EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 16, No. 1, 2023, 180-191 ISSN 1307-5543 – ejpam.com Published by New York Business Global

On g-Regularity and g-Normality in Fuzzy Soft Topological Spaces

S. Saleh^{1,2,*}, Jawaher Al-Mufarrij³

¹Computer Science Department, Cihan University-Erbil, Kurdistan region, Iraq

²Department of Mathematics, Hodeidah University, Hodeidah, Yemen.

³Department of Mathematics, Women section, King Saud University, Riyadh 12372, KSA.

Abstract. The main aim of this work is to introduce and study the notions of generalized regularity, normality, and symmetric in fuzzy soft topological spaces via fuzzy soft generalized closed sets. Some of their basic properties are investigated. Many related theorems and relations of these notions are presented. Moreover, the hereditary property and some preservation theorems are discussed.

2020 Mathematics Subject Classifications: 54A40, 54C08, 54D15

Key Words and Phrases: Fuzzy soft set, fuzzy soft *g*-closed set, quasi coincident, fuzzy soft *g*-continuous maps, fuzzy soft *g*-regular, fuzzy soft *g*-normal space

1. Introduction and Preliminaries

Levine [18] introduced the notion of generalized closed set, briefly g-closed in general topology. A subset B of a topological space (X, τ) is called g-closed, if $cl(B) \subseteq U$ whenever $B \subseteq U$ and U is open in (X, τ) . This notion has been studied extensively in topology and fuzzy topology by many authors as in ([3, 5, 7, 8, 13, 17, 25–27, 32]). The investigation of g-closed sets has led to several new and interesting concepts, e.g. g-regular, g-normal spaces, their generalizations which are studied in ([12, 15, 21–24]), and new separation axioms weaker than T_1 are presented. In recent time, the topological structures play an important role in many applications of complex real-life problems in various field, specially the fields that concerned with handling all cases that contain uncertainties such as medical diagnosis and decision making,...etc see e. g. ([10, 11]).

After the discovery of fuzzy set theory by Zadeh [33], many authors generalized and applied this idea in different aspects see e. g. ([1, 2, 14, 19]). The concept of fuzzy topological space was introduced by Chang in [6]. Balasubramanian et. al [5] introduced the

https://www.ejpam.com

© 2023 EJPAM All rights reserved.

^{*}Corresponding author.

DOI: https://doi.org/10.29020/nybg.ejpam.v16i1.4597

Email addresses: salem.saleh@cihanuniversity.edu.iq (S. Saleh), jmufarij@ksu.edu.sa (J. Al-Mufarrij)

concept of fuzzy generalized closed sets. Then M. El-Shafei [12] introduced and studied some applications of fuzzy generalized closed sets. Tanay et. al. [30] defined and studied the notion of topological structure for fuzzy soft sets and studied many related concepts. Recently, Tarrannum et. al. [31] introduced the concept of fuzzy soft generalized closed sets, fuzzy soft generalized continuous maps, and studied some properties for them.

In this paper, we define and study the notions of fuzzy soft generalized regular spaces, generalized normal spaces, and symmetric spaces by utilizing fuzzy soft generalized closed sets. We obtain some characterizations. Several related theorems and relationships of them are discussed. In addition, the hereditary property and some preservation theorems are presented.

Throughout this work, U refers to an universe set, E is the set of all parameters, P(U) is the power set of U, I^U is the set of all fuzzy sets on U, where I = [0, 1], FS- refers to fuzzy soft, and (U, δ, E) means fuzzy soft topological space. In the next, we recall some basic definitions and notations which are used in this sequel.

A fuzzy set(or *F*-set) *A* in *U* is a mapping $A: U \longrightarrow I$ assigns the value $A(x) \in I$ for all $x \in U$. An *F*-point x_{α} is an *F*-set such that $x_{\alpha}(y) = \alpha > 0$ if x = y and $x_{\alpha}(y) = 0$ otherwise for all $y \in U$. We write $x_{\alpha} \in A$ if $\alpha \leq A(x)$. The class of all *F*-points of *U* is denoted by *FP*(*U*) [33].

A fuzzy soft set(or FS-set) $f_E = (f, E)$ on U is a mapping $f : E \longrightarrow I^U$ where $f(e) = f_e$ is an F-set on U. Thus f_E can be written as the set of ordered pairs $f_E = \{(e, f(e)) : e \in E, f(e) \in I^U\}$. The class of all FS-sets on U is denoted by FSS(U) [19].

For two FS-sets f_E and g_E on U, we have [19]:

1) f_E is called a null (resp. universal) FS-set, symbolized by $\tilde{0}_E(resp.\tilde{1}_E)$ if $f(e) = \underline{0}(resp.f(e) = \underline{1})$ for all $e \in E$.

2) f_E is a subset of g_E if $f(e) \leq g(e) \forall e \in E$, symbolized by $f \sqsubseteq g$.

3) f_E and g_E are equal if $f_E \sqsubseteq g_E$ and $g_E \sqsubseteq f_E$. It is symbolized by $f_E = g_E$.

4) The union of f_E and g_E is an *FS*-set h_E defined by $h(e) = f(e) \lor g(e)$ for all $e \in E$. h_E is symbolized by $f_E \sqcup g_E$.

5) The intersection of f_E and g_E is an *FS*-set l_E defined by $l(e) = f(e) \wedge g(e)$ for all $e \in E$. l_E is symbolized by $f_E \sqcap g_E$.

An *FS*-point x_{α}^{e} on *U* is an *FS*-set (x_{α}^{e}, E) given by $x_{\alpha}^{e}(e') = x_{\alpha}$ if e' = e and $x_{\alpha}^{e}(e') = \underline{0}$ otherwise, where x_{α} is an *F*-point in *U* with the support *x* and the value α , $\alpha \in (0, 1]$. An *FS*-point $x_{\alpha}^{e} \in f_{E}$ if $\alpha \leq f(e)(x)$. The set of all *FS*-points in *U* is denoted by *FSP(U)*. We can write $x_{\alpha}^{e} \neq y_{\beta}^{e}$ if $x \neq y$ [4, 9].

The triple (U, δ, E) is called a fuzzy soft topological space (or FSTS) where E is a

fixed set of parameters and δ is the class of *FS*-sets on *U* which is closed under a finite intersection, an arbitrary union, and 0_E , 1_E belong to δ . The family FSOS(U) (resp. FSCS(U)) refers to the set of all *FS*-open(resp. *FS*-closed) sets on *U* [4, 30].

Notation. [29] For $x_{\alpha}^{e} \in FSP(U)$, $O_{x_{\alpha}^{e}}$ refers to an *FSO*-set contains x_{α}^{e} and is called *FSO*-nbd of x_{α}^{e} , $N_{E}(x_{\alpha}^{e})$ refers to the set of all *FSO*-nbds of x_{α}^{e} . In general $O_{f_{E}}$ refers to an *FSO*-set contains f_{E} .

An *FS*-closure of an *FS*-set h_E in (U, δ, E) denoted by $cl(h_E)$ is the smallest *FSC*set on U which contains h_E , and an *FS*-interior of h_E denoted by $int(h_E)$ is the largest *FSO*-set contained in h_E . It is clear that $x^e_{\alpha} \in int(h_E)$ if and only if there exists $O_{x^e_{\alpha}} \in \delta$ such that $O_{x^e_{\alpha}} \sqsubseteq h_E$ [4].

Definition 1. [16] Let FSS(U) and FSS(V) be two classes of all FS-sets on U, V respectively, and let $p: U \longrightarrow V$ and $u: E \longrightarrow K$ be two maps, then the map $f_{up}: FSS(U) \longrightarrow FSS(V)$ is called an FS-map for which:

i) If $h_E \in FSS(U_E)$, then the image of h_E denoted by $f_{up}(h_E)$ is an FS-set on V given by $f_{up}(h_E)(k) = \sup\{p(h(e)) : e \in u^{-1}(k)\}$ if $u^{-1}(k) \neq \emptyset$ and $f_{up}(h_E)(k) = 0_K$, otherwise $\forall k \in K$.

ii) If $g_K \in FSS(V)$, then the preimage of g_K denoted by $f_{up}^{-1}(g_K)$ is an FS-set on U defined by $f_{up}^{-1}(g_K)(e) = p^{-1}(g(u(e)))$ for all $e \in E$.

An FS-map f_{up} is called one-one(onto) if u and p are one-one(onto). For more details about the properties of image and preimage of the FS-sets see [16].

Definition 2. [4] The FS-sets h_E and g_E on U are called FS-quasi coincident, denoted by h_Eqg_E if there is $e \in E$ and $x \in U$ such that h(e)(x) + g(e)(x) > 1. If h_E is not quasi coincident with g_E , we write $h_E\tilde{q}g_E$. In particular, $x_{\alpha}^e qg_E$ if $\alpha + g(e)(x) > 1$.

Proposition 1. [4, 29]

 $\begin{aligned} (i) \ f_E \tilde{q} g_E &\Leftrightarrow f_E \sqsubseteq g_E^c. \\ (ii) \ f_E \sqcap g_E = 0_E \Rightarrow f_E \tilde{q} g_E. \\ (iii) \ f_E \tilde{q} g_E \ , \ h_E \sqsubseteq g_E \Rightarrow f_E \tilde{q} h_E. \\ (iv) \ x_\alpha^e \tilde{q} f_E &\Leftrightarrow x_\alpha^e \tilde{\in} f_E^c. \\ (v) \ f_E \sqsubseteq g_E &\Leftrightarrow (x_\alpha^e q f_E \Rightarrow x_\alpha^e q g_E). \\ (vi) \ f_E \tilde{q} f_E^c. \end{aligned}$

Lemma 1. [29] For an FSTS (U, δ, E) and $x^e_{\alpha} \in FSP(U)$, we have:

(i) $g_E \tilde{q} f_E$ if and only if $g_E \tilde{q} cl(f_E) \forall g_E \in \delta$,

(ii) $x^e_{\alpha} \tilde{q} cl(f_E)$ if and only if $O_{x^e_{\alpha}} \tilde{q} f_E \forall O_{x^e_{\alpha}} \in \delta$.

Definition 3. [20] An FS-set h_E in (U, δ, E) is said to be regular open (resp. regular closed) if $h_E = int(cl(h_E))$ (resp. $h_E = cl(int(h_E))$). The family of all FS-regular open (resp. all FS-regular closed) on U is denoted by FSRO(U) (resp. FSRC(U)).

Definition 4. [31] An FS-set f_E in (U, δ, E) is said to be fuzzy soft generalized closed (or FSg-closed) if $cl(f_E) \sqsubseteq h_E$ for all $f_E \sqsubseteq h_E$ and $h_E \in FSOS(U)$. The collection of all FSg-closed sets in (U, δ, E) is denoted by FSgCS(U). The complement of an FSg-closed set is called an FSg-open set.

Note. Clearly, every *FSC*-set is an *FSg*-closed set.

Definition 5. [28] An $FST(U, \delta, E)$ is said to be:

(i) FST_0 iff for any $x^e_{\alpha}, y^e_{\beta} \in FSP(U)$ with $x^e_{\alpha}\tilde{q}y^e_{\beta}$ implies $x^e_{\alpha}\tilde{q}cl(y^e_{\beta})$ or $cl(x^e_{\alpha})\tilde{q}y^e_{\beta}$.

(ii) FST_1 iff for any $x^e_{\alpha}, y^e_{\beta} \in FSP(U)$ with $x^e_{\alpha} \tilde{q} y^e_{\beta}$ implies $x^e_{\alpha} \tilde{q} cl(y^e_{\beta})$ and $cl(x^e_{\alpha}) \tilde{q} y^e_{\beta}$.

(iii) FST_2 iff for any x^e_{α} , $y^e_{\beta} \in FSP(U)$ with $x^e_{\alpha}\tilde{q}y^e_{\beta}$, there are $O_{x^e_{\alpha}}, O_{y^e_{\beta}} \in \delta$ such that $O_{x^e_{\alpha}}\tilde{q}O_{y^e_{\beta}}$.

Definition 6. [28] An FSTS (U, δ, E) is said to be:

(i) $FSR_2(or \ FS\text{-regular})$ iff for any $x^e_{\alpha} \in FSP(U)$ with $x^e_{\alpha}\tilde{q}f_E$, f_E is an FSC-set, there are $O_{x^e_{\alpha}}, O_{f_E} \in \delta$ such that $O_{x^e_{\alpha}}\tilde{q}O_{f_E}$.

(ii) FSR_3 (or FS-normal) iff for any FSC-sets f_E, g_E with $f_E \tilde{q}g_E$, there are $O_{f_E}, O_{g_E} \in \delta$ such that $O_{f_E} \tilde{q}O_{g_E}$.

(iii) FST_3 (resp. FST_4) iff it is FSR_2 (resp. FSR_3) and FST_1 .

Theorem 1. [28] $FST_4 \Rightarrow FST_3 \Rightarrow FST_2 \Rightarrow FST_1 \Rightarrow FST_0$.

Definition 7. [29] Let (U, τ) be a topological space. The family $\delta = {\widetilde{\chi}_A : A \in \tau}$ defines an FST on U induced by τ .

Definition 8. [31] An FS-map $f_{up}: (U, \delta, E) \longrightarrow (V, \vartheta, K)$ is said to be:

(i) FSg-continuous if $f_{up}^{-1}(h_E) \in FSgCS(U)$ for any $h_E \in FSCS(V)$.

(ii) FSgc-irresolute if $f_{up}^{-1}(g_E) \in FSgCS(U)$ for any $g_E \in FSgCS(V)$.

Note. Clearly, every *FSgc*-irresolute map is *FSg*-continuous.

2. Fuzzy soft *g*-regular spaces

Definition 9. An FSTS (U, δ, E) is said to be:

(i) $FST_{\frac{1}{2}}$ iff any FSg-closed set on U is an FSC-set.

(ii) $FST_{2\frac{1}{2}}$ iff for any x^e_{α} , $y^e_{\beta} \in FSP(U)$ with $x^e_{\alpha}\tilde{q}y^e_{\beta}$, there are $O_{x^e_{\alpha}}, O_{y^e_{\beta}} \in \delta$ such that $clO_{x^e_{\alpha}}\tilde{q}clO_{y^e_{\beta}}$.

Definition 10. An $FSTS(U, \delta, E)$ is said to be FSg-regular (or FS- GR_2) if for any FSg-closed set h_E and any FS-point x^e_{α} with $x^e_{\alpha}\tilde{q}h_E$, there are $O_{x^e_{\alpha}}$, $O_{h_E} \in \delta$ such that $O_{x^e_{\alpha}}\tilde{q}O_{h_E}$.

Remark 1. Clearly, every FS- GR_2 space is FSR_2 . The next example shows that the converse is not necessarily true.

Example 1. Let $U = \{a, b\}$, $E = \{e, t\}$, and $\delta = \{0_E, 1_E, f_E = \{(e, \{a_{0.5}, b_{0.3}\}), (t, \{a_{0.5}, b_{0.7}\})\}$, $g_E = \{(e, \{a_{0.5}, b_{0.3}\}), (t, \{a_{0.5}, b_{0.7}\})\}$, then δ is FST on U. One can easy to verify that (U, δ, E) is FSR₂ but not FS-GR₂.

Theorem 2. An FSTS (U, δ, E) is FS GR_2 if and only if it is FSR₂ and FST_{1/2}.

Proof. If (U, δ, E) is FS- GR_2 , then by Remark 1 it is FSR_2 . For any FSg-closed set f_E and any FS-point x^e_{α} with $x^e_{\alpha}\tilde{q}f_E$ *i.e.* $x^e_{\alpha}\tilde{\in}f^C_E$, there are $O_{x^e_{\alpha}}$, $O_{f_E} \in \delta$ such that $O_{x^e_{\alpha}}\tilde{q}O_{f_E} \implies O_{x^e_{\alpha}}\tilde{q}f_E \implies x^e_{\alpha}\tilde{q}cl(f_E)$ implies that $x^e_{\alpha}\tilde{\in}[cl(f_E)]^C$. Thus $f^C_E \sqsubseteq [cl(f_E)]^C \implies$ $cl(f_E) \sqsubseteq f_E$ and so, $f_E = cl(f_E)$ this means every FSg-closed set in (U, δ, E) is an FSCset. The result holds.

Conversely, it is clear.

Theorem 3. An $FSTS(U, \delta, E)$ is FS- GR_2 if and only if for any FS-point x^e_{α} and any FSg-open set $O_{x^e_{\alpha}}$, there is an FSO-set $O^*_{x^e_{\alpha}}$ such that $cl(O^*_{x^e_{\alpha}}) \sqsubseteq O_{x^e_{\alpha}}$.

Proof. Let (U, δ, E) be FS- GR_2 and $O_{x_{\alpha}^e}$ be any FSg-open set containing FS-point x_{α}^e , then $O_{x_{\alpha}^e}^c = f_E$ which is an FSg-closed set. Since $O_{x_{\alpha}^e}\tilde{q}O_{x_{\alpha}^e}^c$ we have, $x_{\alpha}^e\tilde{q}O_{x_{\alpha}^e}^c$. Since (U, δ, E) is FS- GR_2 , there are $O_{x_{\alpha}^e}^*$, $O_{O_{x_{\alpha}^e}}^c \in \delta$ such that $O_{x_{\alpha}^e}^*\tilde{q}O_{O_{x_{\alpha}^e}}^c = O_{f_E}$ implies $O_{x_{\alpha}^e}^* \subseteq O_{f_E}^c$ and so, $cl(O_{x_{\alpha}^e}^*) \subseteq O_{f_E}^c$. Since $O_{x_{\alpha}^e}^c \subseteq O_{O_{x_{\alpha}^e}}^c = O_{f_E}$, we obtain $O_{f_E}^c \subseteq O_{x_{\alpha}^e}$. Hence $cl(O_{x_{\alpha}^e}^*) \subseteq O_{x_{\alpha}^e}^c$.

Conversely, let x_{α}^{e} be any FS-point and g_{E} be any FSg-closed set with $x_{\alpha}^{e}\tilde{q}g_{E}$, then $x_{\alpha}^{e} \in g_{E}^{c} = O_{x_{\alpha}^{e}}$ which is an FSg-open set containing x_{α}^{e} . So by hypothesis, there exists an FSO-set $O_{x_{\alpha}^{e}}^{*}$ such that $cl(O_{x_{\alpha}^{e}}^{*}) \sqsubseteq O_{x_{\alpha}^{e}} = g_{E}^{c}$ implies $g_{E} \sqsubseteq [cl(O_{x_{\alpha}^{e}}^{*})]^{C} = O_{g_{E}}$ and $cl(O_{x_{\alpha}^{e}}^{*})\tilde{q}[cl(O_{x_{\alpha}^{e}}^{*})]^{C} = O_{g_{E}}$. Therefore $O_{x_{\alpha}^{e}}^{*}\tilde{q}O_{g_{E}}$. Hence the result holds.

Theorem 4. An FSTS (U, δ, E) is FS-GR₂ if and only if for any FSg-closed set g_E and any FS-point x^e_{α} with $x^e_{\alpha}\tilde{q}g_E$, there are $O_{x^e_{\alpha}}, O_{g_E} \in \delta$ such that $cl(O_{x^e_{\alpha}})\tilde{q}cl(O_{g_E})$.

Proof. Let (U, δ, E) be an FS- GR_2 space and g_E be any FSg-closed set with $x_{\alpha}^e \tilde{q}g_E$, there are $O_{x_{\alpha}^e}^*, O_{f_E} \in \delta$ such that $O_{f_E} \tilde{q} O_{x_{\alpha}^e}^*$. From Lemma 1, we get $cl(O_{f_E})\tilde{q}O_{x_{\alpha}^e}^*$ that is, $cl(O_{f_E})\tilde{q}x_{\alpha}^e$. A gain, since (U, δ, E) is FS- GR_2 , there are $O_{x_{\alpha}^e}^{**}$, $O_{cl(O_{f_E})} \in \delta$ such that $O_{x_{\alpha}^e}^{**}\tilde{q}O_{cl(O_{f_E})}$ implies that $cl(O_{x_{\alpha}^e}^*)\tilde{q}O_{cl(O_{f_E})}$ (by Lemma 1). Take $O_{x_{\alpha}^e} = O_{x_{\alpha}^e}^* \sqcap O_{x_{\alpha}^e}^{**}$ and by the above theorem, there exists $O_{x_{\alpha}^e} \in \delta$ such that $cl(O_{x_{\alpha}^e}) \sqsubseteq O_{x_{\alpha}^e}^*$. Since $cl(O_{f_E})\tilde{q}O_{x_{\alpha}^e}^*$, we get $cl(O_{f_E})\tilde{q}cl(O_{x_{\alpha}^e})$.

Conversely, It follows directly from hypothesis.

Definition 11. An FSTS (U, δ, E) is said to be FS-symmetric iff for any FS-points $x^e_{\alpha}, y^e_{\beta} \in FSP(U)$ with $x^e_{\alpha}\tilde{q}cl(y^e_{\beta})$ implies $y^e_{\beta}\tilde{q}cl(x^e_{\alpha})$.

Theorem 5. An FSTS (U, δ, E) is FS-symmetric if and only if $cl(x_{\alpha}^{e})\tilde{q}g_{E}$ for any FSCset g_{E} with $x_{\alpha}^{e}\tilde{q}g_{E}$. Proof. Suppose that g_E is an FSC-set on U with $x^e_{\alpha}\tilde{q}g_E$. Clearly $cl(y^e_t) \sqsubseteq g_E$ for all $y^e_t \in g_E$ and so, $x^e_{\alpha}\tilde{q}cl(y^e_t)$. Since (U, δ, E) is FS-symmetric, we have $y^e_{\beta}\tilde{q}cl(x^e_{\alpha})$ for all $y^e_t \in g_E$ and so, for all $y^e_t \in g_E$ there is an FSO-set $O_{y^e_t}$ containing y^e_t such that $x^e_{\alpha}\tilde{q}O_{y^e_t}$. Put $h_E = \sqcup \{O_{y^e_t} : y^e_t \in g_E$ and $x^e_{\alpha}\tilde{q}O_{y^e_t}\}$, then $h_E = O_{g_E}$ and $x^e_{\alpha}\tilde{q}h_E$. Thus $x^e_{\alpha} \in h^C_E$ and so, $cl(x^e_{\alpha}) \sqsubseteq h^C_E$ implies $cl(x^e_{\alpha})\tilde{q}h_E$. Therefore $cl(x^e_{\alpha})\tilde{q}g_E$. Conversely, it is obvious.

Corollary 1. An FSTS (U, δ, E) is said to be FS-symmetric if and only if every FS-point $x^e_{\alpha} \in FSP(U)$ is an FSg-closed set.

Remark 2. Clearly, every FST_1 space is FS-symmetric. The next example shows that the converse may not be true.

Example 2. Let $U = \{x\}$, $E = \{e\}$, and $\delta = \{0_E, 1_E, x_{0.5}^e\}$, then one can verify δ is FS-symmetric but not FST₁. Moreover, δ is not FT₁.

Proposition 2. An FSTS (U, δ, E) is FST₁ if and only if it is FS-symmetric and FST₀.

Proof. Clearly, if (U, δ, E) is FST_1 , then it is FS-symmetric and FST_0 . Conversely, let (U, δ, E) be FS-symmetric and FST_0 . Suppose $x^e_{\alpha} \tilde{q} y^e_t$. Then either $x^e_{\alpha} \tilde{q} cl(y^e_t)$ or $y^e_t \tilde{q} cl(x^e_{\alpha})$. By FS-symmetry, we have $x^e_{\alpha} \tilde{q} cl(y^e_t)$ and $y^e_t \tilde{q} cl(x^e_{\alpha})$ for any x^e_{α} , $y^e_t \in FSP(U)$. The result holds.

Theorem 6. Every FS- GR_2 space is $FST_{2\frac{1}{2}}$.

Proof. Let (U, δ, E) be FS- GR_2 and $x^e_{\alpha}, y^e_t \in FSP(U)$ with $x^e_{\alpha}\tilde{q}y^e_t$. Then (U, δ, E) is FS-symmetric and so x^e_{α} is an FSg-closed set. From Theorem 4 there are FSO-sets $O_{x^e_{\alpha}}$ and $O_{y^e_t}$ such that $cl(O_{x^e_{\alpha}})\tilde{q}cl(O_{y^e_t})$. Hence the result holds.

Proposition 3. For an FS-symmetric space (U, δ, E) . The next properties are equivalent: (1) (U, δ, E) is FST₀,

- (2) (U, δ, E) is $FST_{\frac{1}{2}}$,
- (3) (U, δ, E) is FST_1 .

Proof. It is obvious.

Definition 12. An FSTS (U, δ, E) is called FSG₃ iff it is FS-GR₂ and FS-symmetric.

Proposition 4. Every FSG_3 space is FST_2 .

Proof. It follows directly from the above Definition, Definition 10, and Corollary 1. The next example shows that the converse of the above proposition may not be true. **Example 3.** Let U be an infinite set and $E = \{e\}$. For $x, y \in U$, $x \neq y$, let h_E be an FS-set on U given by h(e)(z) = 1 if z = x, h(e)(z) = 0 if z = y, and h(e)(z) = 0.5 if $z \neq x, z \neq y$. Now for any $z \in U$. Consider the FST δ on U generated by the class $\{(h_E)_{x,y} : x, y \in U, x \neq y\}$. Then one can check that δ is FST₂ but not FS-GR₂ and so not FSG₃.

Theorem 7. An $FSTS(U, \delta, E)$ is FSG_3 if and only if it is FST_3 .

Proof. Let (U, δ, E) be an FSG_3 -space, then it is FS- GR_2 and FS-symmetric. Now, every FS- GR_2 is FSR_2 and every FSG_3 is FST_2 . Thus (U, δ, E) is FSR_2 and FST_2 . So the result holds.

Conversely, let (U, δ, E) be FST_3 , then it is FSR_2 and FT_1 and so, it is $FST_{\frac{1}{2}}$ and FS-symmetric. Thus (U, δ, E) is FSR_2 and $FST_{\frac{1}{2}}$ which implies that (U, δ, E) is FS- GR_2 . Since (U, δ, E) is FS-symmetric. Hence (U, δ, E) is FSG_3 .

3. Fuzzy soft *g*-normal spaces

Definition 13. An FSTS (U, δ, E) is said to be FSg-normal (or FS-GR₃) if for every FSg- closed sets f_E and h_E with $f_E\tilde{q}h_E$, there are FSO-sets O_{f_E} and O_{h_E} containing f_E and h_E respectively, such that $O_{f_E}\tilde{q} O_{h_E}$.

Remark 3. Clearly, every FS- GR_3 space is FSR_3 .

Theorem 8. An FSTS (U, δ, E) is FS-GR₃ if and only if for any FSg-closed set f_E and for any FSO-set O_{f_E} containing f_E , there is $O_{f_E}^* \in \delta$ such that $cl(O_{f_E}^*) \sqsubseteq O_{f_E}$.

Proof. Let (U, δ, E) be an FS- GR_3 space, h_E be any FSg-closed set, and let O_{h_E} be any FSO-set containing h_E , then $O_{h_E}^c$ is an FSC-set. It is known that $O_{h_E}\tilde{q}O_{h_E}^c$ and so, $h_E\tilde{q}O_{h_E}^c$. Since (U, δ, E) is FS- GR_3 , there are FSO-sets $O_{h_E}^*$ and $O_{O_{h_E}^c}$ such that $O_{h_E}^*\tilde{q}O_{O_{h_E}^c}$ and so, $O_{h_E}^* \sqsubseteq O_{O_{h_E}^c}^c$ and $cl(O_{h_E}^*) \sqsubseteq O_{O_{h_E}^c}^c$. Since $O_{h_E}^c \sqsubseteq O_{O_{h_E}^c}^c$ we get $O_{O_{h_E}^c}^c \sqsubseteq O_{h_E}$ and $cl(O_{h_E}^*) \sqsubseteq O_{O_{h_E}^c}^c \sqsubseteq O_{h_E}$. Hence the result holds.

Conversely, It follows directly from hypothesis.

Theorem 9. An FSTS (U, δ, E) is FS-GR₃ if and only if for any FSg-closed sets f_E and g_E with $f_E \tilde{q} g_E$, there are FSO-sets O_{f_E} and O_{g_E} containing f_E and h_E respectively, such that $cl(O_{f_E})\tilde{q} cl(O_{g_E})$.

Proof. Let (U, δ, E) be FS- GR_3 and f_E, g_E be any FSg-closed sets with $f_E \tilde{q}g_E$, there exist $O_{f_E}^{\#}, O_{g_E} \in \delta$ such that $O_{f_E}^{\#} \tilde{q} O_{g_E} \Longrightarrow O_{f_E}^{\#} \tilde{q} cl(O_{g_E})$ (by Lemma 1). A gain, since (U, δ, E) is FS- GR_3 , then there are $O_{f_E}^*, O_{cl(O_{g_E})} \in \delta$ such that $O_{f_E}^* \tilde{q} O_{cl(O_{g_E})} \Longrightarrow$ $cl(O_{f_E}^*) \tilde{q} O_{cl(O_{g_E})}$ (by Lemma 1). Now we put $O_{f_E} = O_{f_E}^{\#} \sqcap O_{f_E}^*$. Since (U, δ, E) is FS- GR_3 and $O_{f_E}^{\#} \in \delta$, by the above theorem there is $O_{f_E} \in \delta$ such that $cl(O_{f_E}) \sqsubseteq O_{f_E}^{\#}$. Since $O_{f_E}^{\#} \tilde{q} cl(O_{g_E})$, we get $cl(O_{f_E}) \tilde{q} cl(O_{g_E})$.

Conversely, It follows directly from hypothesis.

Definition 14. An $FSTS(U, \delta, E)$ is called FSG_4 iff it is FS- GR_3 and FS-symmetric.

Theorem 10. Every FSG_4 space is FSG_3 .

Proof. Let (U, δ, E) be FSG_4 , then it is FS- GR_3 and FS-symmetric. Let h_E be an FSg-closed set with $x^e_{\alpha}\tilde{q}h_E$. Then x^e_{α} is an FSg-closed set, because U is FS-symmetric. Since (U, δ, E) is FS- GR_3 , there are FSO-sets $O_{x^e_{\alpha}}$ and O_{h_E} such that $O_{x^e_{\alpha}}\tilde{q}O_{h_E}$. Thus U is FS- GR_2 and so, (U, δ, E) is FSG_3 .

Corollary 2. Every FS- GR_3 and FS-symmetric space is FS- GR_2 .

Proposition 5. An $FSTS(U, \delta, E)$ is FS- GR_3 if and only if it is FSR_3 and $FST_{\frac{1}{2}}$.

Proof. By similar way as that of Theorem 2.

Theorem 11. An $FSTS(U, \delta, E)$ is FSG_4 if and only if it is FST_4 .

Proof. By similar way as that of Theorem 7.

4. Some properties and relations

Here we shall investigate some preservation theorems and relationships of FS- GR_2 and FS- GR_3 spaces.

Definition 15. [31] An FS-map $f_{up}: (U, \delta, E) \longrightarrow (V, \sigma, K)$ is said to be:

(i) FSg-closed if $f_{up}(h_E)$ is FSg-closed in (V, σ, K) for any FSC-set h_E in (U, δ, E) .

(ii) FSg-open if $f_{up}(h_E)$ is FSg-open in (V, σ, K) for any FSO-set h_E in (U, δ, E) .

Lemma 2. If $f_{up} : (U, \delta, E) \longrightarrow (V, \sigma, K)$ is an FS-open, FSg-continuous bijection map, then f_{up} is FSgc-irresolute.

Proof. Let $h_E \in FSgC(V)$ and $f_{up}^{-1}(h_E) \sqsubseteq g_E$, where $g_E \in FSO(U)$, then $h_E \sqsubseteq f_{up}(g_E)$. Since f_{up} is FS-open, we have $f_{up}(g_E) \in FSO(V)$. Since h_E is an FSg-closed set on V, we obtain $cl(h_E) \sqsubseteq f_{up}(g_E)$. Hence $f_{up}^{-1}(cl(h_E) \sqsubseteq g_E$ (because f_{up} is one-one). Since f_{up} is FSg-continuous, we have $f_{up}^{-1}(cl(h_E) \sqsubseteq nFSg$ -closed set in U and so, $cl(f_{up}^{-1}(h_E)) \sqsubseteq cl(f_{up}^{-1}(cl(h_E))) \sqsubseteq g_E$. Hence $f_{up}^{-1}(h_E)$ is an FSg-closed set on V.

Theorem 12. If $f_{up} : (U, \delta, E) \longrightarrow (V, \sigma, K)$ is an FS-open, FSg-continuous bijection map and (U, δ, E) is FS-GR₂, then (V, σ, K) is FS-GR₂.

Proof. Let $h_E \in FSgC(V)$ and $y^e_{\alpha}\tilde{q}h_E$. Since f_{up} is FS-open, FSg-continuous bijective, by the above lemma, f_{up} is FSg-irresolute and so, $f_{up}^{-1}(h_E)$ is FSg-closed. Take $f_{up}(x^e_{\alpha}) = y^e_{\alpha}$, then $x^e_{\alpha}\tilde{q}f_{up}^{-1}(h_E)$). Since U is FS- GR_2 , there are FSO-sets $O_{x^e_{\alpha}}$ and $O_{f^{-1}_{up}(h_E)}$ such that $O_{x^e_{\alpha}}\tilde{q}O_{f^{-1}_{up}(h_E)}$. Since f_{up} is FS-open and bijective, we have $y^e_{\alpha} \in f_{up}(O_{x^e_{\alpha}})$, $h_E \subseteq f_{up}(O_{f^{-1}_{up}(h_E)})$ and $f_{up}(O_{x^e_{\alpha}})\tilde{q}f_{up}(O_{f^{-1}_{up}(h_E)})$. The result holds.

Theorem 13. If $f_{up} : (U, \delta, E) \longrightarrow (V, \sigma, K)$ is an FSg-continuous, FSg-closed one-one map and (V, σ, K) is FS-GR₂, then (U, δ, E) is FS-GR₂.

Proof. Let $h_E \in FSgc(U)$ and $x_{\alpha}^e \tilde{q}h_E$. By *FS*-continuity and *FSg*-closedness we have $f_{up}(h_E) \in FSgc(V)$. Indeed, if $f_{up}(h_E) \sqsubseteq g_E$ and g_E is an *FSO*-set in (V, σ, K) , we have $h_E \sqsubseteq f_{up}^{-1}(g_E)$, and so $cl(h_E) \sqsubseteq f_{up}^{-1}(g_E)$. Thus $f_{up}(h_E) \sqsubseteq f_{up}(cl(h_E)) \sqsubseteq$ $f_{up}f_{up}^{-1}(g_E) \sqsubseteq g_E$. So $cl(h_E) \sqsubseteq g_E$. Thus $f_{up}(h_E)$ is *FSg*-closed. Since f_{up} is one-one, we get $f_{up}(x_{\alpha}^e) \tilde{q}f_{up}(h_E)$. Since (V, σ, K) is *FS*-*GR*₂, there exist *FSO*-sets $O_{f_{up}(x_{\alpha}^e)}$ and $O_{f_{up}(h_E)}$ such that $O_{f_{up}(x_{\alpha}^e)} \tilde{q}O_{f_{up}(h_E)}$. So, we get $x_{\alpha}^e \tilde{\in} f_{up}^{-1}(O_{f_{up}(x_{\alpha}^e)})$, $h_E \sqsubseteq f_{up}^{-1}(O_{f_{up}(h_E)})$ and $f_{up}^{-1}(O_{f_{up}(x_{\alpha}^e)}) \tilde{q}f_{up}^{-1}(O_{f_{up}(h_E)})$. Since f_{up} is *FS*-continuous, we get $f_{up}^{-1}(O_{f_{up}(x_{\alpha}^e)})$ and $f_{up}^{-1}(O_{f_{up}(h_E)})$ are *FSO*-sets in (U, δ, E) . The result holds.

Theorem 14. If $f_{up} : (U, \delta, E) \longrightarrow (V, \sigma, K)$ is FS-continuous, FSg-closed one-one and (V, σ, K) is FS-GR₃, then (U, δ, E) is FS-GR₃.

Proof. Let $h_E, g_E \in FSgCS(U)$ with $h_E\tilde{q}g_E$. As in the above theorem $f_{up}(h_E)$ and $f_{up}(g_E) \in FSgC(V)$. Since f_{up} is one-one, we have $f_{up}(h_E)\tilde{q}f_{up}(g_E)$. Since (U, δ, E) is FS- GR_3 , there are FSO-sets $O_{f_{up}(h_E)}, O_{f_{up}(g_E)}$ such that $O_{f_{up}(h_E)}\tilde{q} O_{f_{up}(g_E)}$. So we get, $h_E \sqsubseteq f_{up}^{-1}(O_{f_{up}(h_E)}), g_E \sqsubseteq f_{up}^{-1}(O_{f_{up}(g_E)})$ and $f_{up}^{-1}(O_{f_{up}(h_E)})\tilde{q}f_{up}^{-1}(O_{f_{up}(g_E)})$. Since f_{up} is FS-continuous, we get $f_{up}^{-1}(O_{f_{up}(h_E)})$ and $f_{up}^{-1}(O_{f_{up}(g_E)})$ are FSO-sets in (U, δ, E) . The proof is complete.

Theorem 15. If $f_{up} : (U, \delta, E) \longrightarrow (V, \sigma, K)$ is FS-open, FSg-continuous bijection, and (U, δ, E) is FS-GR₃, then (V, σ, K) is FS-GR₃.

Proof. It is analogous to that of the above theorem.

Theorem 16. If $f_{up} : (U, \delta, E) \longrightarrow (V, \sigma, K)$ is FSgc-irresolute, FS-open onto and (U, δ, E) is FS-GR₃, then (V, σ, K) is FS-GR₃.

Proof. It is similar to that of Theorem 14.

The next two theorems show that FS- GR_2 and FS- GR_3 are hereditary property.

Theorem 17. Every FS-subspace $(\tilde{V}_E, \delta_V, E)$ of FS-GR₂ is FS-GR₂.

Proof. Let (U, δ, E) be FS- GR_2 . Suppose that h_E any FSg-closed set in (V_E, δ_V, E) with $x^e_{\alpha} \tilde{q} h_E$ for any FS-point in $(\tilde{V}_E, \delta_V, E)$, then there is an FSC-set and so FSg-closed set f_E in (U, δ, E) with $h_E = \tilde{V}_E \sqcap f_E$ and $x^e_{\alpha} \tilde{q} f_E$. Since (U, δ, E) is FS- GR_2 , there are $O_{x^e_{\alpha}}, O_{f_E} \in \delta$ such that $O_{x^e_{\alpha}} \tilde{q} O_{f_E}$. Now take $O^*_{x^e_{\alpha}} = \tilde{V}_E \sqcap O_{x^e_{\alpha}} \in \delta_V$ and $O^*_{f_E} = \tilde{V}_E \sqcap O_{f_E} \in$ δ_V , then $O^*_{x^e_{\alpha}}$ and $O^*_{f_E}$ are FSO-sets in $(\tilde{V}_E, \delta_V, E)$ containing x^e_{α} and f_E respectively, such that $O^*_{x^e_{\alpha}} \tilde{q} O^*_{f_E}$. The result holds.

Theorem 18. Every FSC-subspace (V_E, δ_V, E) of FS-GR₃ is FS-GR₃.

Proof. It is similar to that of the above theorem.

REFERENCES

Theorem 19. (U, δ_{τ}, E) is FS-GR₂ if and only if (U, τ) is g-regular.

Proof. Let (U, δ_{τ}, E) be FS- GR_2 and B any closed set in (U, τ) with $x \notin B$, then B is a g-closed set and there is an FSC-set f_E such that $f_E = \widetilde{\chi}_B$. Clearly f_E is an FSg-closed set with $x_1^e \widetilde{q} f_E$. Since (U, δ_{τ}, E) is FS- GR_2 , there are $O_{x_1^e}, O_{f_E} \in \delta_{\tau}$ such that $O_{x_1^e} \widetilde{q} O_{f_E}$. Thus there are $O_x, O_B \in \tau$ such that $O_{x_1^e} = \widetilde{\chi}_{O_x}, O_{f_E} = \widetilde{\chi}_{O_B}$ and $O_x \cap O_B = \emptyset$. Therefore (U, τ) is g-regular.

Conversely, let (U, τ) be g-regular and h_E any closed set in (U, δ_{τ}, E) with $x_{\alpha}^e \tilde{q} h_E$. Then h_E is an FSg-closed set and there is a closed set F in (U, τ) such that $h_E = \tilde{\chi}_{O_F}$ and $x \notin F$. Clearly F is g-closed and (U, τ) is g-regular, then there are $O_x, O_F \in \tau$ with $O_x \cap O_F = \emptyset$ and so, there are $O_{x_{\alpha}^e}$ and $O_{h_E} \in \delta_{\tau}$ such that $O_{x_{\alpha}^e} = \tilde{\chi}_{O_x}$, $O_{h_E} = \tilde{\chi}_{O_F}$ and $O_{x_{\alpha}^e} \tilde{q} O_{h_E}$. Hence (U, δ_{τ}, E) is FS- GR_2 .

Theorem 20. (U, δ_{τ}, E) is FS-GR₃ if and only if (U, τ) is g-normal.

Proof. It is similar to that of the above theorem.

From the obtained results in section 2, 3. we conclude the next relations.

Corollary 3. For An FSTS (U, τ, E) , the next implications hold. 1) $FSG_4 \Leftrightarrow FST_4 \Rightarrow FST_3 \Leftrightarrow FSG_3 \Leftrightarrow FS-GR_2 \wedge FS$ -symmetric $\Rightarrow FSR_2$. 2) $FSG_3 \Rightarrow FST_{2\frac{1}{3}} \Rightarrow FST_2 \Rightarrow FST_1 \Rightarrow FST_0$.

5. Conclusion

The topological structures play an important role in many applications of complex reallife problems in various field, specially the fields that concerned with handling all cases that contain uncertainties such as medical diagnosis, economic, and decision making,..etc. In this work, we introduced and studied the new classes of spaces namely, FSg-regular and FSg-normal space via fuzzy soft generalized closed sets. We investigated some characterizations for them. Some related theorems and relations are presented with some necessary examples. In addition, the hereditary property and some preservation theorems. In the future work we will try to present some applications for fuzzy soft generalized sets in different aspects.

6. Conflicts of interest

The authors declare no conflict of interest.

References

 M. E. Abd El-Monsef, M. A. El-Gayar, and R. M. Aqeel. A comparison of three types of rough fuzzy sets based on two universal sets. *International Journal of Machine Learning and Cybernetics*, 8(1):343–353, 2017.

- [2] ME Abd El-Monsef, MA El-Gayar, and RM Aqeel. On relationships between revised rough fuzzy approximation operators and fuzzy topological spaces. *International Journal of Granular Computing, Rough Sets and Intelligent Systems*, 3(4):257–271, 2014.
- [3] S. P. Arya and M. P. Bhamini. A generalisation of normal spaces. *Matematički Vesnik*, 35(81):1–10, 1983.
- [4] S. Atmaca and I. Zorlutuna. On fuzzy soft topological spaces. Ann. Fuzzy Math. Inform, 5(2):377–386, 2013.
- [5] G. Balasubramanian and P. Sundaram. On some generalizations of fuzzy continuous functions. *Fuzzy sets and systems*, 86(1):93–100, 1997.
- [6] C. Chang. Fuzzy topological spaces. Journal of mathematical Analysis and Applications, 24(1):182–190, 1968.
- [7] Á. Császár. Generalized open sets. Acta mathematica hungarica, 75(1-2):65–87, 1997.
- [8] Á. Császár. Normal generalized topologies. Acta Mathematica Hungarica, 115(4):309– 313, 2007.
- [9] I. Demir and O. Özbakır. Some properties of fuzzy soft proximity spaces. The Scientific World Journal, 2015, 2015.
- [10] M. K. El-Bably and E. A. Abo-Tabl. A topological reduction for predicting of a lung cancer disease based on generalized rough sets. *Journal of Intelligent & Fuzzy* Systems, 42(2):3045–3060, 2021.
- [11] M. A. El-Gayar and A. A. El Atik. Topological models of rough sets and decision making of covid-19. *Complexity*, 2022, 2022.
- [12] M. E. El-Shafei. Some applications of generalized closed sets in fuzzy topological spaces. *Kyungpook Mathematical Journal*, 45(1):13–19, 2005.
- [13] R. Engelking. General Topology, PWN-Polish Sci. 1977.
- [14] El-Bably M. K., Ali M. I., and E. A. Abo-Tabl. New topological approaches to generalized soft rough approximations with medical applications. *Journal of Mathematics*, 2021, 2021.
- [15] L. Kalantan. Results about-normality. Topology Appl., 125:47–62, 2002.
- [16] A. Kharal and B. Ahmad. Mappings on fuzzy soft classes. Advances in fuzzy systems, 2009, 2009.
- [17] N. Levine. Semi-open sets and semi-continuity in topological spaces. The American mathematical monthly, 70(1):36–41, 1963.

- [18] N. Levine. Generalized closed sets in topology. Rendiconti del Circolo Matematico di Palermo, 19(1):89–96, 1970.
- [19] P. K. Maji, R. Biswas, and A. Roy. Fuzzy soft sets. J. Fuzzy math., 9(3), 2001.
- [20] P. Mukherjee, R. P. Chakraborty, and C. Park. On fuzzy soft δ-open sets and fuzzy soft δ-continuity. Ann. Fuzzy Math. Inform, 11(2):327–340, 2016.
- [21] B. M. Munshi. Separation axioms. Acta Ciencia Indica, 12(2):140–145, 1986.
- [22] M. Navaneethakrishnan and J. P. Joseph. g-closed sets in ideal topological spaces. Acta Mathematica Hungarica, 119(4):365–371, 2008.
- [23] M. Navaneethakrishnan, J. P. Joseph, and D Sivaraj. I _g-normal and i _g-regular spaces. Acta Mathematica Hungarica, 125(4):327–340, 2009.
- [24] T. Noiri and V. Popa. On g-regular spaces and some functions. Mem. Fac. Sci. Kochi Univ. Math, 20:67–74, 1999.
- [25] R. Parimelazhagan and V. Subramonia. Strongly g* closed sets in topological spaces. Int. Jou. Of Math. Analy, 6(30):1481–1489, 2012.
- [26] J. K. Park and J. H. Park. Mildly generalized closed sets, almost normal and mildly normal spaces. *Chaos, Solitons & Fractals*, 20(5):1103–1111, 2004.
- [27] T. Rajendrakumar and G. Anandajothi. On fuzzy strongly g-closed sets in fuzzy topological spaces. Intern. J. Fuzzy Mathematical Archive, 3:68–75, 2013.
- [28] S. Saleh, A. M. Abd EL-Latif, and AL-Salemi Amany. On separation axioms in fuzzy soft topological spaces. *South Asian J. Math.*, 8(2):92–102, 2018.
- [29] S. Saleh and Amani Al-Salemi. The r₋0 and r₋1 properties in fuzzy soft topological spaces. *Journal of new theory*, (24):50–58, 2018.
- [30] B. Tanay and M. B. Kandemir. Topological structure of fuzzy soft sets. Computers & Mathematics with Applications, 61(10):2952-2957, 2011.
- [31] Z. Tarrannum and A. P. Narappanavar. Fuzzy soft generalized closed sets in fuzzy soft topological spaces. *International Journal of Applied Engineering Research*, 14(3):633– 636, 2019.
- [32] M.K.R.S. Veera Kumar. Between closed sets and g-closed sets. Mem. Fac. Sci. Kochi Univ. Ser. A Math., 21:1–19, 2000.
- [33] L. A. Zadeh. Information and control. Fuzzy sets, 8(3):338–353, 1965.