lexicographic products of graphs, and determine bounds of the outer-connected hop domination number of each of these graphs.

2020 Mathematics Subject Classifications: 05C69
Key Words and Phrases: Hop domination, outer-connected, join, corona, lexicographic

1. Introduction

As pointed out in [1] and [9], the domination concept has been one of the mainstreams of research in Graph Theory and it has numerous applications, interesting questions and results, and unsolved research questions. Moreover, the concept has already plenty of variations (see [3], [8], [13], [15], [17], [18]).

Outer-connected domination, a variation of domination, was first introduced by Cyman in 2007 [5]. A set $D \subseteq V(G)$ is said to be an outer-connected dominating set of G if D is dominating and either $D=V(G)$ or $\langle V(G) \backslash D\rangle$ is connected. This concept has been studied by several authors like Jiang and Shang [11] and Ahkbari et al. [2], and an outerconnected domination variant was introduced in [12].

In 2015, Natarajan and S. K. Ayyaswamy [16] introduced a new distance related domination parameter and called it the hop domination number of a graph. As defined in [16], a subset S of $V(G)$ is a hop dominating set of G if for every $v \in V(G) \backslash S$, there exists

[^0]$u \in S$ such that $d_{G}(u, v)=2$. The concept and some of its variants are also studied in [4], [10], [14], [19], and [20].

Motivated by the hop domination concept and the introduction of the outer-connected domination concept by Cyman, the authors will try to introduce and make an initial study of the concept of outer-connected hop domination. Since domination and hop domination (including their respective variations) have similar applications (e.g. in modeling facility location and protection strategy problems), these two variants can have similar applications as well.

2. Terminology and Notation

For any two vertices u and v in an undirected connected graph G, the distance $d_{G}(u, v)$ is the length of a shortest path joining u and v. Any $u-v$ path of length $d_{G}(u, v)$ is called a u-v geodesic. The open neighborhood of a point u is the set $N_{G}(u)$ consisting of all points v which are adjacent to u. The closed interval $I[x, y]$ consists of x, y and all vertices lying on some $x-y$ geodesic of G and, for $S \subseteq V(G), I[S]=\bigcup_{x, y \in S} I[x, y]$. The closed neighborhood of u is $N_{G}[u]=N_{G}(u) \cup\{u\}$. For any $A \subseteq V(G), N_{G}(A)=\bigcup_{v \in A} N_{G}(v)$ is called the open neighborhood of A and $N_{G}[A]=N_{G}(A) \cup A$ is called the closed neighborhood of A. The open hop neighborhood of a point u is the set $N_{G}^{2}(u)=\left\{v \in V(G): d_{G}(v, u)=2\right\}$. The closed hop neighborhood of u is $N_{G}^{2}[u]=N_{G}^{2}(u) \cup\{u\}$. For any $A \subseteq V(G), N_{G}^{2}(A)=\bigcup_{v \in A} N_{G}^{2}(v)$ is called the open hop neighborhood of A and $N_{G}^{2}[A]=N_{G}^{2}(A) \cup A$ is called the closed hop neighborhood of A.

A set $S \subseteq V(G)$ is a dominating set of G if for every $v \in V(G) \backslash S$, there exists $u \in S$ such that $u v \in E(G)$, that is, $N_{G}[S]=V(G)$. The minimum cardinality of a dominating set of a graph G, denoted by $\gamma(G)$, is called the domination number of G. A set $S \subseteq V(G)$ is an outer-connected dominating set of G if S is dominating and either $S=V(G)$ or the subgraph $\langle V(G) \backslash S\rangle$ induced by $V(G) \backslash S$ is connected. The minimum cardinality of an outer-connected dominating set of a graph G, denoted by $\widetilde{\gamma}_{c}(G)$, is called the outerconnected domination number of G. A dominating set (resp. outer-connected dominating set) S of G with $|S|=\gamma(G)\left(\right.$ resp. $\left.|S|=\widetilde{\gamma_{c}}(G)\right)$ is referred to as a γ-set (resp. $\widetilde{\gamma}_{c}$-set) of G.

A set $S \subseteq V(G)$ is a hop dominating set (resp. total hop dominating set) if $N_{G}^{2}[S]=$ $V(G)$ (resp. $\left.N_{G}^{2}(S)=V(G)\right)$. The minimum cardinality of a hop dominating set (resp. total hop dominating set) of a graph G, denoted by $\gamma_{h}(G)$ (resp. $\left.\gamma_{t h}(G)\right)$ is called the hop domination number (resp. total hop domination number) of G. A hop dominating set (resp. total hop dominating set) of G with cardinality equal to $\gamma_{h}(G)\left(\right.$ resp. $\left.\gamma_{t h}(G)\right)$ is referred to as a γ_{h}-set (resp. $\gamma_{t h}$-set) of G.

A hop dominating set $S \subseteq V(G)$ is called an outer-connected hop dominating set if $S=V(G)$ or $\langle V(G) \backslash S\rangle$ is connected. The minimum cardinality of an outer-connected hop dominating set of a graph G, denoted by $\widetilde{\gamma_{c h}}(G)$, is called the outer-connected hop domination number of G. An outer-connected hop dominating set of size $\widetilde{\gamma_{c h}}(G)$ of G is
called a $\widetilde{\gamma_{c h}}$-set.
A set $D \subseteq V(G)$ is pointwise non-dominating if for each $v \in V(G) \backslash D$, there exists $u \in D$ such that $v \notin N_{G}(u)$. The minimum cardinality of a pointwise non-dominating set of a graph G, denoted by $\operatorname{pnd}(G)$, is called the pointwise non-domination number of G. A pointwise non-dominating set D of $V(G)$ is an outer-connected pointwise non-dominating set if $D=V(G)$ or $\langle V(G) \backslash D\rangle$ is connected. The minimum cardinality of an outerconnected pointwise non-dominating set of a graph G, denoted by $\widetilde{\operatorname{pnd}}(G)$, is called the outer-connected pointwise non-domination number of G.

Let G and H be any two graphs. The join $G+H$ is the graph with vertex set $V(G+H)=V(G) \cup V(H)$ and edge set $E(G+H)=E(G) \cup E(H) \cup\{u v: u \in V(G), v \in$ $V(H)\}$. The corona $G \circ H$ is the graph obtained by taking one copy of G and $|V(G)|$ copies of H, and then joining the i th vertex of G to every vertex of the $i t h$ copy of H. We denote by H^{v} the copy of H in $G \circ H$ corresponding to the vertex $v \in G$ and write $v+H^{v}$ for $\langle\{v\}\rangle+H^{v}$. The lexicographic product $G[H]$ is the graph with vertex set $V(G[H])=V(G) \times V(H)$ and $(v, a)(u, b) \in E(G[H])$ if and only if either $u v \in E(G)$ or $u=v$ and $a b \in E(H)$. Any non-empty set $C \subseteq V(G) \times V(H)$ can be written as $C=\bigcup_{x \in S}\left[\{x\} \times T_{x}\right]$, where $S \subseteq V(G)$ and $T_{x} \subseteq V(H)$ for each $x \in S$. Specifically, $T_{x}=\{a \in V(H):(x, a) \in C\}$ for each $x \in S$. Some parameters studied on these types of graphs can be found in [6] and [7].

3. Known Results

Proposition 1. [13] Let G be a graph. Then $1 \leq \operatorname{pnd}(G) \leq|V(G)|$. Moreover,
(i) $\operatorname{pnd}(G)=|V(G)|$ if and only if G is a complete graph,
(ii) $\operatorname{pnd}(G)=1$ if and only if G has an isolated vetex, and
(iii) $\operatorname{pnd}(G)=2$ if and only of G has no isolated vertex and there exist distinct vertices a and b such that $N_{G}(a) \cap N_{G}(b)=\varnothing$.

Theorem 1. [14] Let G and H be any two graphs. A set $S \subseteq V(G+H)$ is hop dominating set of $G+H$ if and only if $S=S_{G} \cup S_{H}$, where S_{G} and S_{H} are pointwise non-dominating sets of G and H, respectively.

Theorem 2. [14] Let G and H be connected non-trivial graphs. A subset $C=\bigcup_{x \in S}[x \times$ $\left.T_{x}\right]$ of $V(G[H])$ is a hop dominating set of $G[H]$ if and only if the following conditions hold:
(i) S is a hop dominating set of G;
(ii) T_{x} is a pointwise non-dominating set of H for each $x \in S$ with $\left|N_{G}^{2}(x) \cap S\right|=0$.

Theorem 3. [14] Let G be a connected graph with $\gamma(G) \neq 1$. If S is a hop dominating set of G, then $\gamma_{t h}(G) \leq\left|S \cap N_{G}^{2}(S)\right|+2\left|S \backslash N_{G}^{2}(S)\right|$. Moreover, $\gamma_{t h}(G) \leq 2 \gamma_{h}(G)$.

4. Results

Theorem 4. Let G be any graph on $n \geq 2$ vertices. Then $2 \leq \gamma_{h}(G) \leq \widetilde{\gamma_{c h}}(G) \leq n$. Moreover,
(i) $\widetilde{\gamma_{c h}}(G)=2$ if and only if there exist distinct vertices $x, y \in V(G)$ such that $\langle V(G) \backslash\{x, y\}\rangle$ is connected and the following hold:
(a) $\left|N_{G}(v) \backslash\{x, y\} \cap\{x, y\}\right| \leq 1$ for all $v \in V(G) \backslash\{x, y\}$.
(b) $N_{G}(v) \cap N_{G}(\{x, y\}) \neq \varnothing$ for all $v \in V(G) \backslash\{x, y\}$ such that $N_{G}(v) \cap\{x, y\}=\varnothing$.
(c) For all $v \in V(G) \backslash\{x, y\}, N_{G}(v) \cap N_{G}(x) \neq \varnothing$ if $v \in N_{G}(y)$ and $N_{G}(v) \cap N_{G}(y) \neq$ \varnothing if $v \in N_{G}(x)$.
(ii) $\widetilde{\gamma_{c h}}(G)=n$ if and only if every component of G is complete.

Proof. Since every outer-connected hop dominating set of G is a hop dominating set, $\gamma_{h}(G) \leq \widetilde{\gamma_{c h}}(G)$. Also, since $V(G)$ is an outer-connected hop dominating set of G and any connected graph G with at least two vertices satisfies $2 \leq \gamma_{h}(G)$, it follows that $2 \leq \gamma_{h}(G) \leq \widetilde{\gamma_{c h}}(G) \leq n$.

For (i), suppose that $\widetilde{\gamma_{c h}}(G)=2$. Let $S=\{x, y\}$ be a $\widetilde{\gamma_{c h}}$-set of G. Since S is an outerconnected hop dominating set, $\langle V(G) \backslash\{x, y\}\rangle$ is connected. Let $v \in V(G) \backslash\{x, y\}$. Since S is a hop dominating set, $d_{G}(x, v)=2$ or $d_{G}(y, v)=2$. Hence, $\left|N_{G}(v) \cap\{x, y\}\right| \leq 1$, showing that (a) holds. If $d_{G}(x, v)=2$ (or $d_{G}(y, v)=2$), then there exists $z \in N_{G}(x) \cap N_{G}(v)$ (resp. there exists $\left.w \in N_{G}(y) \cap N_{G}(v)\right)$. Hence, $N_{G}(v) \cap N_{G}(\{x, y\}) \neq \varnothing$ whenever $N_{G}(v) \cap$ $\{x, y\}=\varnothing$, showing (b) holds. Finally, suppose that $\left|N_{G}(v) \cap\{x, y\}\right|=1$. If $v \in N_{G}(y)$, then $d_{G}(x, v)=2$. Hence, there exist $p \in N_{G}(v) \cap N_{G}(x)$, that is, $N_{G}(v) \cap N_{G}(x) \neq \varnothing$. Similarly, $N_{G}(v) \cap N_{G}(y) \neq \varnothing$ if $v \in N_{G}(x)$. This shows that (c) holds.

Conversely, suppose there exist distinct vertices $x, y \in V(G)$ such that $\langle V(G) \backslash\{x, y\}\rangle$ is connected and satisfy $(a),(b)$ and (c). Let $v \in\langle V(G) \backslash\{x, y\}\rangle$. By $(a),\left|N_{G}(v) \cap\{x, y\}\right| \leq$ 1. If $\left|N_{G}(v) \cap\{x, y\}\right|=0$, then $d_{G}(v, x)=2$ or $d_{G}(v, y)=2$ by (b). Suppose $\left|N_{G}(v) \cap\{x, y\}\right|=$ 1 , say $v \in N_{G}(y)$. By $(c), N_{G}(v) \cap N_{G}(x) \neq \varnothing$. This implies that $d_{G}(v, x)=2$. Therefore S is an outer-connected hop dominating set of G. Since G is non-trivial, $\widetilde{\gamma_{c h}}(G)=2$.

For (ii), suppose that $\widetilde{\gamma_{c h}}(G)=|V(G)|$ and suppose that one component of G, say G_{1}, is not complete. Then there exist distinct vertices $x_{1}, y_{1} \in V\left(G_{1}\right)$ such that $d_{G}\left(x_{1}, y_{1}\right)=2$. Consequently, $S=V(G) \backslash\left\{y_{1}\right\}$ is an outer-connected hop dominating set of G, contrary to our assumption that $\widetilde{\gamma_{c h}}(G)=|V(G)|$. Thus, every component of G is complete.

Suppose every component of G is complete. Suppose $\widetilde{\gamma_{c h}}(G)=r<|V(G)|$, say S is a $\widetilde{\gamma_{c h}}$-set of G. Suppose $\left\{G_{1}, G_{2}, \ldots, G_{k}\right\}$ contains all the components of G. Since $\langle V(G) \backslash S\rangle$ is connected, there exists $m \in\{1,2, \ldots, k\}$ such that $V(G) \backslash S \subseteq V\left(G_{m}\right)$. Hence, $S=\left(V\left(G_{m}\right) \cap S\right) \cup\left[\cup_{j \neq m} V\left(G_{j}\right)\right]$. Let $v \in V\left(G_{m}\right) \backslash S$ (this v exists because $r<|V(G)|)$. Since G_{m} is complete, $d_{G}(v, s)=1$ for all $s \in V\left(G_{m}\right) \cap S$, contrary to the assumption that S is a hop dominating set of G. Therefore, $\widetilde{\gamma_{c h}}(G)=|V(G)|$.

Corollary 1. Let G be a graph with n vertices. Then $\widetilde{\gamma_{c h}}\left(K_{n}\right)=\widetilde{\gamma_{c h}}\left(\bar{K}_{n}\right)=n$.

Proposition 2. Let n be a positive integer.
(i) For path P_{n} on n vertices, $\widetilde{\gamma_{c h}}\left(P_{n}\right)= \begin{cases}2, & \text { if } n=3 \\ n-2, & \text { if } n=4,5,6 \\ n-3, & \text { if } n=7 \\ n-4, & \text { if } n \geq 8 .\end{cases}$
(ii) For cycle C_{n} on n vertices, $\widetilde{\gamma_{c h}}\left(C_{n}\right)= \begin{cases}3, & \text { if } n=3 \\ 2, & \text { if } n=4,5 \\ n-4, & \text { if } n \geq 6 .\end{cases}$

Proof.
(i) Let $P_{n}=\left[v_{1}, v_{2}, \ldots, v_{n}\right]$. Clearly, $\widetilde{\gamma_{c h}}\left(P_{n}\right)=2$ for $n=3,4$. Let $n \geq 5$ and let S be a $\widetilde{\gamma_{c h}}$-set of P_{n}. Since $\left\langle V\left(P_{n}\right) \backslash S\right\rangle$ is connected and S is a hop dominating set, $2 \leq\left|V\left(P_{n}\right) \backslash S\right| \leq 4$. Clearly, at least one of v_{1} and v_{n} is in S. Suppose that $v_{1} \in S$. Suppose further that $\left|V\left(P_{n}\right) \backslash S\right|=2$. Then $n=5$ or $n=6$. Hence, $\widetilde{\gamma_{c h}}\left(P_{5}\right)=5-2=3$ and $\widetilde{\gamma_{c h}}\left(P_{6}\right)=6-2=4$. Next, suppose that $\left|V\left(P_{n}\right) \backslash S\right|=3$. If p is the smallest positive integer such that $v_{p} \notin S$, then $p \notin\{1,2, n-3, n-2\}$. It follows that $v_{1}, v_{2}, v_{n-1}, v_{n} \in S$. In this case, it can easily be verified that $n=7$, and so $\widetilde{\gamma_{c h}}\left(P_{7}\right)=7-3=4$. For $n \geq 8$, the set $S^{\prime}=V\left(P_{n}\right) \backslash\left\{v_{3}, v_{4}, v_{5}, v_{6}\right\}$ is clearly an outer-connected hop dominating set. Thus, $\widetilde{\gamma_{c h}}\left(P_{n}\right)=n-4$ for all $. n \geq 8$.
(ii) Let $C_{n}=\left[v_{1}, v_{2}, \ldots, v_{n}, v_{1}\right]$. Clearly, $\widetilde{\gamma_{c h}}\left(C_{3}\right)=\widetilde{\gamma_{c h}}\left(K_{3}\right)=3$. Let $n \geq 4$ and let S be a $\widetilde{\gamma_{c h}}$-set of C_{n}. Since $\left\langle V\left(C_{n}\right) \backslash S\right\rangle$ is connected and S is a hop dominating set, $2 \leq\left|V\left(C_{n}\right) \backslash S\right| \leq 4$. If $\left|V\left(C_{n}\right) \backslash S\right|=2$, then $n=4$. Thus, $\widetilde{\gamma_{c h}}\left(C_{4}\right)=2$. If $\left|V\left(C_{n}\right) \backslash S\right|=3$, then $n=5$. Hence, $\widetilde{\gamma_{c h}}\left(C_{5}\right)=2$. Suppose $n \geq 6$. Then $V\left(C_{n}\right) \backslash\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$ is an outer-connected hop dominating set of C_{n}. Therefore, $\widetilde{\gamma_{c h}}\left(C_{n}\right)=n-4$.

Theorem 5. Let a and b be positive integers such that $2 \leq a \leq b \leq n$. Then there exists a connected graph G such that $\gamma_{h}(G)=a$ and $\widetilde{\gamma_{c h}}(G)=b$.

Proof. Suppose that $a=b$. Consider the graph $G=K_{a}$. Then $\gamma_{h}(G)=\widetilde{\gamma_{c h}}(G)=a$. Next, suppose that $a<b$. Consider the following cases:

Case 1. $a=2$.
Let $m=b-a$ and consider the graph G in Figure 1. Let $S_{1}=\left\{y_{1}, y_{2}\right\}$ and $S_{2}=$ $\left\{x_{1}, x_{2}, z_{1}, \ldots, z_{m}\right\}$. Then S_{1} and S_{2} are γ_{h}-set and $\widetilde{\gamma_{c h}}$-set, respectively, of G. Hence, $\gamma_{h}(G)=a$ and $\widetilde{\gamma_{c h}}(G)=a+m=b$.
G :

Figure 1

Case 2. $a \geq 3$.
Let $r=b-a+1$ and consider the graph G^{\prime} in Figure 2. Let $D_{1}=\left\{x_{1}, x_{2}, \ldots, x_{a}\right\}$ and $D_{2}=\left\{x_{1}, x_{2}, \ldots, x_{a-1}, z_{1}, \ldots, z_{r}\right\}$. Then D_{1} and D_{2} are γ_{h}-set and $\widetilde{\gamma_{c h}}$-set, respectively, of G^{\prime}. Hence, $\gamma_{h}\left(G^{\prime}\right)=a$ and $\widetilde{\gamma_{c h}}\left(G^{\prime}\right)=r+a-1=b$.

Corollary 2. For each positive integer n, there exists a connected graph G such that $\widetilde{\gamma_{c h}}(G)-\gamma_{h}(G)=n$, that is, $\widetilde{\gamma_{c h}}-\gamma_{h}$ can be made arbitrarily large.

The next few results deal with the concept of outer-connected pointwise non-dominating sets.

Theorem 6. Let G be a graph. Then $1 \leq \operatorname{pnd}(G) \leq \widetilde{p n d}(G) \leq|V(G)|$. Moreover,
(i) $\widetilde{p n d}(G)=|V(G)|$ if and only if G is a complete graph,
(ii) $\operatorname{pnd}(G)=1$ if and only if G has at most two components such that one of them is the trivial graph, and
(iii) $\widetilde{p n d}(G)=2$ if and only if G satisfies one of the following conditions:
(a) G has at most two non-trivial components such that one of them is K_{2}.
(b) G has exactly three components such that at least two of them are trivial graphs.
(c) G is connected non-complete graph and there exist $a, b \in V(G)(a \neq b)$ such that $N_{G}(a) \cap N_{G}(b)=\emptyset$ and $\langle V(G) \backslash\{a, b\}\rangle$ is connected.

Proof. Since an empty set cannot be an outer-connected pointwise non-dominating set of G and $V(G)$ is an outer connected pointwise non-dominating set of G, it follows that $1 \leq \widetilde{p n d}(G) \leq|V(G)|$.

For (i), suppose first that $\widetilde{p n d}(G)=|V(G)|$ and suppose that G is not a complete graph. Then there exist non-adjacent vertices x and y of G. Consequently, $S=V(G) \backslash\{y\}$ is an outer-connected pointwise non-dominating set of G, contrary to our assumption that $\widetilde{p n d}(G)=|V(G)|$.Thus, G must be a complete graph.

Conversely, suppose G is a complete graph. Suppose that $\widetilde{p n d}(G)=k<|V(G)|$, say S is an $\widetilde{p n d}$-set. Choose any $w \in V(G) \backslash S$. Since S is a pointwise non-dominating set, there exists $u \in S$ such that $u w \notin E(G)$, a contradiction. Therefore, $\widetilde{\operatorname{pnd}}(G)=|V(G)|$.

Next, suppose that $\operatorname{pnd}(G)=1$, say $S=\{v\}$ is an outer-connected pointwise nondominating set of G. Since $\langle V(G) \backslash S\rangle$ is connected, $V(G) \backslash S$ is contained in a component of G. Thus, G has at most two components and one of them is a trivial graph.

Conversely, if G has at most two components G_{1} and G_{2} where G_{1} is a trivial graph, then $S=V\left(G_{1}\right)$ is an outer-connected point-wise non-dominating set of G. This shows that (ii) holds.

Finally, suppose that $\widetilde{p n d}(G)=2$. Let $S_{1}=\{a, b\}$ be an $\widetilde{p n d}$-set of G.
Case 1. Suppose $a, b \in V\left(G_{1}\right)$, where G_{1} is a component of G. If G is connected, then $G=G_{1}$. If $S_{1}=V(G)$, then $G=K_{2}$. Suppose $S_{1} \neq V(G)$. Then by $(i), G$ is a non-complete graph. Since S_{1} is an outer-connected pointwise non-dominating set, $N_{G}(a) \cap N_{G}(b)=\emptyset$ and $\left\langle V(G) \backslash S_{1}\right\rangle$ is connected. Suppose G is disconnected. Since $\left\langle V(G) \backslash S_{1}\right\rangle$ is connected, $G_{1}=K_{2}$ and G has exactly 2 components G_{1} and G_{2}. Hence, (a) or (c) holds.

Case 2. Suppose $a \in V\left(G_{1}\right)$ and $b \in V\left(G_{2}\right)$, where G_{1} and G_{2} are distinct components of G. Suppose $G=G_{1} \cup G_{2}$. Then G_{1} and G_{2} are non-trivial graphs by (ii) and the assumption that $\operatorname{pnd}(G)=2$. Hence, $\left\langle V(G) \backslash S_{1}\right\rangle$ is disconnected, a contradiction. Therefore, G has more than 2 components. This would imply that $G_{1}=G_{2}=K_{1}$. Since $\left\langle V(G) \backslash S_{1}\right\rangle$ is connected, it follows that G has exactly 3 components. In particular, the G_{1}, G_{2} and $\left\langle V(G) \backslash S_{1}\right\rangle$ are the components of G. Thus, (b) holds.

Conversely, suppose that (a) holds. If G has only one component, then $G=K_{2}$. Hence, $\widetilde{p n d}(G)=2$. Suppose G has two non-trivial components, say G_{1} and G_{2}, where $G_{1}=K_{2}$. Let $S=V\left(G_{1}\right)$. Clearly, S is a pointwise non-dominating set and $\langle V(G) \backslash S\rangle=G_{2}$ is connected. Hence, $\widetilde{\operatorname{pnd}}(G)=2$. Suppose (b) holds. Let G_{1}, G_{2} and G_{3} be the components of G such that G_{1} and G_{2} are trivial graphs. Let $S^{\prime}=V\left(G_{1}\right) \cup V\left(G_{2}\right)$. Clearly, S^{\prime} is a pointwise non-dominating set and $\left\langle V(G) \backslash S^{\prime}\right\rangle=G_{3}$ is connected. Hence, $\widetilde{\operatorname{pnd}}(G)=2$. Suppose (c) holds. Set $S^{\prime \prime}=\{a, b\}$ and let $w \in V(G) \backslash S^{\prime \prime}$. Then by assumption, w is not adjacent to a or b. This implies that $S^{\prime \prime}$ is a pointwise non-dominating set of G. Since G is connected and non-complete, $\widetilde{\operatorname{pnd}}(G) \neq 1$ by $(i i)$. Hence, $\widetilde{p n d}(G)=2$.

The next result is a consequence of Theorem $6(i i i)(c)$.
Corollary 3. Let G be a graph on n vertices. Then $\widetilde{\operatorname{pnd}}\left(P_{n}\right)=2$ for all $n \geq 3$ and $\widehat{p n d}\left(C_{n}\right)=2$ for all $n \geq 4$.

Proposition 3. Let G be a graph with components $G_{1}, G_{2}, \ldots, G_{k}$ where $k \geq 2$. Then pnd $(G)=|V(G)|-\max \left\{\left|V\left(G_{j}\right)\right|: j \in\{1, \ldots, k\}\right\}$.

Proof. Let S be a $\widetilde{p n d}$-set of G. Since S is outer-connected, $\langle V(G) \backslash S\rangle$ is connected. This implies that $\langle V(G) \backslash S\rangle=G_{j}$ for some $j \in\{1,2, \ldots, k\}$. Since S is a pnd-set, it follows that $\left|V\left(G_{j}\right)\right| \geq \mid V\left(G_{i} \mid\right.$ for all $i \in\{1,2, \ldots, k\}$. Therefore,

$$
\begin{aligned}
\widetilde{\operatorname{pnd}}(G) & =|S| \\
& =\left|\cup_{i \neq j} V\left(G_{i}\right)\right| \\
& =|V(G)|-\mid V\left(G_{j} \mid\right. \\
& =|V(G)|-\max \left\{\left|V\left(G_{i}\right)\right|: i \in\{1,2, \ldots, k\}\right\} .
\end{aligned}
$$

This proves the assertion.
Corollary 4. Let G be a disconnected graph of order $n \geq 2$. Then $\widetilde{\operatorname{pnd}}(G)=n-1$ if and only if $G=\bar{K}_{n}$.

Proof. Let $G_{1}, G_{2}, \ldots, G_{k}$ be components of G and suppose that $\widetilde{\operatorname{pnd}}(G)=n-1$. Then, by Proposition 3,

$$
\max \left\{\left|V\left(G_{j}\right)\right|: j \in\{1,2, \ldots, k\}\right\}=1 .
$$

This implies that $G_{j}=K_{1}$ for every $j \in\{1,2, \ldots, k\}$. Therefore, $G=\bar{K}_{n}$.
The converse also follows from Proposition 3.
Given a complete graph K_{n} on $n \geq 2$ vertices and $E \subseteq E\left(K_{n}\right)$, we denote by $K_{n} \backslash E$ the graph obtained from K_{n} by deleting the edges in set E.

Theorem 7. Let G be a connected graph on $n \geq 3$ vertices. Then $\widetilde{\operatorname{pnd}}(G)=n-1$ if and only if $G=K_{n} \backslash E_{G}$, where $E_{G} \subseteq E\left(K_{n}\right)$ and for some $2 \leq r \leq n-1,\langle\{x: x y \in$ E_{G} for some $\left.\left.y \in V(G)\right\}\right\rangle=\bar{K}_{r}$ in G.

Proof. Construct a complete graph K_{n} with $V\left(K_{n}\right)=V(G)$. Then $G=K_{n} \backslash E_{G}$ where $E_{G} \subseteq E\left(K_{n}\right)$. Let $V_{G}=\left\{x: x y \in E_{G}\right.$ for some $\left.y \in V(G)\right\}$. Suppose $\widetilde{p n d}(G)=n-1$, say $S=V(G) \backslash\{v\}$ is a pnd-set of G. Since G is connected and S is pointwise non-dominating, there exists $w \in V(G)$ such that $d_{G}(v, w)=2$. Hence, $v w \in E_{G}$. Let r be the largest index such that $v, w \in V\left(\bar{K}_{r}\right)$ and $V\left(\bar{K}_{r}\right) \subseteq V_{G}$. Since G is connected, $2 \leq r \leq n-1$. Let $z \in N_{G}(v) \cap N_{G}(w)$. Suppose that there exists $u \in V(G)$ such that $u z \notin E(G)$. Then $V(G) \backslash\{v, z\}$ is an outer-connected pointwise non-dominating set, contrary to our assumption that $\operatorname{pnd}(G)=n-1$. Hence, $z y \in E(G)$ for all $y \in V(G) \backslash\{z\}$. Suppose now that $V_{G} \neq V\left(\bar{K}_{r}\right)$, say $q \in V_{G} \backslash V\left(\bar{K}_{r}\right)$. By our assumption of r, there exists $t \in V\left(\bar{K}_{r}\right)$ such that $q t \in E(G)$. Note that $t v, t w \notin E(G)$ because $t, v, w \in V\left(\bar{K}_{r}\right)$. Also, since $q \in V_{G}$, there exists $x \in V_{G}$ such that $x q \in E_{G}$, that is, $x q \notin E(G)$. Hence, $V(G) \backslash\{q, t\}$ is an outer-connected pointwise non-dominating set of G, a contradiction. Thus, $\left\langle V_{G}\right\rangle=\bar{K}_{r}$.

For the converse, suppose that G is obtained from K_{n} as described. Let S be a pnd-set of G. Then $V(G) \backslash V_{G}$ contains all the dominating vertices of G. Consequently,
$V(G) \backslash V_{G} \subseteq S$. Since $\langle V(G) \backslash S\rangle$ is connected and $\left\langle V_{G}\right\rangle=\bar{K}_{r}, S$ contains all but a single vertex of V_{G}. Thus, $\widetilde{p n d}(G)=|S|=n-1$.

Corollary 5. For $n \geq 3$, $\widetilde{\operatorname{pnd}}\left(K_{1, n-1}\right)=\widetilde{\operatorname{pnd}}\left(K_{n} \backslash e\right)=n-1$, where $e \in E\left(K_{n}\right)$.
We now characterize the outer-connected hop dominating sets in some graphs under some binary operations.

Theorem 8. Let G and H be any two graphs. A set $S \subseteq V(G+H)$ is an outer-connected hop dominating set of $G+H$ if and only if $S=S_{G} \cup S_{H}$, where S_{G} and S_{H} are pointwise non-dominating subsets of G and H, respectively, such that
(i) $\left\langle V(H) \backslash S_{H}\right\rangle$ is connected whenever $S_{H} \neq V(H)$ and $S_{G}=V(G)$ and
(ii) $\left\langle V(G) \backslash S_{G}\right\rangle$ is connected whenever $S_{G} \neq V(G)$ and $S_{H}=V(H)$.

Proof. Suppose S is an outer-connected hop dominating set of $G+H$. Since S is hop dominating, by Theorem 1, $S=S_{G} \cup S_{H}$ where S_{G} and S_{H} are pointwise non-dominating sets of G and H, respectively. Suppose $S_{G}=V(G)$ and $S_{H} \neq V(H)$. Since S is outerconnected, $\langle V(G+H) \backslash S\rangle=\left\langle V(H) \backslash S_{H}\right\rangle$ is connected. Therefore (i) holds. Similarly, (ii) holds.

For the converse, let $S=S_{G} \cup S_{H}$, where S_{G} and S_{H} are pointwise non-dominating subsets of G and H, respectively. Then S is a hop dominating set by Theorem 1. If $S=V(G+H)$, then it is an outer-connected hop dominating set. Suppose $S \neq V(G+H)$. Consider the following cases:
Case 1. $\quad S_{G} \neq V(G)$ and $S_{H} \neq V(H)$.
Then $\langle V(G+H) \backslash S\rangle=\left\langle V(G) \backslash S_{G}\right\rangle+\left\langle V(H) \backslash S_{H}\right\rangle$ is connected.
Case 2. $S_{G}=V(G)$ and $S_{H} \neq V(H)$.
Then $\langle V(G+H) \backslash S\rangle=\left\langle V(H) \backslash S_{H}\right\rangle$ is connected by (i).
Case 3. $S_{H}=V(H)$ and $S_{G} \neq V(G)$.
Then $\langle V(G+H) \backslash S\rangle=\left\langle V(G) \backslash S_{G}\right\rangle$ is connected by (ii).
Therefore S is an outer-connected hop dominating set of $G+H$.
The next result is based from Proposition 1 (i), Theorem 6, Corollary 3, Corollary 4 and Theorem 8.

Corollary 6. Let G and H be any two graphs of orders m and n, respectively. Then

$$
\widetilde{\gamma_{c h}}(G+H)= \begin{cases}p n d(G)+\underline{p n d}(H), & G \text { and Hare non-complete, } \\ |V(G)|+\widetilde{p n d}(H), & G \text { is complete and His non-complete and } \\ |V(H)|+\widetilde{p n d}(G), & H \text { is complete and Gis non-complete }\end{cases}
$$

In particular,
(i) $\widetilde{\gamma_{c h}}(G+H)=m+n$, if G and H are complete;
(ii) $\widetilde{\gamma_{c h}}\left(K_{1, n}\right)=\widetilde{\gamma_{c h}}\left(K_{1}+\bar{K}_{n}\right)=1+\widetilde{p n d}\left(\bar{K}_{n}\right)=n$ for $n \geq 2$.
(iii) $\widetilde{\gamma_{c h}}\left(F_{n}\right)=1+\widetilde{p n d}\left(P_{n}\right)=3$ for $n \geq 2$.
(iv) $\widetilde{\gamma_{c h}}\left(W_{n}\right)=1+\widetilde{p n d}\left(C_{n}\right)=3$ for $n \geq 4$.
(v) $\widetilde{\gamma_{c h}}\left(K_{m, n}\right)=\operatorname{pnd}\left(\bar{K}_{m}\right)+\operatorname{pnd}\left(\bar{K}_{n}\right)=2$ for $m, n \geq 2$.

Theorem 9. Let G be a connected graph and let H be any graph. Then a subset C of $V(G \circ H)$ is an outer connected hop dominating set of $G \circ H$ if and only if

$$
C=A \cup\left(\bigcup_{v \in V(G)} S_{v}\right)
$$

where $S_{v} \subseteq V\left(H^{v}\right)$ for each $v \in V(G)$ and satisfies each of the following statements:
(i) $A=V(G)$ or $\langle V(G) \backslash A\rangle$ is connected.
(ii) If $A=V(G)$, then $\left\langle V\left(H^{v}\right) \backslash S_{v}\right\rangle$ is a connected proper subgraph of H^{v} for at most one vertex $v \in A$. Otherwise, $S_{v}=V\left(H^{v}\right)$ for all $v \in A$.
(iii) For all $v \in\left(V(G) \backslash N_{G}^{2}[A]\right)$, there exists $w \in N_{G}(v)$ such that $S_{w} \neq \varnothing$.
(iv) For all $v \in\left(V(G) \backslash N_{G}[A]\right)$, S_{v} is a pointwise non-dominating set of H^{v}.

Proof. Let C be an outer-connected hop dominating set of $G \circ H, S_{v}=V\left(H^{v}\right) \cap C$ for each $v \in V(G)$ and set $A=V(G) \cap C$. Suppose $A \neq V(G)$. If $|V(G) \backslash A|=1$, then we are done. Suppose $|V(G) \backslash A| \geq 2$. Let $u, v \in V(G) \backslash A$ where $u \neq v$. Then $u, v \in V(G \circ H) \backslash C$. Since $\langle V(G \circ H) \backslash C\rangle$ is connected, there is a $u-v$ geodesic P in $\langle V(G \circ H) \backslash C\rangle$. Hence, P is a u-v geodesic in $\langle V(G) \backslash A\rangle$. Thus, $\langle V(G) \backslash A\rangle$ is connected, showing that (i) holds. Suppose $A=V(G)$. If $S_{v}=V\left(H^{v}\right)$ for all $v \in A$, then we are done. Suppose there exists $v \in A$ such that $S_{v} \neq V\left(H^{v}\right)$. Suppose further there exists $w \in A \backslash\{v\}$ such that $S_{w} \neq V\left(H^{w}\right)$. Let $p \in V\left(H^{v}\right) \backslash S_{v}$ and $q \in V\left(H^{w}\right) \backslash S_{w}$. Since every $p-q$ path contains vertices v and w, it follows that there is no $p-q$ path in $\langle V(G \circ H) \backslash C\rangle$, contrary to the assumption that $\langle V(G \circ H) \backslash C\rangle$ is connected. Hence, there is at most a single vertex $v \in A$ such that $S_{v} \neq V\left(H^{v}\right)$. Suppose $A \neq V(G)$. Suppose further that there exists $v \in A$ such that $S_{v} \neq V\left(H^{v}\right)$. Choose any $z \in V(G) \backslash A$ and $y \in V\left(H^{v}\right) \backslash S_{v}$. Since any $y-z$ path contains v as a vertex it follows that there is no $y-z$ path in $\langle V(G \circ H) \backslash C\rangle$, a contradiction. Therefore $S_{v}=V\left(H^{v}\right)$ for all $v \in A$. Hence, (ii) holds.

Next, let $v \in\left(V(G) \backslash N_{G}^{2}[A]\right)$. Then $v \notin C \cup N_{G}^{2}(A)$. Since C is a hop dominating set, there exists $y \in C \cap N_{G \circ H}^{2}(v)$. Since $v \notin N_{G}^{2}(A)$ and $d_{G \circ H}(y, v)=2$, it follows that there exists $w \in N_{G}(v)$ such that $y \in S_{w}$. Hence, (iii) holds.

Finally, let $v \in V(G) \backslash N_{G}[A]$ and let $z \in V\left(H^{v}\right) \backslash S_{v}$. Then $z \notin C$. Since C is hop dominating, there exists $x \in C \cap N_{G \circ H}^{2}(z)$. Hence, $x \in S_{v}$ and $d_{G \circ H}(z, x)=d_{H^{v}}(z, x)=2$. Therefore, S_{v} is a pointwise non-dominating set of H^{v}, showing that (iv) holds.

Conversely, suppose that C has the given form and satisfies properties (i), (ii), (iii) and (iv). Let $x \in V(G+H) \backslash C$ and let $v \in V(G)$ such that $x \in V\left(v+H^{v}\right)$. Suppose $x=v$. If $v \in N_{G}^{2}(A)$, then we are done. Suppose $v \in\left(V(G) \backslash N_{G}^{2}[A]\right.$. By (iii), there exists $w \in N_{G}(v)$ such that $S_{w} \neq \varnothing$. Choose any $p \in S_{w}$ then $p \in C$ and $d_{G \circ H}=2$. Therefore C is a hop dominating set.

Let $a, b \in V(G \circ H) \backslash C$ with $a \neq b$ and let $v, w \in V(G)$ such that $a \in V\left(v+H^{v}\right)$ and $b \in V\left(w+H^{w}\right)$. Consider the following cases:
Case 1. $v=w$.
If $a=v$ and $b \in V\left(H^{v}\right) \backslash S_{v}$, then $a b \in E(G \circ H)$ and we are done. Let $a, b \in V\left(H^{v}\right) \backslash S_{v}$. If $A=V(G)$, then $v \in A$. By $(i i),\left\langle V\left(H^{v}\right) \backslash S_{v}\right\rangle$ is connected, hence, there exists an $a-b$ path in $\left\langle V\left(H^{v}\right) \backslash S_{v}\right\rangle$. This a-b path is also an a-b path in $\langle V(G \circ H) \backslash C\rangle$. If $A \neq V(G)$, then $v \notin A$ by the second part of $(i i)$. Therefore, $[a, v, b]$ is an $a-b$ path in $\langle V(G \circ H) \backslash C\rangle$. Case 2. $v \neq w$.

If $a=v$ and $b=w$, then $v, w \in V(G) \backslash A$. By (i), there exists an a-b path P in $\langle V(G) \backslash A\rangle$. Hence, P is a path in $\langle V(G \circ H) \backslash C\rangle$. Suppose $a \in V\left(H^{v}\right) \backslash S_{v}$ and $b \in V\left(H^{w}\right) \backslash S_{w}$. By $(i i), v, w \notin A$. By (i), there exists a $v-w$ path $P=\left[v_{1}, v_{2}, \ldots, v_{k}\right]$ where $v_{1}=v, v_{k}=w$ in $\langle V(G) \backslash A\rangle$. Hence, $P^{\prime}=\left[a, v_{1}, v_{2}, \ldots, v_{k}, b\right]$ is an a-b path in $\langle V(G \circ H) \backslash C\rangle$.

Suppose $a=v$ and $b \in\left(V\left(H^{w}\right) \backslash S_{w}\right)$. Since $v \notin A, A \neq V(G)$. Hence, by the second part of $(i i), w \notin A$. It follows from (i) that there exists a $v-w$ path $P=\left[v_{1}, v_{2}, \ldots, v_{k}\right]$ where $v_{1}=a, v_{k}=w$ in $\langle V(G) \backslash A\rangle$. Consequently, $P^{*}=\left[v_{1}, v_{2}, \ldots, v_{k}, b\right]$ is an $a-b$ path in $\langle V(G \circ H) \backslash C\rangle$.

Therefore, $\langle V(G) \backslash C\rangle$ is connected. Accordingly, C is an outer-connected hop dominating set of $G \circ H$.

Corollary 7. Let G be a connected graph and let H be any graph of orders m and n, respectively. Then $\widetilde{\gamma_{c h}}(G \circ H) \leq \min \left\{(n+1) \widetilde{\gamma_{c}}(G), m(\operatorname{pnd}(H))\right\}$.

Proof. Let A be a $\widetilde{\gamma}_{c}$-set in G. By Theorem 9,

$$
C=A \cup\left(\bigcup_{v \in A} V\left(H^{v}\right)\right)
$$

is an outer-connected hop dominating set in $G \circ H$. Thus,

$$
\begin{aligned}
\widetilde{\gamma_{c h}}(G \circ H) & \leq|C| \\
& =|A|+\sum_{v \in A}\left|V\left(H^{v}\right)\right| \\
& =(n+1) \widetilde{\gamma_{c}}(G) .
\end{aligned}
$$

Next. let $A=\varnothing$ and S_{v} be a pnd-set of H for each $v \in V(G)$. By Theorem 9 ,

$$
C^{*}=\bigcup_{v \in V(G)} S_{v}
$$

is an outer-connected hop dominating set in $G \circ H$. Hence,

$$
\begin{aligned}
\widetilde{\gamma_{c h}}(G \circ H) & \leq\left|C^{*}\right| \\
& =\sum_{v \in V(G)}\left|S_{v}\right| \\
& =m(\operatorname{pnd}(H)) .
\end{aligned}
$$

Therefore, $\widetilde{\gamma_{c h}}(G \circ H) \leq \min \left\{(n+1) \widetilde{\gamma_{c}}(G), \operatorname{m}(\operatorname{pnd}(H))\right\}$.
Example 1. Consider the corona $C_{4} \circ P_{3}$ in Figure 1. It can be verified that

$$
\begin{aligned}
\widetilde{\gamma_{c h}}\left(C_{4} \circ P_{3}\right) & =6 \\
& <8 \\
& =\left|V\left(C_{4}\right)\right| \operatorname{pnd}\left(P_{3}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\widetilde{\gamma_{c h}}\left(C_{4} \circ P_{3}\right) & =6 \\
& <8 \\
& =\widetilde{\gamma_{c}}\left(C_{4}\right)\left(\left|V\left(P_{3}\right)\right|+1\right) .
\end{aligned}
$$

Figure 1: The corona $C_{4} \circ P_{3}$

Example 2. Consider the corona of $K_{2} \circ P_{3}$. Then

$$
\begin{aligned}
\widetilde{\gamma_{c h}}\left(K_{2} \circ P_{3}\right) & =4 \\
& =\widetilde{\gamma_{c}}\left(K_{2}\right)\left(\left|V\left(P_{3}\right)\right|+1\right) \\
& =\left|V\left(K_{2}\right)\right|\left(\operatorname{pnd}\left(P_{3}\right)\right)
\end{aligned}
$$

Figure 2: The corona $K_{2} \circ P_{3}$
Note that Example 2 shows that the given bound in Corollary 7 cannot be improved. On the other hand, Example 1 shows that strict inequality given in Corollary 7 is attainable.

Theorem 10. Let G and H be connected non-trivial graphs. A subset $C=\bigcup_{x \in S}\left[\{x\} \times T_{x}\right]$ of $V(G[H])$ is an outer-connected hop dominating set of $G[H]$ if and only if the following conditions hold:
(i) S is a hop dominating set of G; and
(ii) T_{x} is a pointwise non-dominating set of H for each $x \in S$ with $\left|N_{G}^{2}(x) \cap S\right|=0$.
(iii) $\left\langle(V(G) \backslash S) \cup\left\{v \in S: T_{v} \neq V(H)\right\}\right\rangle$ is a connected graph in G.

Proof. Suppose C is an outer-connected hop dominating set of $G[H]$ and let $W=$ $(V(G) \backslash S) \cup\left\{v \in S: T_{v} \neq V(H)\right\}$. Since every outer-connected hop dominating set is a hop dominating set, (i) and (ii) hold by Theorem 2. Let $u, v \in W$ where $u \neq v$. Suppose $u, v \in V(G) \backslash S$. Let $a \in V(H)$. Then $(u, a),(v, a) \in V(G[H]) \backslash C$. Since $\langle V(G[H]) \backslash C\rangle$ is connected, there exists $(u, a)-(v, a)$ geodesic $\left[\left(u_{1}, a_{1}\right),\left(u_{2}, a_{2}\right), \ldots,\left(u_{k}, a_{k}\right)\right]$, where $\left(u_{1}, a_{1}\right)=$ (u, a) and $\left(u_{k}, a_{k}\right)=(v, a)$, in $\langle V(G[H]) \backslash C\rangle$. Then $u_{i} \in W$ for all $i \in\{1,2, \ldots, k\}$. Thus, $\left[u_{1}, \ldots, u_{k}\right]$ is a $u-v$ path in $\langle W\rangle$.

Suppose $u, v \in S$ where $T_{u} \neq V(H)$ and $T_{v} \neq V(H)$. Let $a \in V(H) \backslash T_{u}$ and $b \in V(H) \backslash T_{v}$. Then $(u, a),(v, b) \in V(G[H]) \backslash C$. Since $\langle V(G[H]) \backslash C\rangle$ is connected, there exists $(u, a)-(v, b)$ geodesic $\left[\left(u_{1}, a_{1}\right), \ldots,\left(u_{m}, a_{m}\right)\right]$, where $(u, a)=\left(u_{1}, a_{1}\right)$ and $\left(u_{m}, a_{m}\right)=$ (v, b), in $\langle V(G[H]) \backslash C\rangle$. Again, $u_{i} \in W$ for all $i \in\{1,2, \ldots, k\}$. Thus, $\left[u_{1}, \ldots, u_{k}\right]$ is a $u-v$ path in $\langle W\rangle$. Similarly if $u \in V(G) \backslash S$ and $v \in S$ and $T_{v} \neq V(H)$, then it can be shown that a $u-v$ path in $\langle W\rangle$ exists. Therefore, $\langle W\rangle$ is connected.

Conversely, suppose that C has the given form and satisfies properties $(i),(i i)$ and (iii). By $(i),(i i)$ and Theorem 2, C is a hop dominating set. Let $(u, a),(v, b) \in V(G[H]) \backslash C$ with $(u, a) \neq(v, b)$. Consider the following cases.
Case 1. $u, v \in V(G) \backslash S$.
Subcase $1.1 u=v$.
Then $a \neq b$. Since H is connected, there exists an a-b path $\left[a_{1}, a_{2}, \ldots, a_{k}\right]$ with $a_{1}=a$ and $a_{k}=b$ in H. Hence, the path $\left[\left(u, a_{1}\right),\left(u, a_{2}\right), \ldots,\left(u, a_{k}\right)\right]$ is a $(u, a)-(v, b)$ path in $\langle V(G[H]) \backslash C\rangle$.
Subcase $1.2 u \neq v$.
Since $u, v \in V(G) \backslash S$, there exists a u-v path $\left[u_{1}, u_{2}, \ldots, u_{k}\right]$ where $u_{1}=u$ and $u_{k}=v$, in $\langle W\rangle$ by (iii). For each $i \in\{2,3, \ldots, k-1\}$, choose any $a_{i} \in V(H)$ if $u_{i} \in V(G) \backslash S$. Otherwise let $a_{i} \in V(H) \backslash T_{u_{j}}$ if $u_{j} \in S$. Then $\left[\left(u_{1}, a_{1}\right),\left(u_{2}, a_{2}\right), \ldots,\left(u_{k}, a_{k}\right)\right]$ where $a_{1}=a$ and $a_{k}=b$ is a $(u, a)-(v, b)$ path in $\langle V(G[H]) \backslash C\rangle$. Hence, the path $\left[\left(u, a_{1}\right),\left(u, a_{2}\right), \ldots,\left(u, a_{k}\right)\right]$ is a $(u, a)-(v, b)$ path in $\langle V(G[H]) \backslash C\rangle$.

Case 2. $u \in V(G) \backslash S$ and $v \in S$.
Then $b \in V(H) \backslash T_{v}$. By (iii), a $u-v$ path $\left[u_{1}, u_{2}, \ldots, u_{p}\right]$ where $u_{1}=u, u_{p}=v$ exists in $\langle W\rangle$. For each $i \in\{2,3, \ldots, p-1\}$, choose any $a_{i} \in V(H)$ if $u_{i} \in V(G) \backslash S$. Otherwise let $a_{i} \in V(H) \backslash T_{u_{j}}$ if $u_{j} \in S$. Hence, $\left[\left(u_{1}, a_{1}\right),\left(u_{2}, a_{2}\right), \ldots,\left(u_{p}, a_{p}\right)\right]$, where $a_{1}=a, a_{p}=b$, is a $(u, a)-(v, b)$ path in $\langle V(G[H]) \backslash C\rangle$.
Case 3. $u, v \in S$.
Then $a \in V(H) \backslash T_{u}$. and $b \in V(H) \backslash T_{v}$. Again, by (iii) and by using similar arguments used in Case 1 and Case 2, there exists $(u, a)-(v, b)$ path in $\langle V(G[H] \backslash C\rangle$.

Accordingly, C is an outer-connected hop dominating set of $G[H]$.

Corollary 8. Let G and H be non-trivial connected graphs such that $\gamma(G) \neq 1$. Then

$$
\widetilde{\gamma_{c h}}(G[H])=\gamma_{t h}(G)
$$

Proof. Let S be a $\gamma_{t h}$-set of G and let $p \in V(H)$. Set $T_{x}=\{p\}$ for every $x \in S$. Then

$$
C=\bigcup_{x \in S}\left(\{x\} \times T_{x}\right)=S \times\{p\}
$$

is an outer-connected hop dominating set in $G[H]$ by Theorem 10. Hence

$$
\begin{aligned}
\widetilde{\gamma_{c h}}(G[H]) & \leq|C| \\
& =|S \times\{p\}| \\
& =\gamma_{t h}(G)
\end{aligned}
$$

Next, let $C_{0}=\cup_{x \in S_{0}}\left(\{x\} \times R_{x}\right)$ be $\widetilde{\gamma_{c h}}$-set of $G[H]$. Then S_{0} is a hop dominating set and R_{x} is a pointwise non-dominating set of H for each $x \in S_{0} \backslash N_{G}^{2}\left(S_{0}\right)$, by Theorem 10 Hence,

$$
\begin{aligned}
\widetilde{\gamma_{c h}}(G[H]) & =\left|C_{0}\right| \\
& =\sum_{x \in S_{0}}\left|R_{x}\right| \\
& =\sum_{x \in S_{0} \cap N_{G}^{2}(S)}\left|R_{x}\right|+\sum_{x \in S \backslash N_{G}^{2}\left(S_{0}\right)}\left|R_{x}\right| \\
& \geq\left|S_{0} \cap N_{G}^{2}\left(S_{0}\right)\right|+\left|S_{0} \backslash N_{G}^{2}\left(S_{0}\right)\right| \operatorname{pnd}(H) .
\end{aligned}
$$

Since H is a non-trivial connected graph, $\operatorname{pnd}(H) \geq 2$. Thus, by Theorem $3, \widetilde{\gamma_{c h}}(G[H]) \geq$ $\gamma_{t h}(G)$. This establishes the desired equality.

5. Conclusion

Outer-connected hop domination, a variant of hop domination, has been introduced and studied for some graphs and graphs resulting from the join, corona and lexicographic
product of two graphs. In the case of the join of graphs, the concept of outer-connected pointwise non-domination plays a vital role. It is recommended that some bounds on the outer-connected hop domination be determined and that the parameter be studied for other graphs.

Acknowledgements

The authors are very much grateful to the referees for the corrections and suggestions they made in the initial manuscript. This paper had been improved due to the additional inputs and insights the referees had given to the authors. The authors would like to thank the Department of Science and Technology - Accelerated Science and Technology Human Resource Development Program (DOST-ASTHRDP)-Philippines, and MSU-Iligan Institute of Technology for funding this research.

References

[1] B.D. Acharaya, S. Arumugan, and P.J. Slater. Domination in discrete structures new directions. AKCE J. Graphs Combin., pages 113-115, 2007.
[2] M.H. Akhbari, R. Hasni, O. Favaron, H. Karami, and S.M. Sheikholeslami. On the outer-conected domination numbers of graphs. Journal of Combinatorial Optimization, 26(1):10-18, 2013.
[3] C. Armada, S. Canoy Jr., and C. Go. Forcing domination numbers of graphs under some binary operations. Advances and Applications in Discrete Mathematics, 19(3):213-228, 2018.
[4] S. Ayyaswamy, B. Krishnakumari, B. Natarjan, and Y. Venkatakrishnan. Bounds on the hop domination number of a tree. Proceedings-Mathematical Sciences, 125(4):449455, 2015.
[5] J. Cyman. The outer-conected domination numbers of graphs. Australasian Journal of Combinatorics, 38(1):35-46, 2007.
[6] T. Daniel and S. Canoy Jr. Clique domination in graphs. Applied Mathematical Sciences, 9(116):5749-5755, 2015.
[7] R. Eballe and S. Canoy Jr. Steiner sets in the join and composition of graphs. Congressus Numerantium, 170:65-73, 2004.
[8] S. Omega Espinola and S. Canoy Jr. Restrained locating-domination and restrained differentiating-domination in graphs. International Journal of Mathematics Analysis, 9(45):2243-2255, 2015.
[9] T. W. Haynes, S.T. Hedetnieme, and P.J. Slater. Fundamentals of domination in graphs. Monographs and Textbooks in Pure and Applied Mathematics, 28, 1998.
[10] M. Henning and N. Rad. On 2-step and hop dominating sets in graphs. Graphs and Combinatorics., 33(4):913-927, 2017.
[11] H. Jiang and E. Shan. Outer-conected domination numbers of graphs. American Mathematical Society, 81(1):265-274, 2010.
[12] R. Hinampas Jr, J. Hinampas, and A. Dahuman. Independent outer-connected domination in graphs. Global Journal of Pure and Applied Mathematics, 13(1):1-7, 2017.
[13] S. Canoy Jr. and S. Arriola. $(1,2)^{*}$-domination in graphs. Advances and Applications in Discrete Mathematics., 18(2):179-190, 2017.
[14] S. Canoy Jr., R. Mollejon, and J. G. Canoy. Hop dominating sets in graphs under binary operations. Eur. J. Pure Appl. Math., 12(4):1455-1463, 2019.
[15] G. Monsanto and H. Rara. Resolving restrained domination domination in graphs. European Journal of Pure and Applied Mathematics, 14(3):829-841, 2021.
[16] C. Natarajan and S. Ayyaswamy. Hop domination in graphs ii. Versita, 23(2):187199, 2015.
[17] Y. Pabilona and H. Rara. Connected hop domination in graphs under some binary operations. Asian-Eur. J. Math., 11(5):1850075-1-1850075-11, 2018.
[18] S. Pacardo and H. Rara. Interior domination in graphs under some binary operations. Applied Mathematical Sciences, 12(14):677-690, 2018.
[19] R. Rakim and H. Rara. Total perfect hop domination in graphs under some binary operations. European Journal of Pure and Applied Mathematics, 14(3):803-815, 2021.
[20] R. Rakim, H. Rara, and C.J. Saromines. Perfect hop domination in graphs. Applied Mathematical Sciences, 12(13):635-649, 2018.

[^0]: ${ }^{*}$ Corresponding author.
 DOI: https://doi.org/10.29020/nybg.ejpam.v15i4.4590
 Email addresses: chrisleyjade.saromines@g.msuiit.edu.ph (C.J. Saromines),
 sergio. canoy@g.msuiit.edu.ph (S. Canoy, Jr.)

